Statistics

Research Article

Received 22 June 2010, Accepted 21 March 2011 Published online 12 May 2011 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.4268

New variable selection methods for
zero-inflated count data with applications
to the substance abuse field

Anne Buu?*f, Norman J. Johnson®, Runze Li° and Xianming Tan{

Zero-inflated count data are very common in health surveys. This study develops new variable selection
methods for the zero-inflated Poisson regression model. Our simulations demonstrate the negative consequences
which arise from the ignorance of zero-inflation. Among the competing methods, the one-step SCAD method
is recommended because it has the highest specificity, sensitivity, exact fit, and lowest estimation error. The
design of the simulations is based on the special features of two large national databases commonly used in
the alcoholism and substance abuse field so that our findings can be easily generalized to the real settings.
Applications of the methodology are demonstrated by empirical analyses on the data from a well-known
alcohol study. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

Health surveys commonly inquire about participants’ symptoms of target diseases. The resulting
symptom count is an important indicator of the severity of a particular disease. Identifying risk factors
for a disease can provide invaluable guidance for policy making and prevention programming. Our
methodological research has been motivated by the challenges we encountered when building a multi-
level model of individual, familial, and neighborhood influences on the symptomatology of alcohol use
disorder (AUD). Although being the most distal among the three levels of influence, many risk factors
involving the neighborhood environment, such as high poverty rate and unemployment rate, have been
found to be associated with residents’ alcohol or other substance use [1-5]. The neighborhood envi-
ronment is usually characterized by descriptive statistics at the census tract level. Through geocoding,
study participants’ symptom count data and potential individual and familial risk factors can be merged
with potential risk factors at the neighborhood level (i.e. the census tract level). However, there are
many candidate variables in the census data and some of them are highly correlated. Our goal is to
select a subset of important neighborhood risk factors for AUD symptomatology that can be used for
model building purposes.

When health surveys are conducted on the general population or a community sample, the symptom
count measure tends to have a high frequency of zero values. In the context of alcohol research,
such excess zeros in the data come from nondrinkers or drinkers who have not developed AUD
symptoms. Because zero-inflated count data are very common in health surveys, a statistical method
that can model such highly skewed discrete distributions is highly desirable in practice. Classic variable

|

“Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, U.S.A.

bU.S. Census Bureau, Suitland, MD 20746, U.S.A.

“Department of Statistics and The Methodology Center, Pennsylvania State University, University Park, PA 16802, U.S.A.

dThe Methodology Center, Pennsylvania State University, University Park, PA 16802, U.S.A.

*Correspondence to: Anne Buu, Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor,
MI 48109, U.S.A.

tE-mail: buu@umich.edu

___________________________________________________________________________________________________________|]
Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 2326-2340



Statistics
A. BUU ET AL.

selection criteria (e.g. AIC [6] and BIC [7]) and traditional variable selection procedures, including
stepwise and best subset selection, may be adapted to the analysis of zero-inflated count data. However,
traditional variable selection procedures are unstable—that is, small changes in the data may result in
very different models [8]. Furthermore, when the pool of candidate variables is large, the best subset
selection procedure becomes infeasible since it is computationally expensive.

Variable selection has been an active research area in the recent statistical literature. The Least
Absolute Shrinkage and Selection Operator (LASSO) [9] and the Smoothly Clipped Absolute Deviation
penalty (SCAD) [10] are two well-known variable selection procedures developed in the past decade.
Both methods have desirable properties and both have been extended to generalized linear models
that can handle binary, categorical, and count data [11, 12]. The aim of this paper is to develop new
variable selection procedures for the zero-inflated Poisson regression model (ZIP) [13] using LASSO
and one-step SCAD techniques. In order to better assess the applicability of these new variable selection
methods in the area of alcoholism and substance abuse research, we conduct simulations to evaluate
their performance based on the data features of the U.S. census and a national health survey on alcohol
and related conditions. We also demonstrate the use of our methodology by analyzing data from a
well-known alcohol study.

This paper is organized as follows. In Section 2, we develop new variable selection methods for the
ZIP model using LASSO and one-step SCAD techniques and we address issues related to the practical
implementation of the proposed procedures. In Section 3, we conduct simulation studies to assess the
performance of the proposed procedures, and investigate the impact of the ignorance of zero-inflation.
In Section 4, we conduct an empirical analysis on the data from a community sample using the proposed
procedures. Discussion and concluding remarks are presented in Section 5. The technical details and
key derivation of the statistical property related to the proposed methods are given in the appendices.

2. The model and variable selection methods

2.1. Zero-inflated Poisson regression model

Suppose that {w;, y;},i =1, ---, n, is an independent and identically distributed sample from a population
(w, y}. Let x; and z; be di- and dp-dimensional sub-vectors of w;, respectively. Here x; and z; may
contain the same elements. Conditioning on w;, y; follows a zero-inflated Poisson (ZIP) distribution

y; ~m;Poisson(0)+ (1 — w; )Poisson(4;), (1)

where 7; =exp(z;y)/{1+exp(z;y)} and 1; =exp(x;p) with unknown regression coefficient vectors p=
Bis---5 Ba, Y and y=(y, ..., Vdy ). Here Poisson(0) stands for a degenerate distribution with the support
point at 0. To include an intercept, we set x;; =1 and z;; =1. Thus, f; and y, are the corresponding
intercepts. Model (1) is referred to as the ZIP model. From (1), the conditional probability mass function
for y; is

P(yi=0w)=m+(1—m)e ":; P(y=mlw)=(1—n)e " " /m! form=1,2,....
The logarithm of the likelihood function is

