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The pilot phase of the HUPO Plasma Proteome Project (PPP) is an international collaboration to
catalog the protein composition of human blood plasma and serum by analyzing standardized
aliquots of reference serum and plasma specimens using a variety of experimental techniques.
Data management for this project included collection, integration, analysis, and dissemination
of findings from participating organizations world-wide. Accomplishing this task required a
communication and coordination infrastructure specific enough to support meaningful inte-
gration of results from all participants, but flexible enough to react to changing requirements
and new insights gained during the course of the project and to allow participants with varying
informatics capabilities to contribute. Challenges included integrating heterogeneous data, re-
ducing redundant information to minimal identification sets, and data annotation. Our data
integration workflow assembles a minimal and representative set of protein identifications,
which account for the contributed data. It accommodates incomplete concordance of results
from different laboratories, ambiguity and redundancy in contributed identifications, and
redundancy in the protein sequence databases. Recommendations of the PPP for future large-
scale proteomics endeavors are described.
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1 Introduction

Data management was one of the key elements in the pilot
phase of the HUPO Plasma Proteome Project (PPP). Data
submission and collection approaches were defined collab-
oratively by the Bioinformatics and Technologies Commit-
tees, and were extensively discussed at the PPP Workshop in
Bethesda, USA in July 2003 [1].

Ideally, experimental methods and the data generated by
their execution would be fully described in a thoroughly
decomposed manner, facilitating sophisticated searches and
analyses. However, when dealing with the results from real
experiments multiple compromises must be made. The first
concerns the level of detail that can be requested: while it is, in
principle, desirable to have all methodological steps, parame-
ters, data, and analyses described in full detail, many labora-
tories lack automated laboratory information management
systems and manual record keeping is laborious, limiting the
granularity of information that can be captured. The second
compromise concerns the degree to which experimental
reports will be decomposed and structured by the submitter:
from a long run of free text as in a journal paper to a fully
annotated list of all the relevant items of information, arranged
in an elaborate and well-specified hierarchy that captures the
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interrelationships of those items. It is notoriously difficult to
automatically extract even the simplest information from free
text [2, 3]. However, thoroughly classifying information for
submission is burdensome. Indeed, developing standards,
data definitions, forms or submission tools, and the associated
documentation and training material is a substantial task.
Third, the pilot phase of the PPP was designed to encourage
individual laboratories to push the limits of their technologies
to detect and identify low-abundance proteins; the Technology
Committee was not able to define in advance all the parameters
that emerged as desirable inputs for analysis in this broad, lar-
gely voluntary collaboration. The fourth compromise concerns
the design and implementation of the data systems used for
storage of the data at the central repository. It is desirable to
retain as close a link as possible to the original submissions
from the participating laboratories in the central repository, but
this implies that the details of which data sets superseded ear-
lier submissions, exceptions encountered in the data loading,
and other detailed information on submission processing need
to be encoded in subsequent queries, complicating the task of
writing and debugging software to analyze the data.

Finally, a compromise at the level of the overall project
relates to the choice of sequence database used for analysis
and whether to “freeze” on a particular release of the
sequence database. The results of protein identification by
search of mass spectra against a database are necessarily de-
pendent on the database being searched. Freezing on a par-
ticular protein sequence database release not only facilitates
comparison of identification data sets but also prevents cor-
rections and revisions to the protein sequence collection
from being incorporated into the identification process. Fur-
ther, freezing on a particular protein sequence database
release complicates the task of linking the findings of the
current study to evolving knowledge of the human genome
and its annotation, because many of the entries in the pro-
tein sequence database available at the initiation of the pro-
ject have been revised, replaced, or withdrawn over the
course of this project, and continue to be revised.

The major aim of the pilot phase of the HUPO PPP was
the comparison of protein identifications made from multi-
ple reference specimens by all participating laboratories. An
additional important aim was the development of an efficient
method of data acquisition, storage, and analysis in such a
big collaborative proteomics experiment [3]. Here we
describe the data management system developed during the
pilot phase of the HUPO PPP.

2 Materials and methods

2.1 Development of the data model

To encourage participation by laboratories, the data model
focused on identifications of whole proteins as a high-
level, concise description of experimental results, requir-
ing a minimum of data input, transmission, and potential

reformatting. The guidance specified the collection of the
protein accession numbers and names, binary descrip-
tions of the confidence of the protein identifications (high
or lower), lists of identified peptides, and free text
descriptions of experimental protocols. Analysis of the
preliminary results brought to the fore a major problem
with a data integration and validation process based
exclusively on protein accession numbers. Participating
laboratories used not only different search databases but
also different algorithms to assemble protein identifica-
tions from their database search results. Additionally, the
estimation of confidence of the identification, based on
search scores and laboratory binary judgment, was incon-
sistent. To address these problems, the original data
model was enhanced to include the peak lists used to ob-
tain protein identifications, and raw spectra in the instru-
ment native format.

The expanded data model is generally in concert with
recently proposed guidelines for publication of protein and
peptide identification data [4]. Since our studies were started
before publication of these guidelines, our data collecting
decisions do not reflect all of the requirements proposed by
Carr et al. [4] Table 1 compares the guidance proposed in [4]
with the information collected in the present study. The
HUPO PPP data model consists of the following main objects:

2.1.1 Laboratory

Information about the participating laboratories, such as
principal investigator, contact person, postal and email
addresses, identifiers, descriptions, etc.

2.1.2 Experimental protocol

Free text descriptions sufficiently detailed to allow the work
to be reproduced. The level of experimental detail was speci-
fied to be sufficient for the protocol to be considered for
publication in Proteomics or the Journal of Biological
Chemistry.

2.1.3 Protein identification data set

The identified protein accession numbers, names, search
database and version, sequences of the identified peptides, and
an estimate of confidence for each protein identification, plus
any supporting information about PTMs (from experimental
measurements, or other sources), and estimates of relative
protein abundance in the specimen. Identification data sets
were stored as peptide lists, reflecting the fact that some
laboratories applied significant protein fractionation prior to
tryptic digest and mass spectral analysis. In a pure “bottom up”
strategy, any protein can contribute any peptide and no infor-
mation is gained by retaining group structure for peptides.
However, when protein fractionation is used, knowledge that a
group of peptides were all derived from the same protein frac-
tion can enhance the power of identification.

