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Summary. A marker’s capacity to predict the risk of a disease depends on the prevalence of
disease in the target population and its accuracy of classification, i.e. its ability to discriminate
diseased subjects from non-diseased subjects. The latter is often considered an intrinsic prop-
erty of the marker; it is independent of disease prevalence and hence more likely to be similar
across populations than risk prediction measures. In this paper, we are interested in evaluating
the population-specific performance of a risk prediction marker in terms of the positive predictive
value PPV and negative predictive value NPV at given thresholds, when samples are available
from the target population as well as from another population. A default strategy is to estimate
PPV and NPV using samples from the target population only. However, when the marker’s
accuracy of classification as characterized by a specific point on the receiver operating char-
acteristics curve is similar across populations, borrowing information across populations allows
increased efficiency in estimating PPV and NPV. We develop estimators that optimally combine
information across populations.We apply this methodology to a cross-sectional study where we
evaluate PCA3 as a risk prediction marker for prostate cancer among subjects with or without
a previous negative biopsy.

Keywords: Biomarker; Classification; Negative predictive value; Positive predictive value;
Sensitivity; Specificity

1. Introduction

The two most commonly used criteria for biomarker evaluation are the accuracy of classification
and risk prediction ability. The accuracy of classification, which is typically characterized by sen-
sitivity, specificity and the receiver operating characteristics (ROC) curve (Pepe, 2003), measures
the probability that a subject’s disease status is correctly identified on the basis of a biomarker.
Risk prediction measures, in contrast, assess how well a marker can inform treatment options
on the basis of the predicted risk of disease. Among others, two measures that are often used
are the positive predictive value PPV and the negative predictive value NPV (Leisenring et al.,
2000; Moskowitz and Pepe, 2004, 2006; Steinberg et al., 2008). It is well known that sensitivity,
specificity and the ROC curve are intrinsic properties of a test whereas PPV and NPV depend
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on both the accuracy of classification and the external factor, i.e. the prevalence of the disease.
However, there has been no method that utilizes this property to gain efficiency in estimating
PPVs and NPVs in populations of different prevalence of disease when data suggest common
intrinsic classification accuracy across populations, as in the application below that motivated
this paper.

PCA3, a prostate-specific non-coding messenger ribonucleic acid that is overexpressed in pros-
tate tumours, has been proposed as a risk prediction marker for prostate cancer. In a preliminary
cross-sectional study, data were collected from 576 men immediately before their prostate biopsy
which was scheduled mainly because of elevated levels of prostate-specific antigen (Deras et al.,
2006). About half of the subjects had a previous negative biopsy and the rest did not. The
disease outcome is the prostate cancer status diagnosed by the biopsy. On the basis of these
data, urologists are interested in evaluating PCA3’s risk prediction performance in terms of
PPV and NPV in the population of subjects who had had a previous biopsy and the popu-
lation of subjects who had not had a previous biopsy. In particular the data suggested that
PPV at PCA3 value 60, which is approximately 0.75 in the initial biopsy population, could be
used as a threshold for recommendation of prostate biopsy, and that NPV at PCA3 value 20,
which is approximately 0.85 in the repeat biopsy population, to recommend against prostate
biopsy. These thresholds were recommended by study urologists on the basis that most prostate
cancers are indolent and the fact that the prevalence of prostate cancer in the initial biopsy
population is about 44%, and in the repeat biopsy population the prevalence is much lower at
around 27%. The difference in prevalence is due to the fact that larger tumours are likely to be
detected in the initial biopsy and that most prostate cancer patients were detected from their
initial biopsy.

Fig. 1(a) shows the density functions of log(PCA3) conditional on disease status within the
initial and repeat biopsy populations, and Fig. 1(b) shows the empirical ROC curves in the two
populations. Interestingly, although the distributions of PCA3 conditional on disease status
appear to differ between the two populations (for example, a Wilcoxon rank sum test applied to
the non-cancer groups has a p-value of 0.043), the two ROC curves appear similar to each other:
the test of equal area under the curve has a p-value of 0.66. Scenarios where the ROC curve is
similar between different sources are not difficult to picture, considering the fact that the ROC
curve characterizes the comparison of diseased individuals and non-diseased individuals with
respect to their relative ranks rather than actual values. For example, it is common that assays
from different clinical centres could have different distributions due to many instrumental and
specimen handling factors, leading to some location–scale shifts of the test results across clinical
centres, yet not changing the classification performance.