Up.y) = ZO log[exp(z;y)+exp{—exp(x; §)}]+ Zo{yixﬁlf —exp(x; )}
yi= yi>

n
— 3" log{l+expE )} — 3 log(yi). @)
i=1 yi>0

Lambert [13] proposed the ZIP to model zero-inflated count data collected from a quality control
study, in which the response typically is the number of defective products in a sample unit. The
major strength of the ZIP model is that it can simultaneously accommodate one set of factors x; that
contribute to fewer defects in the imperfect state and another set of factors z; that make the perfect state
more likely. The model has been applied in many fields including medicine (e.g. [14]). An alternative
model, the hurdle model [15], originated in the economic literature that postulates a two-stage decision
structure in the demand process: the first stage involves a selection process leading to zero or non-zero
outcomes (a logit model); the second stage models the distribution of non-zero outcomes (a truncated
Poisson model). The ZIP model is more intuitive when the population consists of a group of people
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who can only have zero symptoms (e.g. nondrinkers) and another group who may have zero symptoms
(e.g. drinkers). Thus, the logic behind the ZIP model fits better with our practical setting that does not
involve a clear choice between zero and non-zero outcomes (symptoms). For this reason, we adopted
the ZIP model in this paper.

2.2. Variable selection

Health surveys commonly collect many variables that can potentially be included in the model. In
practice, it is desirable to select important variables and have a parsimonious model in order to improve
prediction accuracy and model interpretability [9]. Here we propose new variable selection procedures
for the ZIP model using the penalized likelihood method.

The penalized likelihood for the ZIP model is defined to be

d d
OB, 1) =L(B, 1) —n _le pa,.<|ﬁ,-|>—nkf:1 PG 3)
j: =

where pg;(-) and pp,(-) are penalty functions with tuning parameters a; and by. The regression coeffi-
cients, §; and y;, are allowed to have different penalties. In particular, we may set pa, (I;1)= pp, (I7;1)=
0 in order not to penalize the intercepts f; and y;. Fan and Li [10] studied the choice of penalty
function in depth. In this paper, we consider only the most commonly used penalties developed in the
recent literature: the L penalty, defined by p.(o)=1|a«|, and the SCAD penalty, defined by

7o if 0<|al<T
pe(la) =1 —(o* —2ctla| +)/[2(c =] if 1<]orf<ct
(c+ 11?2 if |o|>ct,

where the value of ¢=3.7, as suggested in Fan and Li [10].

For linear regression models, the penalized least squares with the L penalty leads to the LASSO
proposed by Tibshirani [9]. The advantage of the penalized least squares with the L penalty is that the
entire solution path of the LASSO estimator can be constructed using the Least Angle Regression (LAR)
[16]. As demonstrated in Fan and Li [10], the penalized least squares with the SCAD penalty possess
good theoretical properties, particularly the oracle property (i.e. the resulting estimator asymptotically
performs as well as if we knew the true submodel). For this reason, we consider only the L and SCAD
penalties.

The likelihood function for the ZIP model is, however, much more complicated than the least-
squares function for linear regression models or the likelihood function for generalized linear models.
To maximize the penalized likelihood function (3), we adapt the one-step sparse estimator strategy
proposed in Zou and Li [12].

Set the initial values (B, ) to be the un-penalized maximum likelihood estimates (if, ). The
log-likelihood function £(f, y) can be locally approximated by

© “4)

1 p-BY
e,y 0+ SLB— BOY, (y =7 Oy 1Uv2e(B?, y )] { } ,
=7

where Vzﬁ(/}(o), y©) is the Hessian matrix of the log-likelihood function, since the gradient of the
log-likelihood function at the initial value VB, y©)=0. The penalty functions can be locally linear
approximated by

Pa; (BN~ pa; (1B D+ Py, (BT DAL= 1B for i~ p;
and

(0) (©)

0 0
oD~ po (0 D+ Py (1 DUnl = 190D for 3 =7
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Thus, the one-step sparse estimator for the ZIP model is defined to be

B30 =arg 1;;11;1 %[(Iﬁ =B, =y 1=V, v [

B-p°
(0) :|

=7
dy dp
0 0
+n Y0 pl (BT DIB;1+n Y ph (17 >|>|yk|}.
j:l k=1

When the SCAD penalty is employed, this one-step sparse estimator is referred to as one-step SCAD
that can be viewed as an adaptive LASSO with weights obtained from the SCAD penalty. Since the first
term in the objective function is a quadratic function of (f',7’), and the penalty function is a weighted
L penalty, we employ the LARS algorithm to obtain the one-step sparse estimator. See Appendix A for
the technical details related to the implementation of the LARS algorithm. Using the same techniques
employed in Zou and Li [12], it can be shown that the one-step SCAD possesses an oracle property
(see Appendix B for the key derivation). The local quadratic approximation (4) of the logarithm of the
likelihood function indeed is the same as the least-squares approximation in Wang and Leng [17], in
which the authors emphasized the adaptive LASSO penalty in comparison to the SCAD penalty used
in this article.

Automatic selection of the tuning parameters a; and by using data-driven methods is desirable and
yet computationally expensive because one has to search over a (d;+d>)-dimensional grid for the
proposed one-step sparse estimator. To save computation cost, we follow the strategy of Fan and Li [18]

and set a; =7:SE(,7)’5~0)) and bkerE(f)E{O)), where SE(,B’EO)) and SE(?;CO)) are the standard errors of the
unpenalized maximum likelihood estimate of f§ ; and 7, respectively. This procedure reduces the search
for 7 to a set of one-dimensional grid points. In our simulation studies and our empirical analysis using
a real data set, 7 is determined from a modification of the BIC tuning parameter selector [19]. Our
simulation results show that this strategy for determining the tuning parameters works well.