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de



3248 M. Adamski et al. Proteomics 2005, 5, 3246–3261

Table 1. Comparison of the HUPO PPP data model with guidance for publishing peptide and protein identification data by Carr et al. [4]

Guideline proposed by Carr et al.[4] HUPO PPP data model

1. Supporting information
The method and/or program used to create the “peak list”

from raw data and the parameters used in the creation
of this peak list.

Data were collected as a part of free text description of
performed experiments. Recommendation to use
PEDRO tool was moot, since tool was not ready for use.

The name and version of the program(s) used for database
searching and specific parameters used for its (their) operation.

Name of the search program collected, but not version
or operation parameters.

Scores used to interpret MS/MS data and thresholds and values
specific to judging certainty of identification, whether any
statistical analysis was applied to validate the results, and a
description of how it was applied.

Scores and thresholds were collected.

The name and version of sequence database used; the count
of number of protein entries in it at the time searched.

Both name and version of the sequence database were
collected. The sequence database itself was also recorded.

2. Information regarding the observed sequence coverage
Table that lists for each protein the sequences of all

identified peptides.
Peptides (sequences) identified for each protein were

collected.
To calculate the sequence coverage different forms of the same

peptide are to be counted as only a single peptide.
All forms of identified peptides were collected, but as long

as they have the same amino acid sequence they were
counted only once.

The total number of MS/MS-interpreted spectra assigned
to peptides corresponding to each protein.

Raw spectra were collected.

3. Protein assignments based on single-peptide assignments
The sequence of the peptide used to make each such assignment,

together with the amino acids N- and C-terminals to that
peptide’s sequence.

Sequence of the peptide was collected but not the terminal
information.

The precursor mass and charge. The precursor charge state was collected as a part of the
peptide data. The mass was requested as part of the peak
list information.

The scores for this peptide. Scores were collected.

4. Biological conclusions based on observation of a single
peptide matching to a protein

Such conclusions must be supported by inclusion of the
corresponding MS/MS spectrum.

Raw spectra were requested for all the MS/MS
identifications (including single peptide).

5. Peptide mass fingerprint data
In addition to listing the number of masses matched to the

identified protein, authors should also state the number
of masses not matched in the spectrum and the sequence
coverage observed.

Only peptides matched to the identified protein were
collected. Sequence coverage was calculated.

Parameters and thresholds used to analyze the data. Data collected only as a part of free text description of
performed experiments. No particular information was
requested.

6. Ambiguous protein identifications
The same protein appears in many cases under different names

and accession numbers in the database. When matching
peptides to members of such a family, it is the authors’
responsibility to demonstrate that they are aware of the
problem and have taken reasonable measures to eliminate
redundancy. In cases where a single-protein member of a
multiprotein family has been singled out, the authors should
explain how the other members of the group were ruled out.

A data integration workflow was specially designed to
address this problem. It is described in the following
sections.

7. Submission of MS/MS spectra
Submission of all MS/MS spectra mentioned in the paper

as supplemental material. The dta, pkl, and mgf files are
accepted.

Raw spectra in the instrument native format were collected
and are available on request. They may be converted to the
other formats with use of special software.
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2.1.4 Peak list

Lists of mass over charge peaks used by search engines for
protein identifications. The peak lists were accompanied by
amino acid modifications catalogs, lists of all modified resi-
dues, including the symbol for and mass of the modified
residue, and the type of modification.

2.1.5 Summary of technologies and resources

This included estimates of the time, capital, and operating
costs of the analyses.

2.1.6 MS/MS spectra

The unprocessed data from spectrometers.

2.1.7 SELDI peak list

Peak lists from direct MS/SELDI experiments (registered for
a separate analysis; see Rai et al., this issue).

2.2 Data submission process

The data submission strategy was designed to make the
submission process simple for the participants and at the
same time error-proof and relatively easy to process for the
data collection and integration center. As stated above, the
consensus data model of the PPP pilot phase included only a
limited representation of methods and results, to minimize
the time commitment for participating experimentalists.
Two methods for submitting were offered: (a) a combination
of Microsoft Excel™, Microsoft Word™, and text forms, or
(b) an XML (http://www.w3.org/XML) schema-based file
format (PEDRO [5, 6]). Those who chose the form-based
submission were asked to fill out a set of preformatted Excel/
Word/text document templates, and submit them online
using a web-based submission server at the University of
Michigan. Those who chose the XML format were asked to
email their submissions to the European Bioinformatics
Institute, after generating one or more XML documents
using the provided XML schema. The schema of the
XML document allowed for the collection of all the informa-
tion in one, hierarchically organized file. To generate the
XML documents the participants were encouraged to use the
PEDRO data entry tool [6], or to export XML directly from
their existing LIMS system. The XML documents were
checked for compliance with the schema and forwarded to
the University of Michigan for further processing.

During the course of the project, we decided to request the
raw MS/MS spectra in the form of instrument files in spec-
trometer native format. The size of these files, sometimes in
excess of several gigabytes, did not allow for their collection by
the standard data submission route; instead, CD or DVD disks
were submitted to the University of Michigan Core and dis-
tributed to three groups for special cross data set analyses (see
Omenn et al., Kapp et al., and Beer et al., this issue).

At the beginning of the project each participating labora-
tory received two distinct identifiers: the first, a numeric
public identifier used for interactions with the submission
centers and other laboratories, and the second, a three-char-
acter private code known only to the laboratory and the cen-
tral data analysis group. These private identifiers were used
to create data surveys without disclosing the identity of sub-
mitters.

2.3 Design of the data repository

The project data repository was built with a Structured Query
Language (SQL) relational database server. The data struc-
ture was divided into two main parts: (1) an intermediate
structure presenting an exact copy of the data from docu-
ments submitted by the project participants, to make the
data available for further processing, and for checking cor-
rectness of the submitted documents; and (2) the main data
structure designed to hold the integrated project data.