One major reason in favour of calculating PPV and NPV separately from each target popu-
lation is that there are standard formulae for PPV and NPV for a single population as shown
in Section 2, but there is no existing method for combining data across populations for estimat-
ing PPV and NPV on the basis of the assumption of common classification accuracy, unless
we use stronger assumptions, e.g. a location shift modelled by a population effect indicator
in the marker distributions conditional on disease status. The objective of the analysis that is
described in this paper is to develop a statistical method for estimating population-specific PPV
and NPV by using the ROC curve as a bridge between populations when data strongly suggest
the same accuracy of classification across populations. This requires the assumption that relative
ranks between diseased and non-diseased individuals are the same across populations. Making
assumptions based on rank is not uncommon in statistical literature owing to the increased
robustness compared with making parametric assumptions on marker distribution. Examples
include the Friedman test (Friedman, 1937) and Quade test (Quade, 1979) in randomized block
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Fig. 1. (a) Distribution of log(PCA3) conditional on disease status within the initial ( , diseased; ,
non-diseased) and repeat ( , diseased; , non-diseased) biopsy populations based on the pilot
cohort study and (b) empirical ROC curves for PCA3 within the initial ( ) and the repeat ( ) biopsy
populations based on the pilot cohort study
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design. The procedure that is proposed in this paper can be thought of as an expansion of these
non-parametric methods to PPV or NPV estimation, rather than a simple hypothesis test of
equality of rank means. Combining information non-parametrically has a long history. For
example, Mantel and Haenszel (1959) combined odds ratios across strata. In our example, it is
desirable to have a method that relies only on the similar rank distribution assumption and does
not require explicit modelling, e.g. the location–scale shift effects on the marker distribution
conditional on disease status.

The settings in which the procedure proposed will be useful assume that any ‘interaction’ effect
of biomarker and population in terms of discriminating diseased from non-diseased individu-
als is negligible, i.e. the difference in the marker’s discriminatory power between populations
is minimal. This assumption should always be checked. When the interaction is substantial,
results from any of the above methods combining information across populations, including
the method that is proposed in this paper, will be less interpretable and the estimation should
be done for each population. The main motivation of this paper is to provide a non-para-
metric method for combining classification information across populations or strata when the
combined estimation is desired and justified.

Whereas cross-sectional samples and cohort samples are usually collected in the late phases
of biomarker studies, a case–control sampling design is most often used in the early phase of
biomarker development (Pepe et al., 2001). In Section 2, we start by considering a case–control
design and investigate cross-sectional and cohort designs later in Section 3. We present simu-
lation studies in Section 4 and detailed analyses of the PCA3 example in Section 5. Finally we
provide concluding remarks in Section 6.

2. Methods in case–control design

Let D be a binary disease status and let Y be a continuous biomarker of interest. Suppose that
samples are available from two populations: the target population where PPV and/or NPV are
of interest, and another population that we call the auxiliary population. In the prostate cancer
example, the repeat biopsy population serves as the auxiliary population when we are interested
in estimating PPV and/or NPV in the initial biopsy population, and the initial biopsy population
would serve as the auxiliary population when we are interested in estimating PPV and/or NPV
in the repeat biopsy population. We use subscript D and D̄ to indicate diseased and non-diseased
status, and superscript ‘Å’ to indicate the auxiliary population. Let Y , YD and YD̄ be the marker
measured for a random subject, a case and a control respectively from the target population,
and let YÅ, YÅ

D and YÅ
D̄

indicate the corresponding quantities in the auxiliary population. Let
S.y/=P.Y >y/ denote the survival function for Y ; SD and SD̄ denote the survival functions for
YD and YD̄; SÅ

D and SÅ
D̄

denote the survival functions for YÅ
D and YÅ

D̄
. Suppose that we apply a

binary classification rule to the target population such that, compared with a given threshold, a
subject is classified as diseased if his marker value is greater than the threshold and non-diseased
otherwise. Then the ROC curve is the plot of true positive rate versus false positive rate for a
series of thresholds, and it can be expressed as ROC.t/ = SD{S−1

D̄
.t/}. Similarly, let ROCÅ be

the corresponding ROC curve in the auxiliary population. We have ROCÅ.t/ = SÅ
D{SÅ−1

D̄
.t/}.

Throughout this paper we assume that larger marker values are associated with higher risks of
disease.