3. Simulation study

Most simulation studies in the variable selection literature employ covariates that are idealistically
distributed (e.g. multivariate normal) and parameters that are arbitrarily determined. However, as pointed
out by Burton et al. [20], simulated data should closely represent the structure of real data so that
the results can be generalizable to real situations and thus have credibility. One unique strength of
this study is that our simulation experiments are based on the special features of two large national
databases: the 2000 U.S. census and the National Epidemiologic Survey on Alcohol and Related
Conditions (NESARC) [21]. For this reason, our results can be used to guide future applications
of the proposed methods in the field of alcoholism and substance abuse research. In Experiment 1,
we used a census database as a pseudo-population from which to draw covariate values in varied
sample sizes. We determined parameter values by fitting a ZIP model to census and NESARC data.
In order to evaluate the performance of competing methods under different correlation structures, we
conducted Experiment 2 that employed the same set of parameter values as in Experiment 1 but drew
random samples from multivariate normal distributions with varied levels of correlation and sample
sizes. In Experiment 3, the other two factors were manipulated while holding the correlation and
sample size at the medium values: the proportion of non-zero coefficients and the proportion of zero
outcome.

3.1. Experiment 1: sampling from census data with varied sample sizes

This experiment aims to evaluate the performance of the following four competing methods, when the
true model is a ZIP model with two different sets of covariates in the Poisson component and the zero
component:

1. Poisson regression with LASSO (PR-LASSO)
2. Poisson regression with SCAD (PR-SCAD)
3. ZIP regression with LASSO (ZIP-LASSO)

4. ZIP regression with SCAD (ZIP-SCAD).
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Table I. The covariates derived from the 2000 U.S. census data.

1 Proportion of male residents

2 Proportion of residents aged 25+ who dropped out of high school

3 Proportion of residents aged 164+ who are unemployed

4 Proportion of residents aged 16+ with professional or managerial occupations
5 Proportion of residents aged 164 who are not in labor force

6 Resident per capita income

7 Proportion of residents with public assistance income in 1999

8 Proportion of households with public assistance income in 1999

9 Proportion of residents under poverty line in 1999

10 Proportion of residents who are black

11 Proportion of residents who are Hispanic or Latino

12 Proportion of residents born outside the U.S.

13 Proportion of households with husband, wife and children under age 18

14 Proportion of households that are female-headed and have children under age 18
15 Average household size

16 Proportion of housing units not owned by occupants

17 Proportion of vacant housing

18 Proportion of residents aged 54+ who did not live at the same address 5 years earlier
19 Proportion of disabled residents aged 5+

20 Proportion of urban area
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NESARC: National Epidemiologic Survey on Alcohol and Related Conditions;
MLS: Michigan Longitudinal Study

Figure 1. Distributions of DSM-IV AUD symptom counts.

In order to construct covariates with real data properties, we obtained the statistical characteristics
of 66304 census tracts from the official 2000 U.S. census Web site and from these derived the
20 composite variables which have been used in the substance abuse literature to indicate neighborhood
risk (listed in Table I). These variables were standardized (with sample means and standard deviations)
and used as candidates for variable selection in the Poisson and zero components of the model. Not
surprisingly, some of these variables are highly correlated (Pearson’s r =0.01 —0.80). By combining
these covariates along with the AUD symptom counts from the NESARC database (i.e. the outcome),
we were able to conduct exploratory analyses and determine the following set of true parameter
values:

B =(1.10,0,0,0,-0.36,0,0,0,0,0,0,0,0,—0.32,0,0,0,0,0,0,0)
y=(0.30,—-0.48,0,0,0,0.40,0,0,0,0,0.44,0,0.44,0,0,0,0,0,0, 0, 0)".

Applying this set of ZIP regression parameters to the covariates x;(=z;) from the ith census tract, we
generated the outcome Y; (i=1,...,66304). The resulting outcome distributes like the AUD symptom
count in the NESARC database (see Figure 1). We randomly drew a sample of size n from the
resulting 66 304 covariates—outcome pairs and applied the four statistical methods to analyze the data.
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Table II. Simulation results for Experiment 1: census data.
Over fitl

Method MRMSE*  Specificity?  Sensitivity? ~ Under fit!  Exact fitl 1 2 >3
The Poisson component
n=300
PR-LASSO 0.923 0.465 0.771 0.419 0.000 0.000  0.000 0.581
PR-SCAD 1.716 0.575 0.686 0.532 0.000 0.000  0.003 0.465
ZIP-LASSO 0.218 0.808 0.760 0.366 0.010 0.050  0.103 0.471
ZIP-SCAD 0.201 0.891 0.740 0.452 0.154 0.163 0.118  0.113
n=600
PR-LASSO 2.060 0.425 0.921 0.157 0.000 0.000  0.000  0.843
PR-SCAD 3.112 0.581 0.858 0.273 0.000 0.000  0.000  0.727
ZIP-LASSO 0.336 0.774 0.973 0.050 0.010 0.044 0.142  0.754
ZIP-SCAD 0.101 0.903 0.964 0.073 0.247 0.279  0.197 0.204
The zero component
n=300
ZIP-LASSO 0.280 1.000 0.002 1.000 0.000 0.000  0.000  0.000
ZIP-SCAD 0.210 0.983 0.315 0.978 0.008 0.010  0.004  0.000
n=600
ZIP-LASSO 0.746 0.997 0.074 0.952 0.026 0.019  0.001 0.002
ZIP-SCAD 0.292 0.981 0.670 0.785 0.159 0.046  0.010  0.000

*MRMSE = Median of the ratio of the reduced model MSE to the full model MSE.
TSpeciﬁcity = Mean of the proportion of zero coefficients that were correctly identified.

iSensitivity = Mean of the proportion of nonzero coefficients that were correctly identified.
YUnder fit = Probability of excluding any significant coefficients.

TExact fit = Probability of selecting the exact sub-model.

lOver fit = Probabilities of including all significant variables and some noise variables (1,2, >3).