The structure can be divided into four main sections:
(1) experiment description, (2) protein identifications made
by data producers from peptide sequences, (3) MS/MS peak
lists, and (4) protein identifications from database searches
made by groups other than the data producers.

In the database design (Fig. 1), experiments performed
by the project participants are stored in the entity Experi-
ment. This entity is referenced directly by the entity Labora-
tory and by a set of look-up entities: Specimen, Depletion,
SeparationProtein, ReductionAlkylation, SeparationPeptide,
and MassSpec. Experiment also has a many-to-many rela-
tionship with a free text protocol description (entities Proto-
col and ExperimentProtocol). At the experiment level the
database structure branches into two sections. The first sec-
tion started by the entity IdentificationSet stores protein
identifications submitted by the participants. The second
section started by the entity MsRun stores MS peak lists and
the results from their analysis. The two-branched database
structure reflects the changes in the project data collection
model, from identification-oriented at the beginning to a
more fine-grained description utilized later.

The database can capture three sets of protein identifiers
from the same experiment. The first set stores protein iden-
tifications made by data producers in the entity Identifica-
tion. The second set stores the results of peptide list searches
done by the data integration center, in the entity ProteinBy-
Peptides. This set captures peptide group information. The
third set of identifiers (multiple subsets of these identifiers
are possible) is derived from the same experimental results,
but this time by an analytical group other than the data pro-
ducer, through the MsRun branch of the database (entities
MsRun, MzPeak, and ProteinByMsSearch).

The main project database does not store SELDI peak
lists or MS/MS raw spectra. These data are available as
downloadable files.
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Figure 1. Entity-relationship diagram of the HUPO PPP data repository. Boxes symbolize entities or tables; connecting lines represent
relations between the entities.

2.4 Receipt of the data

The data documents were uploaded using a web-based sub-
mission site established at the University of Michigan. Dur-
ing submission each document received a unique ID num-
ber used subsequently by the document tracking and trans-
forming mechanism. The XML documents submitted by
email were processed separately. Data from the received
documents were transferred to an intermediate database.
The transfer was done automatically for each web-submitted

document and separately for the emailed XML submissions.
The data in the intermediate structure represent an exact
copy of the data from the original documents, without any
transformation or integration. The intermediate database
allows checking the correctness of the structure of the sub-
mitted documents and makes the data available for the inte-
gration procedures. Verified data were then rewritten using a
consistent format for protein accession numbers, database
names, peptide sequences, peak lists, and experimental
categories.
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3 Inference from peptide level to protein
level

In the pilot phase of the HUPO PPP, proteins were identified
by MS experiments, followed by searches of protein databases
to find peptide sequences matching observed spectra. Often,
such a search returns a cluster of proteins, all of which contain
the same set of matching peptides. Problems with ambiguity of
protein identifications obtained from searches of tandem mass
spectra and methods for managing them have been widely
discussed, e.g., by Nesvizhskii et al. [7] and Sadygov et al. [8]. In
these earlier works, protein identifications were inferred from
lists of assigned peptides accompanied by probabilities that
those assignments are correct. In the present report, however,
we integrated lists of peptides obtained using several different
search algorithms and different search databases, which fre-
quently lacked identification probabilities. Although during
the course of the project, participants were asked to addition-
ally submit peptide and protein identification probabilities or
scores, as well as peak lists and raw MS spectra, the main part
of integrating the results was based solely on the sequences of
the submitted peptides. The raw spectra and peak lists were
subject to separate analysis and will be described elsewhere.

The integration workflow we describe here benefits from
the collaborative character of the studies and is based on a
heuristic approach that assumes that the proteins most likely
to be truly present in the sample are those supported by the
largest number of maximally independent experiments. The
workflow additionally takes into account the “level of anno-
tation” of the protein, thus preferentially selecting the pro-
teins with the most extensive description available.

The workflow algorithm includes several consecutive
steps:

(1) Assemble peptide sequence lists: Protein identifica-
tions submitted by the participating laboratories were
accompanied by lists of sequences of matched peptides. All
the lists were collected to form a set of distinct peptide
sequence lists. Each list in that set preserves all references to
its origin, e.g., if a particular list is reported from more than
one experiment, it has more than one reference.

(2) Search the peptide lists: Each peptide sequence list
obtained in the previous step was subsequently searched
against the IPI version 2.21 (July 2003) database [9]. This was
selected as the standard database of the project. Each match
requires 100% identity between sequences and disregards
flanking residues.

(3) Select one representative protein from each cluster of
equivalent protein hits: Often, more than one entry in the
reference protein database matches all of the components of a
peptide sequence list. We call this set of matching entries a
“cluster of equivalent protein hits” for that peptide sequence list.
The clusters for different lists may overlap. When they do, we
wish to choose one protein entry from the intersection of several
clusters to represent all proteins in each of the overlapping
clusters,that is, the proteins identified by each of the associated
peptide sequence lists. The selection is done as follows.

Each protein entry in the reference database receives
three integer scores:

(a) The number of different laboratories reporting a pep-
tide sequence list whose cluster includes this protein.

(b) The number of distinct experiments (laborato-
ries 6 specimens 6 protocols) reporting a peptide sequence
list whose cluster includes this protein.

(c) The number of identifications (laborato-
ries 6 specimens 6 protocols 6 clusters) for clusters
including this protein. For each peptide sequence list, the
cluster member with the largest value of score (a) is chosen
as the representative protein entry. Scores (b) and (c), fol-
lowed by criteria (d–g) listed below, are applied in succession
to break numeric ties at higher levels.

(d) Well-described protein – product of a well-described
gene. The EnsEMBL gene model was used for the annotation.
The “well-described” proteins and genes are those with a
nonempty description line, and without words like “fragment”,
“similar to”, “hypothetical”, “putative”, etc. in their description.

(e) Well-described protein-product of any gene.
(f) Well-described protein not assigned to any gene.
(g) Protein not assigned to any gene and described as a

fragment, by its similarity to another protein, or with no IPI
description line at all. Any remaining ties are broken by
selecting the protein having the lower IPI number.