Next we explore methods for estimating PPV.y/=P.D=1|Y >y/. Results for NPV have been
omitted since they are easy to derive by exploiting the symmetry between the two: NPV.y/ =
P.D=0|Y �y/ can be represented as PPV.−y/ when D is replaced by 1−D and Y replaced by
−Y .
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Let ρ indicate the prevalence of disease in the target population, which we assume initially
to be known. By an application of Bayes’s theorem, PPV can be written as a function of ρ, SD̄

and SD:

PPV.y/= ρSD.y/

ρSD.y/+ .1−ρ/SD̄.y/
: .1/

Writing y as S−1
D̄

SD̄.y/ and using the definition of the ROC curve, PPV can be represented as a
function of ρ, SD̄ and ROC{SD̄.y/}:

PPV.y/= ρSD{S−1
D̄

SD̄.y/}
ρSD{S−1

D̄
SD̄.y/}+ .1−ρ/SD̄.y/

= ρROC{SD̄.y/}
ρROC{SD̄.y/}+ .1−ρ/SD̄.y/

: .2/

Suppose that we sample nD cases {YD1, . . . , YDnD} and nD̄ controls {YD̄1, . . . , YD̄nD̄
} from the

target population and nÅ
D cases {YÅ

D1, . . . , YÅ
Dn*

D
} and nÅ

D̄
controls {YÅ

D̄1
, . . . , YÅ

D̄n*̄
D
} from the

auxiliary population. The default strategy for estimating PPV(y) is to estimate SD̄.y/ and
SD.y/ empirically with S̃D̄.y/ = ΣnD̄

i=1.YD̄i > y/=nD̄ and S̃D.y/ = ΣnD
i=1.YDi > y/=nD and to en-

ter them into equation (1). Denote this estimator P̃PV.y/. This estimator is asymptotically
equivalent to estimating SD̄.y/ with S̃D̄.y/ and estimating ROC{SD̄.y/} empirically with

˜ROC{S̃D̄.y/}=
nD∑
i=1

[YDi > S̃D̄

−1{S̃D̄.y/}]=nD,

and entering them into equation (2), since

˜ROC{S̃D̄.y/}�
nD∑
i=1

.YDi >y/=nD = S̃D.y/,

where the approximation is exact when y is one of the data points in the sample from the target
population.

2.1. Estimator proposed
If, in addition, we have ROC.t/ = ROCÅ.t/ for t = SD̄.y/, i.e. the sensitivity corresponding to
the specificity 1 − SD̄.y/ is constant across the two populations, we can then estimate ROC(t)
at t =SD̄.y/ by using samples from both populations. Let ˜ROC.t/ and ˜ROCÅ.t/ be the empiri-
cal ROC from the target and auxiliary population respectively; the common ROC.t/ at t =SD̄.y/

can be estimated as a weighted average of the two ̂ROCw.t/=w ˜ROC.t/+ .1−w/ ˜ROCÅ.t/, where
t = S̃D̄.y/ and w indicates the weight given to the empirical ROC estimate from the target pop-
ulation.

Entering ̂ROCw{S̃D̄.y/} and S̃D̄.y/ into equation (2), the weighted estimator for PPV.y/ is

̂PPVw.y/= ρ ̂ROCw{S̃D̄.y/}
ρ ̂ROCw{S̃D̄.y/}+ .1−ρ/ S̃D̄.y/

,

where w =1 corresponds to estimating PPV by using samples from the target population only.
Under the equal classification accuracy assumption, the asymptotic unbiasedness of the ROC
and consequently that of the PPV estimators are invariant to the choice of w.

Let fD and fD̄ be density functions of the marker for diseased and non-diseased individuals
respectively in the target population. In theorem 1 of Appendix A.1, we show that, under the
assumption of equal sensitivity at specificity 1 − SD̄.y/, { ̂PPVw.y/ − PPV.y/}√

nD̄ is asymp-
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totically normally distributed with zero mean and a variance term that is a function of w, ρ,
SD.y/, SD̄.y/ and the density ratio fD.y/=fD̄.y/. Interestingly, since the asymptotic variance
of ̂PPVw.y/ as shown in equation (4) in Appendix A.1 is a quadratic and convex function of
w, an optimal w that minimizes it can be uniquely determined, as presented in equation (5)
of Appendix A.1. Moreover, observe that the asymptotic variance term (4) can be written as
the product of two terms: one free of w and the other free of ρ. Consequently the asymptotic
relative efficiency of any two estimators with specific weights is independent of the prevalence
of disease. In other words the optimal w is the same for all ρ. As shown in Appendix A.1, the
optimal w is always less than 1. It converges to 1 when nÅ

D=nD →0 or when nÅ
D̄

=nD̄ →0. This is
expected intuitively since ˜ROCÅ is less precise than ˜ROC under these scenarios and we want to
put more weight on the latter.