Three sample sizes, small (n =300), medium (n =600), and large (n =900), were chosen based on our
survey of existing studies in the substance abuse field (e.g. [22-27]). This experiment was replicated
1000 times.

In Table II, the performance of the four competing statistical methods are evaluated based on
several criteria. For each replication, we computed the mean squared error (MSE) for both the reduced
model and the full ZIP model, then computed the ratio of these two MSE values. The median of the
ratios from 1000 replications is reported under the column ‘MRMSE.” A smaller value indicates a
better performance in terms of parameter estimation. We also calculated the specificity and sensitivity
for each replication. Specificity is defined as the proportion of zero coefficients that were correctly
estimated to be zero; sensitivity is the proportion of nonzero coefficients that were correctly estimated
to be nonzero. The averages of both indices over 1000 replications are listed under the columns with
corresponding headings in the table. ‘Under fit’ is defined as the probability of excluding any significant
coefficients in 1000 replications, whereas ‘exact fit’ is the probability of selecting the exact sub-model.
The probabilities of including all significant variables and some noise variables (1,2, >3) are also
reported in the columns under ‘over fit.

Table IT summarizes the simulation results for the Poisson component (top of table) and the zero
component (bottom of table) of the ZIP model. In order to save space, we omit the results of the n =900
condition from the table. Interested readers may request the technical report with a complete table
from the first author. For the Poisson component, the Poisson regression methods (i.e. PR-LASSO and
PR-SCAD) tended to have higher values of MRMSE, low specificity, and never fit the model exactly
because they did not take into account the excess zeros in the data. Their lower levels of specificity
(0.4-0.6) stemmed from their greater tendency to over fit the model (i.e. select noise variables). Between
the ZIP regression methods, the SCAD outperformed the LASSO on MRMSE, specificity, and exact fit
across all sample sizes. ZIP-LASSO tended to over fit to a large degree and thus performed poorly. In
terms of the zero component, we only compared the two ZIP methods because the Poisson regression
methods did not employ the zero component. ZIP-SCAD outperformed ZIP-LASSO on MRMSE,
sensitivity, and exact fit across all sample sizes. The performance of both methods on sensitivity and
exact fit tended to improve as the sample size increased.
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3.2. Experiment 2: manipulating correlations and sample sizes

In Experiment 1, we drew random samples from the census data that served as a pseudo-population
having a given correlation structure. In order to evaluate the performance of the competing methods
under different correlation structures, we conducted Experiment 2 by manipulating the levels of corre-
lation while employing the same set of parameter values and sample sizes as in Experiment 1. We
drew random samples from a multivariate normal distribution N¢(0, X), where the diagonal element
oji=1 and the off-diagonal element g;;= p“‘j L, j=1,...,20). Because the correlation coefficients
for the covariates in census data range from 0.01 to 0.80, three levels of correlation were used in this
experiment: small (p=0), medium (p=0.4), and large (p=0.8).

The results of Experiment 2 are depicted in Tables III and IV. In order to save space, we omit
the results of the =900 and p=0.8 conditions from the tables. Interested readers may request the
technical report with complete tables from the first author. Some of the general trends observed in
Experiment 1 are also observed in Experiment 2. The Poisson regression methods had high MRMSE,
low specificity, and zero exact fit across the three levels of correlation due to their tendency to over
fit the model. Between the two ZIP methods, the SCAD tended to have lower MRMSE in both the
Poisson and the zero components, higher sensitivity in the zero component, and higher exact fit in
the zero component. As the sample size increased or the correlation decreased, the ZIP-SCAD had a
noticeable improvement in performance in the zero component. The ZIP-LASSO’s performance, on
the other hand, followed a clear pattern of improvement in the Poisson component as the correlation
decreased.

3.3. Experiment 3: manipulating proportions of non-zero coefficients and proportions of zero outcome

In Experiment 3, we evaluated the performance of the competing methods when the proportion of
non-zero coefficients and the proportion of zero outcome were varied. Since the effects of correlation
and sample size on the performance were tested in Experiment 2, we fixed both factors at their medium
values: p=0.4, n=600. The proportion of non-zero coefficients was manipulated at three levels: 15,

Table III. Simulation results for Experiment 2: multivariate normal data with p=0.0.
Over fitl

Method MRMSE*  Specificity’  Sensitivity? ~ Under fit!  Exactfitl 1 2 >3
The Poisson component
n=300
PR-LASSO 2.421 0.477 0.994 0.012 0.001 0.001 0.006 0.980
PR-SCAD 3.321 0.609 0.988 0.025 0.002 0.007 0.012 0.954
ZIP-LASSO 0.375 0.955 0.996 0.008 0.502 0.286 0.124 0.080
ZIP-SCAD 0.094 0.971 0.999 0.002 0.664 0.208 0.084  0.042
n=600
PR-LASSO 5.381 0.479 1.000 0.000 0.000 0.000 0.000 1.000
PR-SCAD 6.932 0.641 1.000 0.001 0.000 0.000 0.000 0.999
ZIP-LASSO 0.508 0.968 1.000 0.000 0.617 0.247 0.094 0.042
ZIP-SCAD 0.154 0.921 1.000 0.000 0.288 0.304 0.223 0.185
The zero component
n=300
ZIP-LASSO 1.470 1.000 0.000 1.000 0.000 0.000 0.000  0.000
ZIP-SCAD 1.192 1.000 0.185 0.983 0.015 0.002 0.000 0.000
n=600
ZIP-LASSO 3.516 1.000 0.001 1.000 0.000 0.000 0.000 0.000
ZIP-SCAD 0.642 0.998 0.793 0.516 0.462 0.020 0.002 0.000

*MRMSE = Median of the ratio of the reduced model MSE to the full model MSE.