As a result, one protein will generally be chosen as the
representative entry from several overlapping clusters of
equivalent protein identifications. This simplifies later com-
parisons between laboratories and experiments. This partic-
ular choice for a representative protein is motivated by the
idea that the protein whose identification is supported by the
largest number of independent experiments is the protein
most likely to be actually present in the specimen. Score (a)
counts each laboratory only once, no matter from how many
specimens or with how many different peptide sequence
lists the laboratory identified this protein. Next in impor-
tance, score (b) counts the number of independent experi-
ments in which the protein was identified. Score (c) counts
all reported peptide sequence lists, even if several results are
from the same experiment. Criteria (d–g) indicate the level of
annotation for each database entry. They facilitate selection
of the best-described proteins.

4 Summary of contributed data

Laboratories participating in the project submitted a total of
12 667 distinct protein accession numbers. This number
includes 11 253 accession numbers from MS/MS – both
MALDI and LC-ESI, and an additional 1414 IDs from FT-
ICR-MS. FT-ICR-MS identified 2230 proteins, but 816 were
also identified by the MS/MS technologies. In addition, par-
ticipating laboratories contributed 653 identifications from
MALDI-MS peptide mass fingerprints. These data were ana-
lyzed separately and will be reported elsewhere.
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Table 2. Usage of the search databases

Category Search database

IPI Swiss-Prot NCBInr All three

Submitted protein identifications 11 960 199 508 12 667
Submitted identifications with peptide sequence lists found

in IPI database
11 741
98%

196
98%

451
89%

12 388
98%

Entries in IPI database matching submitted peptide
sequence lists

15 463 488 552 15 710

Average number of IPI entries per submitted protein
identification

1.3 2.5 1.2 1.3

The majority of reported protein identifications from the
MS/MS and FT-ICR-MS experiments (11 960 of 12 667 –
94%) were obtained by searching the tandem mass spectra
against the IPI database. The remaining 6% were generated
using either the Swiss-Prot or NCBInr databases (Table 2).
Almost all of the submitted peptide sequence lists (12 388 of
12 667 – 98%) were matched in the standard database for the
project, i.e., IPI version 2.21. The 2% of peptide sequence
lists for which no exact match was found in this database
most likely represent up to 5% mismatch between database
entries, which is permitted when constructing the IPI data-
base (see [9]). We believe that the submitting laboratory
searched one of the source databases for IPI, rather than IPI
itself, and matched the spectrum to a source entry which is
included in IPI as a secondary rather than a master entry.

The 12 388 reported identifications with peptides
matching the IPI 2.21 database correspond to 18 098 distinct
peptide sequence lists. Searching these lists against IPI 2.21
results in 15 710 matching entries. For each of 12 303 of these
lists (68%), exactly one of 6601 IPI entries was matched.
These were reported with 7000 different protein accession
numbers, including Swiss-Prot and NCBI identifiers. The
6% reduction from 7000 to 6601 distinct identifiers comes
from converting Swiss-Prot and NCBI identifiers to IPI
identifiers. As these identifications are already unique, the
integration workflow did not additionally reduce these
6601 accession numbers.

In the remaining 5795 (32%) cases, each peptide
sequence list matches more than one IPI protein sequence,
resulting in an ambiguous identification or a cluster of
equivalent hits (Table 3). In this group of ambiguous identi-
fications, searches of the 5795 peptide sequence lists return
9668 distinct IPI protein accession numbers. The integration
workflow reduces this group to a set of 3273 distinct proteins,
which explain the presence of all reported peptides. In the
next step, the 6601 accession numbers from the group of
uniquely identified proteins are combined with the
3273 accession numbers from the group of ambiguous iden-
tifications. Of the resulting 9874 identifications, 9506 repre-
sent distinct accession numbers.

Details of the integration process for the 5795 clusters of
ambiguous hits are presented in Table 4. Scores (a–c) evalu-
ate the level of confirmation of each protein identification by
the number of completely independent experiments.

In 2044 (35%) of the cases, the decision of protein selec-
tion was done on the basis of the score (a): selecting a protein
detected by the largest number of laboratories. In 1680 (82%)
of those cases it was a single protein, and no additional
selection step was required. In the remaining 18% of the
cases, selection by score (a) returned more than one protein.
The tie was then broken using additional scoring categories
(d–g). In 2966 (51%) of the cases, all proteins in the cluster
were indistinguishable using scores (a–c) and the decisions
were made exclusive using categories (d–g).

Table 3. Effectiveness of the integration process

Category Number of IPI entries matching single-peptide
sequence list

One (distinct
IDs)

More than one
(indistinct IDs)

One or more
(all IDs)

Submitted peptide sequence lists 12 303 5795 18 098
Submitted protein accession numbers 7000 5388 12 388
Matching entries in IPI database 6601 9668 15 710
Matching entries in IPI database after the integration 6601 3273 9506
Reduction level of submitted accession numbers to

IPI entries
6% 39% 23%
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Table 4. Number of clusters qualified on different levels of the
integration

Integration level Number of clusters

A Number of laboratories 1680 2288
B Number of experiments 419
C Number of reports 189
D Well-described EnsEMBL gene 2429 3507
E Any EnsEMBL gene reference 99
F No EnEMBL reference 286
G Poorly described protein 693

Total number of potentially
ambiguous peptide sequence
lists processed

5795

The categories (d–g) classify IPI database entries by the
amount of detail in their description. It is then reasonable to
compare such a classification of proteins in the project data-
base with the same classification of proteins in the complete
IPI database. Details of this comparison are given in Table 5.
This shows that 41% of entries from the HUPO PPP database
and 24% of the entries from the IPI database belong to the
highest category (d) – the best-described proteins. The inter-
mediate categories (e) and (f) include relatively few proteins
while category (g) – the least described proteins – contains the
majority of the entries, 49 and 63% for the HUPO PPP and
IPI databases, respectively. For the HUPO PPP database, the
ratio between the percentage of entries from categories (d)
and (g) is 41/49% = 0.84. This ratio for the IPI database is 24/
63% = 0.67. Thus, the laboratories were more likely to iden-
tify better-described proteins. This result can be interpreted as
confirming the presence of proteins that were previously
studied in detail, possibly because of their relative abundance
or ease of identification. Alternatively, the integration work-
flow itself preferred the best-described proteins wherever
possible, pushing the ratio toward category (d).