2.2. Alternative estimator
Earlier we proposed to estimate the specificity at a given threshold y empirically by using data
from the target population, and to estimate the corresponding sensitivity by using data from
both populations. Alternatively, we can start from the other direction, i.e. we could estimate the
sensitivity at y empirically by using data from the target population and estimate the corres-
ponding specificity by using data from both populations. We call this estimator

̂PPV:Aw.y/=ρ{S̃D.y/}=[ρ{S̃D.y/}+ .1−ρ/ ̂ROC
−1
w { S̃D.y/}],

where

̂ROC
−1
w {S̃D.y/}=w

nD̄∑
i=1

.YD̄i >y/=nD̄ + .1−w/

n*
D̄∑

i=1
[YÅ

D̄i
> S̃D

Å−1{S̃D.y/}]=nÅ
D̄

:

Asymptotic theory for this estimator and the optimal w for minimizing asymptotic variance
is established in theorems 3 and 4 of Appendix A.1. Again, the optimal w is always less than 1
and independent of ρ. Interestingly, through simple algebra, it can be shown that the minimum
asymptotic variances that are achievable by ̂PPVw and ̂PPV:Aw are equivalent. Consequently,
as far as variance is concerned, asymptotically it does not matter whether we use sensitivity at
the given specificity as the bridge between populations or the other way around. We evaluate
the finite sample performance of the two estimators through simulation studies.

2.3. Imperfect disease prevalence estimate
So far we have assumed that the disease prevalence is known. Sometimes this is reasonable; for
example, if we obtain ρ from a population disease registry such as ‘Surveillance, epidemiology,
and end results’ (http://seer.cancer.gov/), its value essentially can be treated as known
because of the large sample size that is involved. Alternatively a disease prevalence estimate ρ̂
might be derived from a pilot cross-sectional study, like in our PCA3 application. Under such cir-
cumstances, the asymptotic variance of ̂PPVw.y/ and ̂PPV:Aw computed in Sections 2.1 and 2.2
could be easily modified to incorporate the variability in ρ̂ as shown in theorem 5 of Appendix
A.1. Suppose that we estimate sample prevalence from a pilot cohort study and apply it to the
estimate of PPV based on the case–control sample; then the asymptotic variance of ̂PPVw or
̂PPV:Aw will equal their asymptotic variance given the ‘true’ ρ plus an extra term due to the esti-
mation of ρ. From theorem 5, it can be easily seen that the optimal weights are invariant to the
extra variability introduced and are the same as those in equations (5) and (7) in Appendix A.1
where the disease prevalence is considered to be known. The efficiency of the optimal estimator
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relative to the default estimator is expected to decrease as variability in the disease prevalence
estimator increases due to a dampening effect.

2.4. Robustness
The estimators that were proposed in Sections 2.1 and 2.2 gain precision by assuming equal-
ity between ROC{SD̄.y/} and ROCÅ{SD̄.y/} or between SÅ

D̄
SÅ−1

D {SD.y/} and SD̄ S−1
D {SD.y/};

it is important to be aware of the magnitude of the bias in ̂PPVw or ̂PPV:Aw when the
corresponding assumptions are violated.

Let δ =ROCÅ.t/−ROC.t/ for t =SD̄.y/ and let

η =−[SÅ
D̄

SÅ−1
D {SD.y/}−SD̄ S−1

D {SD.y/}]:

As shown in theorems 6 and 7 of Appendix A.2, the asymptotic bias of ̂PPVw can be repre-
sented as a monotone increasing function of .1 − w/δ, and the asymptotic bias of ̂PPV:Aw.y/

is a monotone increasing function of .1−w/η.
In practice, researchers might be able to guess a suitable range for δ or η on the basis of

experience. Alternatively, an interval of δ or η that is consistent with the data can be derived
at, say, 95% confidence level. Then the asymptotic bias of the estimator proposed can be calcu-
lated and combined with the reduction in variance to determine the ‘worst case’ effect on the
mean-squared error. Conversely, given a range of tolerable bias in ̂PPVw.y/ or ̂PPV:Aw.y/, we
can derive the corresponding tolerable range for δ or η.

2.5. Weight determination and variance estimation
We propose two approaches for determining the optimal weight w for computing ̂PPVw or
̂PPV:Aw and subsequently estimating the variance of the weighted estimators. The first approach
is based on the closed form formula for w as presented in equations (5) and (7) in Appendix A.1
for minimizing the asymptotic variance of the weighted estimators under equal classification
accuracy conditions. Equations (6) and (7) involve a density ratio fD=fD̄ which would be diffi-
cult to estimate without making any parametric assumption about the marker distribution. We
thus propose to assume normality of Y in the target population conditional on disease status
and then to compute equations (6) and (7) on the basis of estimated distribution parameters. In
practice, if we could transform data such that the normality assumption is not grossly violated,
then we expect that the weight estimated by assuming normality would be a good approximation
to the true entity. Since the choice of w will affect only efficiency of the estimator but not its
consistency, robustness to deviations from normality is not a big issue for weight determination.
Given selected w, one could apply asymptotic formulae (4) and (5) based on a normality assump-
tion for estimation of variance. However, here deviation from normality could potentially bias
the variance estimation and invalidate the inference. Therefore, we recommend instead using
bootstrap resampling to estimate the variance of the weighted estimator after the optimal w has
been obtained through the asymptotic formula. The resampling scheme will be chosen to reflect
sampling design.