Specificity = Mean of the proportion of zero coefficients that were correctly identified.
iSensitiVity = Mean of the proportion of nonzero coefficients that were correctly identified.
YUnder fit = Probability of excluding any significant coefficients.

TExact fit = Probability of selecting the exact sub-model.
lOver fit = Probabilities of including all significant variables and some noise variables (1,2, >3).
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Table IV. Simulation results for Experiment 2: multivariate normal data with p=0.4.
Over fitl

Method MRMSE*  Specificity?  Sensitivity? ~ Under fit!  Exact fitl 1 2 >3
The Poisson component
n=300
PR-LASSO 1.965 0.521 0.997 0.007 0.000 0.000  0.003 0.990
PR-SCAD 2.698 0.629 0.986 0.028 0.000 0.005 0.027 0.940
ZIP-LASSO 0.281 0.941 0.998 0.004 0.380 0.325 0.181 0.110
ZIP-SCAD 0.086 0.961 1.000 0.000 0.570 0.251 0.109  0.070
n=600
PR-LASSO 4.107 0.517 1.000 0.000 0.000 0.000  0.000 1.000
PR-SCAD 5.388 0.637 1.000 0.001 0.000 0.000  0.003 0.996
ZIP-LASSO 0.361 0.956 1.000 0.000 0.494 0.310  0.139 0.057
ZIP-SCAD 0.125 0.909 1.000 0.000 0.234 0.291 0.229  0.246
The zero component
n=300
ZIP-LASSO 1.103 1.000 0.000 1.000 0.000 0.000  0.000  0.000
ZIP-SCAD 0.902 0.999 0.224 0.973 0.026 0.001 0.000  0.000
n=600
ZIP-LASSO 2.673 1.000 0.000 1.000 0.000 0.000  0.000  0.000
ZIP-SCAD 0.536 0.997 0.781 0.557 0.411 0.028  0.003 0.001

*MRMSE = Median of the ratio of the reduced model MSE to the full model MSE.
TSpeciﬁcity = Mean of the proportion of zero coefficients that were correctly identified.

iSensitivity = Mean of the proportion of nonzero coefficients that were correctly identified.
YUnder fit = Probability of excluding any significant coefficients.

TExact fit = Probability of selecting the exact sub-model.

lOver fit = Probabilities of including all significant variables and some noise variables (1,2, >3).

30, and 45 per cent. The proportion of zero outcome was also varied at three levels: 30, 45, and
60 per cent. The following are the parameter values that generated these 3 x 3 settings:
15 per cent non-zero coefficients with 30 per cent zero outcome

B=(1.10,0,0,0,-0.36,0,0,0,0,0,0,0,0,—0.32,0,0,0,0,0,0,0)
y=(—1.20,-0.48,0,0,0,0.40,0,0,0,0,0.44,0,0.44,0,0,0,0,0,0,0,0)

15 per cent non-zero coefficients with 45 per cent zero outcome
B=(1.10,0,0,0,-0.36,0,0,0,0,0,0,0,0,—0.32,0,0,0,0,0,0,0)
y=(-0.35,-0.48,0,0,0,0.40,0,0,0,0,0.44,0,0.44,0,0,0,0,0,0,0,0)

15 per cent non-zero coefficients with 60 per cent zero outcome
B=(1.10,0,0,0,-0.36,0,0,0,0,0,0,0,0,—0.32,0,0,0,0,0,0,0)
y=(0.30,—-0.48,0,0,0,0.40,0,0,0,0,0.44,0,0.44,0,0,0,0,0,0,0,0)

30 per cent non-zero coefficients with 30 per cent zero outcome
B=(1.50,0,0,0,-0.22,0,0,0,—0.25,0,0.20,0,0.30, —0.32,0, 0, 0, 0.20, 0, 0, 0)’
y=(—1.05,0,0.45,0,-0.3,0,0,0,0,0,—0.33,0,-0.39,0,0,0.3,0, 0, 0,0.36,0)

30 per cent non-zero coefficients with 45 per cent zero outcome
p=(1.10,0,0,0,-0.22,0,0,0,—0.25,0,0.20,0,0.30, —0.32,0, 0, 0, 0.20, 0, 0, 0)
y=(-0.41,0,0.45,0,-0.3,0,0,0,0,0,—0.33,0,—0.39,0,0,0.3,0, 0, 0,0.36,0)’
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30 per cent non-zero coefficients with 60 per cent zero outcome
B=(0.10,0,0,0,-0.22,0,0,0, —0.25,0,0.20,0,0.30, —0.32,0, 0, 0, 0.20, 0, 0, 0)’
y=(-0.3,0,0.45,0,-0.3,0,0,0,0,0,—0.33,0,—0.39,0,0,0.3,0,0,0,0.36, 0)

45 per cent non-zero coefficients with 30 per cent zero outcome

B=(1.8,0,0.28,0,-0.22,0,0,0, —0.25,0,0.20,0,0.30, —0.32,0,0.21, 0, 0.20, 0, —0.28, 0)’
y=(—1.14,0,0.45,0,-0.3,0,-0.45,0, —0.54,0, —0.33,0, —0.39,0,0, 0.3, 0.6, 0, 0, 0.36, 0)’

45 per cent non-zero coefficients with 45 per cent zero outcome

B=(1.1,0,0.28,0,—0.22,0,0,0, —0.25,0,0.20,0,0.30, —0.32, 0,0.21,0, 0.20, 0, —0.28, 0)’
y=(-0.6,0,0.45,0,—-0.3,0,—0.45,0, —0.54,0, —0.33,0, —0.39, 0,0,0.3, 0.6, 0,0, 0.36, 0)’

45 per cent non-zero coefficients with 60 per cent zero outcome

B=1(0.5,0,0.28,0,—0.22,0,0,0, —0.25, 0, 0.20, 0,0.30, —0.32,0,0.21, 0, 0.20, 0, —0.28, 0)’
y=(-0.09,0,0.45,0,-0.3,0,—0.45,0, —0.54,0, —0.33,0, —0.39,0,0, 0.3, 0.6, 0, 0, 0.36, 0)’