To further compare results from the HUPO PPP with all
the proteins from IPI, we compared the distributions of
peptide sequence length (number of amino acid residues per
peptide) in both data sets (Fig. 2). The distribution of peptide

Table 5. Distribution of numbers of entries from the HUPO PPP
and complete IPI databases in the integration categories

Integra-
tion
category

Complete IPI
database

HUPO PPP database

No.
of entries

Fraction
of all
entries

No.
of pro-
teins

Fraction
of all
identifi-
cations

Fraction
of IPI
entries

D 13 588 24% 3900 41% 29%
E 855 2% 220 2% 26%
F 6633 12% 716 8% 11%
G 35 454 63% 4670 49% 13%
All 56 530 9506 17%

length from the HUPO PPP database is noticeably shifted to-
ward longer peptides – median equal to 12.9 residues – in
comparison to the distribution of the lengths of tryptic peptides
in IPI-median equal to 10.5 residues. We hypothesize that the
under-representation of short peptides may be explained by the
nature of the tandem mass spectrum search algorithms which
require the spectra from short peptides to be of much better
quality than spectra from longer peptides, to result in a signifi-
cant match. Many laboratories did not report any peptides
shorter than five residues. The fraction of nontryptic peptides
in each peptide length bin is very small. These peptides were
identified in a few nonenzyme-specific database searches and,
as they passed quality control in the participating laboratories,
they were included in our analysis. The origin of these peptides
is not analyzed in this paper, but we speculate that they may be
products of other endogenous proteases present in the tissue of
origin or in human plasma [10].

Based on the nonuniform reporting of short peptides
from participating laboratories, the limited spectral data
available for short peptides, and the limited power for protein
identification using a peptide present in multiple protein
sequences, we decided to eliminate peptides shorter than six
residues from further analysis. In doing so, we disregarded
two protein identifications, each based on a single peptide of
five amino acids. This reduces the number of accepted protein
identifications from 9506 to 9504 accession numbers.

4.1 Cross-laboratory comparison, confidence of the

identifications

The distribution of the number of protein identifications
among participating laboratories is shown in Fig. 3. Individual
laboratories are encoded using their numeric identifiers. The
18 laboratories identified a total of 9504 distinct IPI proteins.
The number identified by individual laboratories varied from
52 to 4569. The laboratories were asked to mark as “high con-
fidence” those identifications that passed more stringent cri-
teria, chosen by each laboratory individually, although the PPP
did issue guidance after the June 2004 Jamboree Workshop for
SEQUESTsearches to use Xcorr � 1.9, 2.2, 3.75 for 11, 21, and
31 ions, respectively, plus DCn � 0.1 and RSp � 4 for tryptic
peptides. The number of these lab-reported high-confidence
identifications ranged from 21 to 789. To further assess the
confidence of protein identifications from individual labora-
tories, we counted the number of proteins, which were also
reported by a second laboratory. We considered such identifi-
cations to be confirmed. The fraction of confirmed identifica-
tions is higher for laboratories, which submitted lower num-
bers of proteins. This may be caused by several factors includ-
ing the followings. (1) Different stringencies for acceptance of
the identifications – smaller sets may mean that more strin-
gent criteria have been used and the resulting proteins are
more likely to be true identifications. (2) Differences in
experimental techniques – smaller sets of proteins may be
obtained by shallower sampling, picking up only the more
abundant, i.e., more frequently identified proteins. (3) The
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Figure 2. Comparison of distributions of length of tryptic peptides (dark gray bars), tryptic peptides with missed cleavages allowed (light
gray bars), and all peptides, including nontryptic peptides (white bars) detected in the course of the project using MS/MS (both MALDI and
LC) and FT-ICR-MS methods, to the distribution of the length of tryptic peptides from the complete IPI database (gray line).

Figure 3. Distribution of MS/MS and FT-ICR-MS protein identifications among 18 participating laboratories, encoded using their numeric
identifiers.
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intrinsic nature of the confirmation process – the more sen-
sitive the procedures used by a particular laboratory are, the
more likely it is that it will be the only laboratory reporting a
particular identification. Thus, the requirement for con-
firmation penalizes the laboratories that submitted the larg-
est data sets.

The level of cross-laboratory confirmation of the identifi-
cations, as a function of the number of peptides detected
across experiments and laboratories, is shown in Fig. 4. The
first category – all identifications – has a confirmation level
equal to 25%. The second category, resulting from elimina-
tion of single-peptide identifications, dramatically reduces
the number of proteins from the original 9504 to 3020, and at
the same time raises the confirmation level to 75%. The
absolute number of confirmed identifications in these two
categories is virtually the same, meaning that of 6484 single-
peptide protein identifications almost none was confirmed.
Limiting the identifications to those which are supported by
an even larger number of peptides causes a further reduction
in the number of proteins and a rise in the confirmation
level.

The analysis described above led us to categorize protein
identifications into four classes, based on the level of the
identification confidence. The four categories are organized
in a diamond-shaped parallelogram (Fig. 5). Identifications
from the least stringent category – “all identifications”
(9504 proteins) – are divided into two more stringent, parallel
categories: “high-confidence identifications” (2857 proteins),
including proteins reported at least once as high-confidence,
and “multipeptide identifications” (3020 proteins), including

proteins for which two or more distinct peptides were
reported project wide, following data integration. The most
stringent category “high-confidence multipeptide identifica-
tions” (1555 proteins) includes proteins from the intersection
of the preceding categories. Proteins in this category are
identified with two or more distinct peptides, requiring at
least one to have been reported as part of a high-confidence
protein identification.

5 False-positive identifications

False-positive peptide identifications exist and are widely
acknowledged to be a problem [7, 8, 11–15]. One arises
whenever the top-scoring database match for a particular
spectrum has a score which passes all reporting thresholds,
yet the matched database sequence is not the same as that of
the biological specimen in the instrument. This will occur
for a variety of reasons. The spectrum may represent a mix-
ture of different peptides with almost equal parent masses
and elution times. The biological specimen may be a con-
taminant or an allelic variant not recorded in the database
being searched. Even if the database contains the correct
amino acid sequence, this sequence may fall outside the
scope of the search, due to PTMs or requirements for pro-
teolytic cleavage. In each of these cases, the top-scoring
match within scope and within the database is returned by
the search software. If its score passes reporting thresholds,
the (mis)match will be accepted and reported as a peptide
identification.