Validity of the above approach for determining w relies on the equal classification accuracy
assumption. In practice, a researcher’s choice of approaches for weight determination and var-
iance estimation depends on the problem being investigated and reflects how strong one’s belief
is about the equal classification accuracy assumption and how heavily one is concerned about
the possible bias under the violation of this assumption. There are scenarios where the equal
classification accuracy is expected to hold where the approach that was described above is best
suited. For example, consider a medical test performed at two different laboratories. It is quite
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common to assume that the difference in laboratories leads to a location–scale shift in distri-
bution of the test results but does not change the ranks of diseased versus non-diseased, and
thus a common ROC curve exists. In other scenarios where the equal classification accuracy
assumption is built largely on statistical tests rather than prior knowledge about the underlying
biological mechanism, as in our PCA3 application, researchers might want to be conservative
in terms of controlling possible bias while improving efficiency.

With an objective of maintaining a balance between bias and variance, here we propose a
second bootstrap-based approach for determining w. Specifically, we generate a bootstrap set
based on the observed data set and implement a grid search algorithm to examine a series of
candidate w-values. In our simulation studies and application, a grid size of 0.01 is used. For
each w, we estimate the bootstrap variance of the weighted estimators. At the same time, to
account for possible deviation from the equal classification accuracy assumption, we also com-
pute a ‘bias’ or penalty term as the difference between means of the weighted estimators over
the bootstrap distribution and the default estimator based on the original data. A weighted
estimator with minimum ‘pseudo-mean-squared error’ PMSE, which is defined as the sum of
the squared penalty and bootstrap variance, can then be selected out of all possible w-values
and between ̂PPVw and ̂PPV:Aw. Here we use the same set of bootstrap samples for choosing
w and for variance estimation. Doing so ignores the variability due to estimation of w. Con-
ceptually, a more complicated bootstrap procedure could be implemented to account for the
variability in estimating w. However, it appears that, given a practical sample size, ignoring the
contribution to variability due to estimating w has minimal effect on the inference, as shown by
the satisfactory coverage of the weighted estimators in simulation studies. We thus adopt this
simpler bootstrap procedure instead of going for a more complicated procedure.

3. Estimation in cross-sectional or cohort design

The estimator that we developed in Section 2 for a case–control design is directly applicable to
prospective sampling design. Consider the setting where n individuals in the target populations
are randomly sampled, among which nD subjects are diseased. Then the prevalence of disease
in the target population can be estimated by ρ̂=nD=n, whereas estimators ŜD.y/ and ŜD̄.y/ are
computed in the same way as in Section 2. As demonstrated in Appendix A.3, here ρ̂ is uncor-
related with ŜD.y/ or ŜD̄.y/, considering the fact that ŜD.y/ and ŜD̄.y/ are estimated from the
conditional distributions of marker given disease status, whereas ρ̂ is a function only of disease
status data. Consequently, the asymptotic properties of ̂PPVw.y/ and ̂PPV:Aw are the same as
those presented in theorem 5.

4. Simulation

We conduct simulation studies to investigate the performance of the weighted estimators that
were developed in earlier sections, using a case–control design. Assume that

YD̄ ∼N.0, 1/,

YD ∼N.1, 1/,

YÅ
D̄

∼N.0:5, 1/,

YÅ
D ∼N.1:5, 1/:

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.3/

Our goal is to estimate PPV.y/ in the target population. In the simulation, equal numbers of
samples are obtained from the target population and from the auxiliary population, and within
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each population equal numbers of cases and controls are sampled. We study the setting where
ρ=0:4, which is close to that of the initial biopsy population in the PCA3 example. Results are
presented for y being the 90th percentile within controls, w varying from 0.1 to 0.9, and a total
sample size of either 500 or 1000. Results are based on 1000 Monte Carlo simulations with a
bootstrap sample size 250.