Tables V and VI summarize the results of Experiment 3. In order to save space, we omit the results of
the 60 per cent zeros and 45 per cent non-zero coefficient conditions from the table. Interested readers
may request the technical report with complete tables from the first author. The Poisson regression
methods performed poorly across all the nine settings due to their tendency to over fit the model. This
tendency was also observed in the other two experiments. While the two ZIP methods had comparable
performance in the Poisson component, the ZIP-LASSO performed poorly (i.e. almost zero sensitivity
and exact fit) across all the settings in the zero component. As the proportion of non-zero coefficients
increased, the ZIP-LASSO’s performance became worse in the Poisson component while the ZIP-
SCAD’s performance was mostly affected in the zero component. When there were 15 or 30 per cent
non-zero coefficients, the two ZIP methods tended to perform worse in the Poisson component as the
proportion of zero outcome increased.

Table V. Simulation results for Experiment 3: 15 per cent non-zero coefficients, p=0.4, n=600.
Over fit

Method MRMSE*  Specificity!  Sensitivity? ~ Under it Exact fitl 1 2 >3
The Poisson component
30 per cent zeros
PR-LASSO 1.344 0.655 1.000 0.000 0.000 0.001  0.026  0.973
PR-SCAD 1.439 0.723 1.000 0.000 0.014 0.043  0.088  0.855
ZIP-LASSO 0.391 0.961 1.000 0.000 0.538 0.290  0.121  0.051
ZIP-SCAD 0.080 0.948 1.000 0.000 0.652 0.092  0.084 0.172
45 per cent zeros
PR-LASSO 2.864 0.568 1.000 0.000 0.000 0.000  0.001  0.999
PR-SCAD 3.647 0.652 1.000 0.000 0.000 0.001  0.015 0.984
ZIP-LASSO 0.372 0.953 1.000 0.000 0.479 0.316  0.126  0.079
ZIP-SCAD 0.147 0.876 1.000 0.000 0.202 0.183  0.209  0.406
The zero component
30 per cent zeros
ZIP-LASSO 1.832 1.000 0.000 1.000 0.000 0.000  0.000  0.000
ZIP-SCAD 1.508 1.000 0.192 0.950 0.049 0.001  0.000  0.000
45 per cent zeros
ZIP-LASSO 2.640 1.000 0.000 1.000 0.000 0.000  0.000  0.000
ZIP-SCAD 0.794 0.998 0.655 0.680 0.309 0.009  0.002  0.000

*MRMSE = Median of the ratio of the reduced model MSE to the full model MSE.
Specificity = Mean of the proportion of zero coefficients that were correctly identified.

iSensitiVity = Mean of the proportion of nonzero coefficients that were correctly identified.
YUnder fit = Probability of excluding any significant coefficients.

TExact fit = Probability of selecting the exact sub-model.

lOver fit = Probabilities of including all significant variables and some noise variables (1,2, >3).
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Table VI. Simulation results for Experiment 3: 30 per cent non-zero coefficients, p=0.4, n=600.
Over fitl

Method MRMSE*  Specificity?  Sensitivity? ~ Under fit!  Exact fitl 1 2 >3
The Poisson component
30 per cent zeros
PR-LASSO 4.088 0.437 1.000 0.000 0.000 0.000  0.004  0.996
PR-SCAD 4.395 0.596 1.000 0.000 0.001 0.016  0.046  0.937
ZIP-LASSO 0.936 0.828 1.000 0.000 0.101 0214  0.245 0.440
ZIP-SCAD 0.340 0.917 1.000 0.000 0.535 0222 0.079 0.164
45 per cent zeros
PR-LASSO 4.024 0.438 0.988 0.070 0.000 0.000 0.002  0.928
PR-SCAD 4.880 0.636 0.973 0.157 0.000 0.014  0.054  0.775
ZIP-LASSO 0.903 0.818 1.000 0.000 0.085 0.221  0.237  0.457
ZIP-SCAD 0.336 0.897 1.000 0.001 0.368 0214  0.192  0.225
The zero component
30 per cent zeros
ZIP-LASSO 2.428 1.000 0.000 1.000 0.000 0.000  0.000  0.000
ZIP-SCAD 2.256 0.999 0.100 0.993 0.007 0.000  0.000  0.000
45 per cent zeros
ZIP-LASSO 2.529 1.000 0.000 1.000 0.000 0.000  0.000  0.000
ZIP-SCAD 1.477 0.997 0.357 0.961 0.035 0.004  0.000  0.000

*MRMSE = Median of the ratio of the reduced model MSE to the full model MSE.
TSpeciﬁcity = Mean of the proportion of zero coefficients that were correctly identified.

iSensitivity = Mean of the proportion of nonzero coefficients that were correctly identified.
YUnder fit = Probability of excluding any significant coefficients.

TExact fit = Probability of selecting the exact sub-model.

lOver fit = Probabilities of including all significant variables and some noise variables (1,2, >3).