Figure 4. Distribution of MS/MS and FT-ICR-MS protein identifications as a function of the number of peptides detected per protein.
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Figure 5. Proposed classification of the identification stringency
levels; the number of protein identifications at each level is
shown in parentheses.

False-positive and true-positive peptide identifications
show opposite behavior when we accumulate large numbers
of peptide identifications, as in this project [7, 11]. One
expects false-positive peptide identifications to accumulate
roughly proportional to total peptide identifications. How-
ever, the chance that two or more false-positive peptide
identifications coincide on the same database entry should
be no better than random. On the contrary, a protein which is
present at a detectable concentration in the specimen will
produce many tryptic peptides in nearly stoichiometric
quantities. Increased sampling should increase the number
of distinct peptides, which are reported, and all of these will
map to the same (correct) database entry. This means that, as
we accumulate more and more peptide identifications, the
class of protein identifications based on a single peptide
reported project wide is simultaneously depleted of correct
peptide identifications (as these are promoted to multiple-
peptide protein identifications) and refilled with false-posi-
tive protein identifications. Below, we consider a range of
values for the fraction of such false-positive identifications.
One major participating HUPO laboratory, after manually
reviewing several hundred of their protein identifications,
concluded that a single peptide constituted sufficient evi-
dence in perhaps 20% of the cases where only one peptide
from a protein had been seen. The acceptance rate after
manual review was much larger for proteins identified using
two or three peptides, precisely because of the selection
described above. Manual review of all the spectra was not
feasible, and all of their identifications were submitted to the
database.

To assess the confidence of protein identifications, we
use a Poisson model for the distribution of false-positive
peptide matches. Two parameters are needed to specify the
model: the total number of database proteins and the num-
ber of peptide level matches that are incorrect.

The IPI version 2.21 database contains 56 530 sequences,
with some redundancy and overlap between entries. To
model the database integration procedure, the two largest
tryptic peptides from each database entry were calculated,
and all entries containing exact matches to these two pep-
tides were collapsed into a sequence group. This process
resulted in 49 924 sequence groups. This is used as the
number of bins in the random model.

Lower and upper bounds for the number of false peptide
level matches are estimated by assuming either that all of the
lower confidence single-peptide identifications are erroneous
or that all single-peptide identifications, regardless of con-
fidence, are erroneous. Of the 6484 identifications based on a
single peptide project wide, 1956 were assigned with high
confidence by at least one participating laboratory and 4528
are lower confidence identifications. The Poisson distribu-
tion parameter l is chosen so that the random model pre-
dicts the assumed number of false single-peptide identifica-
tions. The range for l lies between 0.146 and 0.211. The
estimate of 80% false-positive rate cited above gives
l = 0.168, within this range. Values for l larger than 0.211
would predict more protein-level identifications due to false
positives alone than the 9504 total identifications reported,
and are inconsistent with the random model.

For each k = 0, 1, 2, 3, . . . the expected number of data-
base entries (out of 49 924) supported by exactly k false-posi-
tive peptide matches is calculated from a Poisson distribu-
tion. These are allocated in proportion among the reported
protein identifications with s � k supporting peptides. Only
the predictions for which s = k result in false-positive identi-
fications at the protein level. The principle here is that a
protein identification is considered correct if at least one of
its supporting peptide identifications is correct. The alloca-
tion is illustrated in Table 6, and protein-level confidence is
summarized in Fig. 6 and Table 7.

At the lower bound, the random model predicts 268 false-
positive identifications at protein level among 1746 proteins
with exactly two distinct peptides reported project wide, and
10 false positives among 1274 proteins with three or more
distinct peptides project wide. The confidence within each
class is the observed number of identifications minus pre-
dicted false positives, divided by the observed number of
identifications. A lower bound on error becomes an upper
bound on confidence. These upper bounds are a confidence
of 85% for identifications based on exactly two peptides and
99% for those based on three or more peptides. Correspond-
ing worst-case estimates are 70 and 97% for exactly two and
for three or more peptides, respectively.

We acknowledge uncertainty in the exact value for l.
However, qualitative interpretations of the data are not sen-
sitive to l. For the quantity of data accumulated in this study,
and throughout the range of choices for l, the confidence in
protein identifications based on four or more peptides easily
exceeds 0.99 and for identifications based on exactly three
peptides project wide, it varies from 0.95 (l = 0.211) to 0.99
(l = 0.146). Both classes achieve the traditional 95% con-
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Figure 6. At protein level, false-
positive identifications are
strongly concentrated among
the protein identifications based
on a single peptide project wide.
This figure shows predicted
error rates (1-confidence, ver-
tical axis) from the Poisson
model as a function of l (hor-
izontal axis, expressed as the
expected number of false-posi-
tive peptide reports per IPI data-
base entry). Four curves repre-
sent the classes of protein iden-
tifications based on exactly one,
exactly two, two or more, and
three or more distinct peptides
reported project wide.

Table 6. Allocating predicted false positives among observed identifications for l = 0.146. Predicted total number
of proteins with exactly k false-positive supporting peptides (right-hand column) is allocated proportion-
ally among the observed identifications with s � k supporting peptides (preceding columns). Each col-
umn total is the number of observed identifications with exactly s supporting peptides, and each row total
is the number of identifications predicted to have exactly k false-positive supporting peptides. Only the
cases where s = k (main diagonal, bold type) produce false-positive identifications at the protein level

S 0 1 2 3 4 �5 Total number of pro-
teins with k false-posi-
tive peptides predicted
from Poisson model

k
0 40 420 1956 445.87 140.24 57.64 121.53 43 141.28
1 4528 1032.16 324.65 133.42 281.33 6299.56
2 267.97 84.29 34.64 73.04 459.94
3 9.83 4.04 8.52 22.39
4 0.26 0.55 0.82
�5 0.02 0.02
Number of observed

protein identifications
40 420 6484 1746 559 230 485 49 924

s, number of distinct peptides project wide; k, number of distinct false-positive peptides.

fidence threshold for accepting an assertion as true, regard-
less of l. The confidence for identifications based on exactly
two peptides project wide varies from 0.7 (l = 0.211) to 0.85
(l = 0.146). Again, regardless of l, these identifications
would be described in lay language as “probably correct, but
by no means sure”. The majority of single-peptide identifi-
cations are false under any reasonable values for l.