First we assume that ρ is known. Table 1 shows that both ̂PPVw.y/ and ̂PPV:Aw.y/ have min-
imal biases. Asymptotic variances under a series of w are fairly close to the corresponding finite
sample variances. A large gain in efficiency can be achieved by borrowing information across
populations compared with the default strategy. Wald confidence intervals based on bootstrap
variance estimates have coverage close to nominal level assuming that logits of the estimators
are normally distributed.

Table 1. Performance of ̂PPVw and ̂PPV:Aw for fixed ρD0:4†

Parameter Result for the following values of w:

w =0.1 w =0.2 w =0.3 w =0.4 w =0.5 w =0.6 w =0.7 w =0.8 w =0.9

Bias
̂PPVw.y/

n=250 −0.002 −0.0005 0.0003 0.0009 0.001 0.001 0.001 0.001 0.0006
n=500 −0.0003 0.0002 0.0006 0.0009 0.001 0.001 0.001 0.001 0.0009

̂PPV:Aw.y/
n=250 0.002 0.0004 −0.0005 −0.001 −0.002 −0.002 −0.002 −0.001 −0.0008
n=500 0.001 0.0008 0.0004 0.0001 −0.0002 −0.0003 −0.0003 −0.0001 0.0002

Variance: (asymptotic−observed)=observed ×100%
̂PPVw.y/

n=250 −5.28 −3.83 −3.83 −3.31 −3.50 −3.58 −3.25 −2.62 −2.34
n=500 −2.51 −2.16 −1.74 −1.27 −1.20 −1.47 −1.00 −0.60 −0.79

̂PPV:Aw.y/
n=250 −0.097 −0.72 −0.83 −0.48 0.18 0.82 1.23 1.41 1.56
n=500 1.58 1.06 0.73 0.57 0.52 0.49 0.44 0.40 0.44

Efficiency relative to ˜PPV
̂PPVw.y/

n=250 1.77 1.85 1.85 1.79 1.69 1.56 1.41 1.27 1.13
n=500 1.79 1.86 1.87 1.81 1.71 1.57 1.43 1.28 1.13

̂PPV:Aw.y/
n=250 0.90 1.13 1.40 1.67 1.87 1.91 1.77 1.52 1.25
n=500 0.87 1.10 1.36 1.63 1.84 1.89 1.76 1.52 1.25

Coverage of 95% confidence interval
̂PPVw.y/

n=250 96.9 96.5 96.4 95.9 95.9 95.7 95.6 95.4 95.5
n=500 96.1 95.8 95.6 95.3 95.3 95.4 95.1 95.0 95.0

̂PPV:Aw.y/
n=250 95.4 95.3 95.4 95.5 95.6 95.6 95.6 95.2 95.2
n=500 95.1 95.0 95.3 95.6 95.6 95.3 94.9 94.6 95.0

†Here PPV=0:722, and the asymptotically optimal w is 0.249 for ̂PPVw.y/ and 0.578 for ̂PPV:Aw.y/. Efficiency
of the weighted estimator relative to ˜PPV is defined to be the ratio of the variance for ˜PPV to the variance for the
weighted estimator. The Wald confidence interval based on bootstrap variance estimates is constructed assuming
normality of the logit-transformed estimator. Here nD =nD̄ =nÅ

D =nÅ
D̄

=n=2.
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Also presented are the results when we assume that the prevalence of disease in the target
population is estimated from a pilot cohort study with sample sizes 250 or 500 respectively for
a follow-up case–control study of sample size 500 or 1000 (Table 2). Again the estimators pro-
posed have good performances. The efficiency of the proposed estimators relative to the default
estimator is smaller with imperfect disease prevalence estimate compared with that given perfect
disease prevalence.

Next we examine the performance of the weighted estimators when weight is selected by
assuming a normal marker distribution conditional on disease status or through the bias-
penalized bootstrap procedure. With marker distributions following expression (3), we study
the efficiency of ̂PPVw.y/ and ̂PPV:Aw.y/ relative to P̃PV.y/ as well as their coverage prop-
erty. Table 3 presents the efficiency of the weighted estimator relative to the default esti-

Table 2. Performance of ̂PPVw and ̂PPV:Aw with ρ̂ estimated for ρD0:4†

Parameter Results for the following values of w:

w =0.1 w =0.2 w =0.3 w =0.4 w =0.5 w =0.6 w =0.7 w =0.8 w =0.9

Bias
̂PPVw.y/

n=250 −0.0004 0.0008 0.002 0.002 0.003 0.003 0.003 0.003 0.002
n=500 −0.001 −0.0006 −4×10−5 0.0004 0.0006 0.0008 0.001 0.001 0.001