4. The Michigan Longitudinal Study example

The Michigan Longitudinal Study (MLS) is an ongoing multi-wave prospective study of people at high
risk for substance use disorders [27]. The study recruited participants using drunk driving conviction
records and door-to-door community canvassing in a four-county area surrounding Michigan’s capital
city, Lansing. All participants received extensive in-home assessments of their psychiatric symptoms at
baseline, and thereafter at 3-year intervals. In order to identify risk factors for AUD at the neighborhood
level, we geocoded the residential addresses of the participants and merged the 20 potential covariates
derived from census data (listed in Table I) into the MLS database. In our analysis, we included 448
young adult participants (72 per cent male), having a mean age of 22 years.
The following is a brief list of the 11 DSM-IV symptom criteria for AUD [28]:

Abuse symptom 1: Failure to fulfil major role obligations

Abuse symptom 2: Hazardous use

Abuse symptom 3: Legal problems

Abuse symptom 4: Social or interpersonal problems

Dependence symptom 1: Tolerance

Dependence symptom 2: Withdrawal

Dependence symptom 3: Taken in larger amounts or over a longer period
Dependence symptom 4: Persistent desire or unsuccessful efforts to cut down
Dependence symptom S: A great deal of time spent

Dependence symptom 6: Important activities given up or reduced
Dependence symptom 7: Physical or psychological problems

The symptom count (ranges 0—11) serves as an important indicator for AUD severity. As shown in
Figure 1, this community sample has fewer zero symptom counts (27 per cent) than the national sample
(60 per cent) due to the recruitment protocol targeting the high-risk population. There is also a higher
proportion of people with multiple AUD symptoms in this sample. Overall, the zero values in the data
are still more than would be predicted from a Poisson regression model.

|
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Table VII. The estimated regression coefficients for the models on MLS data.
PR-LASSO PR-SCAD ZIP-LASSO ZIP-SCAD

The Poisson component
Intercept 0.9788 0.9583 1.2916 1.2575
Covariate #1 0.0022 0 0 0
Covariate #2 0.1554 0.2558 0 0.2205
Covariate #3 0.1028 0.2153 0.0691 0.0878
Covariate #4 0 0 0 0
Covariate #5 —0.0192 0 0 —0.0440
Covariate #6 0 0 0 0
Covariate #7 —0.0789 —0.0884 0 0
Covariate #8 0 0 0 0
Covariate #9 0 —0.2333 0 0
Covariate #10 0 0 0 0
Covariate #11 0.0313 0.0210 0 0
Covariate #12 0 0 0 0
Covariate #13 0 0 0 0
Covariate #14 0 0 0 0
Covariate #15 0 0 0 0
Covariate #16 0 0 0 0
Covariate #17 0 0 0 0
Covariate #18 0.1224 0.2483 0 0
Covariate #19 —0.0676 —0.1607 0 —0.1926
Covariate #20 0 0 0 0
The zero component
Intercept -0.7179 —1.0583
Covariate #3 —0.9225

The four competing methods compared in the simulations were used to analyze the MLS data.
Table VII shows the estimated regression coefficients. While the Poisson regression methods selected
7-8 covariates, the ZIP methods only selected 1-5 covariates. This may reflect a general finding from
the simulations: the Poisson regression methods have a great tendency to over fit the model. Under
the SCAD penalty, the Poisson regression model and the ZIP model both identified the high school
drop out rate, the unemployment rate, and the disability rate to be associated with the severity of
AUD symptomatology. However, the Poisson regression model selected four additional covariates: the
proportion of residents with public assistance income, the poverty rate, the proportion of Hispanic
residents, and the proportion of residents who did not live at the same address 5 years earlier. Since
the primary purpose of involving the variable selection technique for this project was to reduce the
neighborhood level covariates, it may not be desirable to adopt the Poisson regression model that
resulted in a larger set of covariates, some of which were highly correlated. Furthermore, the Poisson
regression model would not have the capacity to specify that the unemployment rate was also associated
with the probability of being a drinker.

In order to assess the goodness of fit of the ZIP model, we conducted a series of tests to compare
it against alternative models. First, a score test [29] was employed to compare the ZIP model with the
Poisson regression model. The result shows that the Poisson regression model is not sufficient to fit
the data with excess zeros (y>=12.37, df=1, p<0.001). We also compared the ZIP model against the
saturated model using the Pearson’s chi-square statistics implemented in the SAS PROC GENMOD
[30] and found the ZIP model fits the data as well as the saturated model (}52=436, df=406, p>0.05).
Moreover, the likelihood ratio test was adopted to compare the reduced ZIP model fitted by each
variable selection method against the full ZIP model with all the 20 covariates in both the Poisson and
Zero components. The result shows that the reduced ZIP model with only one covariate selected by
the ZIP-LASSO may be oversimplified (3?=55.06, df=39, p<0.001). On the other hand, the reduced
ZIP model with the covariates selected by the ZIP-SCAD is sufficient to interpret the neighborhood
impact on AUD symptomatology (*>=28.08, df=35, p~0.05).

In this example, the ZIP model fits the particular data set well. However, in some situations, the ZIP
model might not be sufficient to fit the real data. We refer interested readers to recent work by Deng
and Paul [31] that developed a series of score tests to facilitate selection among a class of generalized
linear models with different link functions, zero-inflation components, and over-dispersion features.
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5. Discussion

This study has extended two dominant methods in the recent variable selection literature, the LASSO
and the SCAD, to deal with zero-inflated count data that are very common in health surveys. Our
simulations demonstrate the danger of using Poisson regression methods to conduct variable selection
when excess zeros exist in the data: the methods have a great tendency to over fit the model. The
design of our simulations is unique because it preserves the special features of two national databases
that have been commonly used in the alcoholism and substance abuse field. As a result, our findings
can be easily generalized to the real settings. Our empirical analyses on the data from a community
sample not only demonstrate the applications of the methodology but also reflect some trends observed
in the simulations.

Based on the results of our simulation on the census data, we recommend the use of ZIP-SCAD in
the field of alcoholism and substance abuse research because (I) it can maintain both the specificity
and sensitivity at the highest level (mostly over 0.90), (II) it has the lowest MRMSE, and (III) it
has the highest value of exact fit. It demonstrates this high level of performance not only in the
Poisson component but also in the zero component. In general, its performance improves as the sample
size increases, the correlation between covariates decreases, the proportion of non-zero coefficients
decreased, and the proportion of zero outcome decreased.