We have chosen to concentrate further analysis on the
3020 identifications made with two or more peptides project

wide for two reasons. Excluding identifications based on
exactly two peptides would exclude a large number of identi-
fications that we believe are probably correct. Second, it
would introduce a strong bias toward highly abundant pro-
teins. Since the goal of the PPP is to identify a representative
set of blood proteins, we chose to base subsequent analyses
on the 3020 core data set, realizing that we are including a
number of false-positives, but yielding a more representative
view of the human plasma proteome.
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Table 7. Confidence in protein identifications as predicted by the
Poisson model

Number
of pepti-
des s

Reported
identifi-
cations

Predicted false
positives

Confidence

l = 0.146 l = 0.211 l = 0.211 l = 0.146

1 6484 4528 6484 0 0.302
2 1746 268 533 0.695 0.847
3 559 10 28 0.950 0.982
4 230 0.26 1.08 0.995 0.999
�2 3020 278 562 0.814 0.908
�3 1274 10 29 0.977 0.992
�4 715 0.27 1.12 0.9984 0.9996
�5 485 0.01 0.04 0.9999 0.9999

The wide range of concentrations for proteins in blood
plasma and serum presents an additional complication.
Clinical ELISA assays, where available, report a measurable
concentration for many proteins that were never reported
by MS. Almost every protein in the body is potentially
present at some concentration in blood plasma or serum,
whether as an intact protein or as degradation products.
There is no set of proteins we can exclude as known
negatives; a large number of potential positives are present
at unknown but low concentrations. A similar situation is
found in Saccharomyces cerevisiae. A recent tagging experi-
ment [16] measured protein concentrations spanning four
orders of magnitude for 4251 proteins, roughly 80% of all
proteins expressed in log-phase yeast. Two separate MS/
MS surveys conducted earlier [11, 17] show low con-
cordance in protein identifications. They reported roughly
1500 proteins each, with 57% of proteins in common and
43 or 41% reported in one survey but not in the other. In
yeast, as well as in this project, the reporting of low-abun-
dance proteins is highly variable.

6 Data dissemination

The project participants accessed the database through a
web-based SQL interface developed specifically for project
needs. During the data submission process, before the offi-
cial in-project data release, each laboratory could retrieve
only its own data submitted to date. After the in-project data
release, laboratories could freely access data from all the
participants. The database access was limited to the project
laboratories by a user and password mechanism. Each labo-
ratory could use a set of predefined SQL queries to perform
standard data requests as well as define its own, private
queries for more specific tasks and save these for future use.

For the dissemination of the data gathered by the HUPO-
PPP, the ab initio construction of a novel data structure was
decided upon. Indeed, the PPP, as the first HUPO project to
complete the pilot milestone, is uniquely positioned for ful-
filling the pioneering role in establishing such a data (infra)

structure. The finalized data are publicly available in the
proteomics identifications (PRIDE) database (http://www.
ebi.ac.uk/pride) (see Martens et al., this issue). The results of
a PRIDE web query can be visualized either as an HTML
page or in the PRIDE XML format. The complete PRIDE
database is also available for download in XML format. The
PRIDE project site offers an Application Programmers
Interface (API), which provides the tools necessary to effi-
ciently access the PRIDE XML format and reference data-
base implementation programmatically.

7 Discussion

The PPP integration workflow is based on a heuristic
approach that the protein identifications most likely to be
true are those which are supported by the largest number of
independent experiments. The strength of the “independent
experiment” term is gradually loosened in consecutive steps
of the algorithm to select a single protein, which represents a
whole cluster of equivalent identifications.

Such an optimization approach, by its nature, may not
always lead to the smallest set of proteins possible. For
example, let us consider a simplified problem where there
are only six protein identifications in the database – A, B, C,
D, E, and F. All of them are products of independent
experiments. Furthermore, they are single-peptide identifi-
cations associated with distinct peptides a, b, c, d, e, and f,
respectively. Searching for these peptide sequences in the
protein database shows that the peptides can be found in
three different proteins with overlapping sequences – p1,
p2, and p3.

Figure 7 depicts the problem: rows represent the three
proteins, columns the six peptide identifications. If a partic-
ular peptide can be found in a specified protein, it appears in
the appropriate row.

Scoring the proteins using the algorithm results in:
p1 = 4 (four different identifications), p2 = 3 (three different
identifications), and p3 = 2 (two different identifications).
This leads to the following assignment of the protein
accession numbers to the identifications: ID A ? p1, ID
B ? p1, ID C ? p1, ID D ? p1, ID E ? p2, ID F ? p3.
Although it complies with the algorithm, the selection of
protein p2 for identification E is not optimal from a mathe-
matical point of view. If protein p3 were assigned instead of
p2, the size of the set of proteins would reach its minimum.
In a real experiment, the coincidence of such a particular
overlap of the protein sequences and specific scoring con-
ditions necessary to cause the algorithm to fail is very rare.
Processing a subset of the HUPO PPP MS/MS and FT-ICR-
MS data resulting in 9504 distinct protein identifications
caused the algorithm to fail (i.e., not to reach the minimum)
in only ten cases.

Maximizing the number of independent supporting
experiments also biases the selection of representative pro-
teins towards those with the longest sequence, as illustrated
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Figure 7. Theoretical example presenting a situation where the integration workflow may not produce the mini-
mal possible set of proteins.

Figure 8. Length bias in representative protein selection. Shown in the figure are a precursor, p1, and two pro-
teolytically cleaved products, p2 and p3. Precursor contains all the identifying peptides contained in the products.
As a result, the integration algorithm will select the precursor independent of other knowledge about which form
might be present in the sample.

in Fig. 8. The algorithms used to construct the IPI database
also systematically select longer precursor sequences in
preference to shorter forms [9].