̂PPV:Aw.y/

n=250 −0.002 0.0008 3×10−5 −0.0005 −0.0007 −0.0007 −0.0004 6×10−5 0.0003
n=500 −0.002 −0.002 −0.002 −0.002 −0.001 −0.001 −0.0009 −0.0003 0.0003

Variance: (asymptotic−observed)=observed ×100%
̂PPVw.y/

n=250 4.39 3.63 3.48 3.48 3.37 3.03 2.48 1.80 1.12
n=500 −2.97 −3.29 −3.34 −3.31 −3.33 −3.46 −3.71 −4.05 −4.42

̂PPV:Aw.y/
n=250 1.61 1.81 2.33 2.93 3.28 3.14 2.48 1.60 0.87
n=500 −3.18 −3.01 −2.76 −2.57 −2.59 −2.92 −3.49 −4.11 −4.57

Efficiency relative to ˜PPV
̂PPVw.y/

n=250 1.55 1.59 1.60 1.56 1.49 1.41 1.31 1.21 1.10
n=500 1.58 1.62 1.62 1.58 1.51 1.42 1.32 1.22 1.10

̂PPV:Aw.y/
n=250 0.89 1.07 1.26 1.44 1.57 1.60 1.53 1.38 1.19
n=500 0.88 1.06 1.26 1.44 1.58 1.61 1.54 1.39 1.19

Coverage of 95% confidence interval
̂PPVw.y/

n=250 96.5 96.3 96.1 96.0 95.8 95.9 95.8 95.8 95.7
n=500 96.3 96.0 95.9 95.8 95.9 96.0 95.9 96.0 96.0

̂PPV:Aw.y/
n=250 95.7 95.3 95.1 95.1 95.0 95.4 95.3 95.2 95.2
n=500 96.1 96.1 96.4 96.0 96.0 96.1 96.1 95.8 95.8

†Here PPV=0:722, and the asymptotically optimal w is 0.249 for ̂PPVw.y/ and 0.578 for ̂PPV:Aw.y/. The Wald
confidence interval based on bootstrap variance estimates is constructed assuming normality of the logit-trans-
formed estimator. Here nD =nD̄ =nÅ

D =nÅ
D̄

=n=2.
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Table 3. Relative efficiency of ̂PPVw.y/ or ̂PPV:Aw.y/ versus ̂PPV.y/ for varying ρ
and specificity v D F ND.y/, assuming that ρ is fixed (i.e. var{̂PPV.y/}=var{̂PPVw.y/} or
var{̂PPV.y/}=var{ ̂PPV:Aw.y/}†

Disease Weight Parameter Results for the following values of v:
prevalence ρ selection

v=0.1 v=0.3 v=0.5 v=0.7 v=0.9

Value of PPV(y)
0.1 0.109 0.129 0.158 0.202 0.302
0.3 0.320 0.364 0.419 0.494 0.625
0.5 0.523 0.572 0.627 0.695 0.796
0.7 0.719 0.757 0.797 0.842 0.901
0.9 0.908 0.923 0.938 0.953 0.972

Efficiency relative to ˜PPV (y)
0.1 Normal ̂PPVw.y/ 1.33 1.45 1.72 1.75 1.99

̂PPV:Aw.y/ 1.39 1.48 1.73 1.74 2.02
Bootstrap ̂PPVw.y/ 1.15 1.20 1.30 1.32 1.36

̂PPV:Aw.y/ 1.18 1.22 1.32 1.32 1.35
0.3 Normal ̂PPVw.y/ 1.29 1.59 1.71 1.82 1.86

̂PPV:Aw.y/ 1.28 1.60 1.69 1.79 1.86
Bootstrap ̂PPVw.y/ 1.13 1.25 1.28 1.27 1.29

̂PPV:Aw.y/ 1.14 1.26 1.27 1.27 1.30
0.5 Normal ̂PPVw.y/ 1.28 1.55 1.58 1.84 1.89

̂PPV:Aw.y/ 1.33 1.58 1.55 1.83 1.92
Bootstrap ̂PPVw.y/ 1.15 1.21 1.23 1.28 1.32

̂PPV:Aw.y/ 1.18 1.22 1.23 1.29 1.33
0.7 Normal ̂PPVw.y/ 1.31 1.60 1.69 1.71 1.96

̂PPV:Aw.y/ 1.33 1.57 1.66 1.79 2.03
Bootstrap ̂PPVw.y/ 1.15 1.23 1.29 1.29 1.31

̂PPV:Aw.y/ 1.15 1.23 1.29 1.30 1.35
0.9 Normal ̂PPVw.y/ 1.31 1.50 1.59 1.79 1.93

̂PPV:Aw.y/ 1.35 1.48 1.56 1.82 1.91
Bootstrap ̂PPVw.y/ 1.14 1.21 1.26 1.31 1.31

̂PPV:Aw.y/ 1.18 1.21 1.25 1.31 1.33

†The weight w is selected by using the asymptotic formula assuming a normal model or based
on the bootstrap procedure to minimize PMSE. Asymptotically, the efficiencies of the weighted
estimators with optimal weight relative to ˜PPV are 1.31, 1.52, 1.66, 1.78 and 1.89 respectively
for v=0:1, 0:3, 0:5, 0:7, 0:9.