The choice of penalty functions in penalized likelihood has been studied by Fan and Li [10] in depth.
They demonstrated that the SCAD penalty improves the LASSO penalty by reducing estimation bias
due to the L penalty, although the LASSO and SCAD share the same spirit in terms of simultaneous
variable selection and parameter estimation. The tuning parameter selection is crucial in the penalized
likelihood methods. Zhang et al. [19] suggested using the BIC tuning parameter in order for the SCAD
to achieve the oracle property. The LASSO with the BIC tuning parameter selector likely yields an
estimate with non-ignorable bias. This explains that the MRMSEs of ZIP-LASSO are systematically
greater than those for ZIP-SCAD. The BIC tuning parameter selector is a data-driven method. In order
to avoid larger estimation bias due to the L penalty, the BIC tuning parameter selector tends to select a
smaller tuning parameter for the ZIP-LLASSO than for the ZIP-SCAD. This explains that the ZIP-SCAD
estimator has better specificity than the ZIP-LASSO.

Like other variable selection methods [32], the methods proposed in this paper do not work well
with small sample sizes. The results of the simulation based on the census data show that for the
sample size of 300, the sensitivity level of the ZIP-SCAD only reaches 0.70 in the Poisson component
and 0.30 in the zero component. Our simulation with the sample sizes of 100 and 200 (unreported
results available upon request) resulted in up to 50 per cent replications failing to converge. Thus, for
the case of 40 candidate covariates (20 in the Poisson component and 20 in the zero component), a
sample size of 600 would be required for the ZIP-SCAD to perform well. Future studies may evaluate
the performance of these variable selection methods under different ratios of the number of candidate
covariates to the sample size.

Appendix A: Technical details of implementation of LARS

For the ease of presentation, we write 0= (p’,7)". That is, 0; =ﬁj, for j=1,...,d; and szyj_dl,
for j=dy+1,...,d+d>. Similarly, 0(0)=([3(0)/, y(o),)/. Denote

Zo=—V2PO, yO)=-v20).

In what follows, we give the details on how to employ the LARS algorithm [16] to the one-step
sparse estimator 0, given the initial value 6.

Step 1: Define index sets

U={j:p,, (B D=00Udi +k: pj, (17" =0},
and

V={j:p, (1BYD#0VU{di+k: pp, (1" #0}.
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Step 2: Find the Cholesky decomposition of Xy. That is, to find a (d) +d>) x (d1 +d>) matrix L,
such that,

So=L'L.
Create working data by
y*=100,

let Xj:r/np;j(lf)(jo)l)ﬂj for j eV, where ij is the jth column of L, 1;=a; for j<d; and
Tj=bj_g4, for j>d;. Further write

1y 1y
X*=[Xp, Xyl 600=@0 .0,y
Step 3: Let Hy be the projection matrix in the space of X7,, i.e. Hy :X*U(X(*]/XE)_X*U,. Compute
Y =Y*—HyY*, X=X, —-HyX}

Step 4: Apply the LARS algorithm to solve

A . 1 o ok ditds
0y =argmin{ = | Y™ = X7 01+t > |0j]¢.
0 |2 j=1
Step 5: Compute 0y = (X} X5) ™ X5 (Y* — X%.07).
It follows that the one-step LLA estimator is:
A(1 ~ A(1 T ~
05/:02 and 0(j)=79*T for jeV.

0 J
npl, (1091)

Appendix B: Regularity conditions and key derivation of oracle property of ZIP with
one-step SCAD

We will need the following regularity conditions, under which the oracle property of the one-step
SCAD for ZIP may be established.

B.1. Regularity conditions

(A) The observations v; ={w;, y;}, i=1,---,n, is an independent and identically distributed sample
from the ZIP model (1). Denote 0=(p’,y’)’ and £(0, v;) to be the log-likelihood function of the ith
observation v;. Assume that the first and second partial derivatives £(0, v;) with respect to 0; satisfies
the equations

. [az(o,m}_o
010, |~

and

8 8 o
L) =Ep| —(0,vi)—(0.v) | =Ep | — «0.v) |.
ik(0) 0[60j ( V)aek ( V)] 0[ 60j60k( V)]

for j=1,---,d|+d>.
(B) The Fisher information matrix

0 0 !
1(O)=E { [%zw, v,-)] [%1(0, v,-)} }

is finite and positive definite at 6 =0y.
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(C) There exists an open subset o of Q containing the true parameter point 6y such that for almost all
vi, £(0, v;) admits all third derivatives 0€(0, v;)/00;00,00; for all 6 € . Further there exist functions
My such that

3
0P ;0P OB

where mﬂd:EoO[Mjkl(vi)]<oo for j, k,I.
These regularity conditions guarantee asymptotic normality of the ordinary maximum likelihood
estimate of the ZIP model. See, for example, Lehmann and Casella [33].

£0,v)| <Mji(v;) forall Oew,

B.2. Key derivation of oracle properties of the one-step SCAD estimator

Under Conditions (A)—~(C), we can show that the maximum likelihood estimate of 6 in the ZIP model,
denoted by #(mle), is root n consistent,

1a &

n i W“O’ Vi)'O:@(mle) — 1(0o)

in probability as n — oo, and

Vn(@(mle)— ) — N0, I~1(8p))

in distribution as n— co. As a direct application of Theorem 5 of Zou and Li [12], if 4, — 0 and
/12, — 00, then the one-step SCAD estimator for the ZIP model possesses the oracle property: with
probability tending to one, the estimate for zero coefficients equals 0, and the estimate for nonzero
coefficient has an asymptotic normal distribution with mean being the true value of nonzero coefficient
and variance I, ! (6p), where I1(0p) is the submatrix of the Fisher information matrix corresponding to
the nonzero coefficients.
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