A more sophisticated approach might incorporate addi-
tional sources of biological information in choosing a repre-
sentative protein for each group. Sources of such informa-
tion include protein annotation databases like GO [18] or
HPRD [19]. We chose not to pursue this option because cur-
rent annotation databases have limited coverage and might
introduce historical biases into the protein identification
process.

The integration algorithm seeks to assign the minimum
number of proteins necessary to account for the observed
peptide sequence lists. With no a priori knowledge of which
proteins are present in the blood, an alternative, and equally
valid, approach would be to list all proteins from which each
peptide might have been derived. Figure 9 compares the
results of this latter approach with the integration algorithm
presented above. Note that many proteins not selected by the
integration algorithm may, nevertheless, have been the
source of a large number of observed peptides.

8 Concluding remarks

The pilot phase for the HUPO PPP is the first large-scale
collaborative proteome project ever undertaken, and our
experience highlights the challenges in data integration that
are likely to be encountered in future high-throughput and
collaborative proteomics studies. Several issues are identi-
fied.

A key decision was to define one recommended protein
database and release, IPI 2.21 of July 2003, for all subsequent
work in the project. Although this was not universally
adhered to by all project participants, it simplified early data
comparisons and later merging of results. However, the
decision to standardize on IPI release 2.21 also complicated
the annotation process. By the time the data-gathering phase
of the project had concluded, this release was necessarily out
of date. The process of mapping version 2.21 identifiers to
version 3.01 identifiers proved to be challenging because of
the large number and complex nature of the changes that
have taken place in the underlying sequence collection.

We overestimated the laboratories’ ability to use XML
data formats. Although tools and support for XML were
offered, the vast majority of laboratories chose to submit data
in Word/Excel formats.

We underestimated the importance of collecting peak
lists and raw spectra. The decision to collect data at the level
of protein identifications rather than individual peptide
identifications meant that information defined at the peptide
level, such as peak lists and SEQUEST scores, were not col-
lected.

In order to use tools like PeptideProphet and Protein-
Prophet [15, 7] to assess the reliability of protein identifica-
tions, search results or complete sets of peak lists are
required, including those which match with extremely low
scores. At the inception of the project, the decision was to
perform all data analysis at the participating laboratories and
to submit only protein identifications to the central reposi-
tory. The initial submission forms specified only a minimal
set of supporting data. As the project progressed and the data
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Figure 9. Number of identifying and supporting
observations. This figure shows a scatterplot for
all the 15 695 proteins in IPI version 2.21, which
contain at least one peptide observed in the pro-
ject. X axis is the number of distinct peptides
assigned to a protein by the integration algo-
rithm. Y axis is the number of distinct (laborator-
y 6 experiment 6 specimen) observations of a
peptide which could have been derived from the
protein. Note that for some proteins not selected
or assigned only one peptide by the integration
algorithm, a large number of supporting obser-
vations are present in the data set.

repository group assumed more responsibility for quality
assurance, we requested more supporting data from the
contributing laboratories including mass spectrum peak lists
and full binary data files.

The decision to request a pilot round of data submissions
proved invaluable in allowing the data repository group to
assess the data and identify the problems described above. As
a result of this pilot round of data submissions, significant
changes were introduced during the project’s operation. As a
consequence, the data collection/integration center had to
deal with the data formatted according to both the old and
the new protocols, but the final product of the project was
greatly enhanced.

A revised database schema for future projects has been
developed; this more extensive, finer-grained schema will
better serve the future needs of the PPP, and will also serve
as the core for schemata tailored to meet the requirements of
other HUPO tissue projects (e.g., liver, brain). In this revised
protocol, all entries, whether they contain new data or re-
analysis of existing data, are assigned an accession number
as a point of reference for use in the publications. The
schema is straightforwardly extensible to accommodate ad-
ditional technologies. For example, we are coordinating with
project participants that generate quantitative data. Reliable
quantitations, both relative and absolute, can come from a
variety of methods such as differential gel electrophoresis,
isotope tagging or chemical modification for MS, and protein
array technologies [20].

There is also a need to “point outwards” to different resour-
ces, often done by creating a field to capture a Uniform
Resource Indicator or URI (a generalized version of the familiar
URL web address). Such resources include annotation resour-
ces such as UniProt (http://www.uniprot.org), EnsEMBL
(http://www.ensembl.org), HPRD (http://www.hprd.org), and
PeptideAtlas (http://www.peptideatlas.org) [21]. Importantly,
URIs can also link to “raw” mass spectrum data repositories
(the original output of a mass spectrometer scan as opposed to
the heavily processed peak list); these data are increasingly in
demand for in-depth analyses [22], but require special handling
separate from the main project database, due to their size (see
also Martens et al., this issue).

In addition to its main goals of beginning the map of the
human plasma proteome and assessing the power of differ-
ent techniques to resolve proteins, the HUPO-PPP pilot
phase has generated an extensive “real world” collection of
data that will be invaluable in developing and testing
enhanced software tools for proteomics. Both the structure of
the revised schema and the experience gained in the pilot
phase of the PPP will contribute to other HUPO proteome
initiatives, in particular the Liver and Brain Proteome Pro-
jects, and the HUPO Proteomics Standards Initiative [23],
which seeks to provide general standards for proteomics,
both for the level of detail required when reporting work (the
Minimum Information About a Proteomics Experiment,
MIAPE) and the file format in which such information
should be captured.
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9 Computer technologies applied

The main project data repository was established with use of
the Microsoft SQL server 2000™ working on a Dell Power
Edge™ server running operating system Microsoft Windows
2003™. Templates of documents for the data transfer were
produced with use of Microsoft Word and Microsoft Excel
packages. The data submission site was established on Dell
Power Edge server running Microsoft Windows 2003 and
Internet Information Services. The online data submission
and data access sites were created using Microsoft Visual
Studio 2000™ and written in language C#. Data integration
procedures were written either in C# or as stored procedures
in the MS SQL server native language.
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