mator for varying prevalence of disease in the target population, ρ = {0:1, 0:3, 0:5, 0:7, 0:9},
and varying threshold y corresponding to v = 1 − SD̄.y/ = {0:1, 0:3, 0:5, 0:7, 0:9} and SD.y/ =
{0:989, 0:936, 0:841, 0:682, 0:389}, for nD =nD̄ =nÅ

D =nÅ
D̄

=250. It appears that weight selected
under a normality assumption achieves the optimal efficiency in general. The gain in efficiency is
similar between ̂PPVw and ̂PPV:Aw. The weight that is selected by the bias-penalized bootstrap
procedure achieves smaller but still sizable efficiency compared with the model-based proce-
dure assuming equal classification accuracy. This is not surprising considering that the penalty
terms that are adopted by the bootstrap procedure essentially ‘shrink’ the weighted estimator
towards the default estimator. Table 4 shows coverage of a 95% Wald confidence interval based
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Table 4. Coverage of 95% logit-transformed Wald confidence intervals by using
bootstrap variance estimates of ̂PPVw.y/ and ̂PPV:Aw.y/ for varying ρ and speci-
ficity v DF ND.y/, assuming that ρ is fixed†

ρ Weight Parameter Results for the following values of v:
selection

v=0.1 v=0.3 v=0.5 v=0.7 v=0.9

0.1 Normal ̂PPVw.y/ 94.20 94.90 96.00 94.50 93.80
̂PPV:Aw.y/ 94.10 96.00 96.40 94.10 93.30

Bootstrap ̂PPVw.y/ 92.60 92.60 94.60 93.50 94.20
̂PPV:Aw.y/ 92.00 92.70 94.70 93.20 92.90

0.3 Normal ̂PPVw.y/ 92.23 95.50 94.60 93.80 94.70
̂PPV:Aw.y/ 92.52 95.00 94.30 94.40 94.70

Bootstrap ̂PPVw.y/ 91.70 94.70 92.90 92.30 93.10
̂PPV:Aw.y/ 91.00 94.30 92.50 91.70 92.70

0.5 Normal ̂PPVw.y/ 95.00 95.10 94.00 95.20 95.90
̂PPV:Aw.y/ 95.50 95.90 94.10 94.60 95.90

Bootstrap ̂PPVw.y/ 94.40 93.00 92.90 93.70 95.20
̂PPV:Aw.y/ 94.60 92.60 92.90 93.60 94.60

0.7 Normal ̂PPVw.y/ 93.79 95.10 94.70 95.70 94.90
̂PPV:Aw.y/ 94.35 96.30 94.10 96.20 95.60

Bootstrap ̂PPVw.y/ 93.10 94.20 92.90 94.60 93.80
̂PPV:Aw.y/ 92.80 94.30 92.70 94.50 93.80

0.9 Normal ̂PPVw.y/ 93.80 94.70 95.80 94.60 94.30
̂PPV:Aw.y/ 94.30 95.20 95.90 95.60 93.90

Bootstrap ̂PPVw.y/ 92.80 94.00 94.80 93.90 93.30
̂PPV:Aw.y/ 92.00 93.80 95.30 94.30 92.50

†The weight w is selected by using the asymptotic formula assuming a normal model or
based on the bootstrap procedure to minimize PMSE. Asymptotically, the efficiencies
of the weighted estimators with optimal weight relative to ˜PPV are 1.31, 1.52, 1.66,
1.78 and 1.89 respectively for v=0:1, 0:3, 0:5, 0:7, 0:9.

on the bootstrap-estimated variance for the weighted estimators, assuming normality of the
logit-transformed estimator. Both procedures of weight selection have satisfactory coverage.

We also investigate robustness of the weighted estimators to violation of the common classi-
fication accuracy assumption. We simulate data from two populations with difference in ROC
curves:

YD̄ ∼N.0, 1/,

YD ∼N.1, 1/,

YÅ
D̄

∼N.0:5, 1/,

YÅ
D ∼N.1:8, 1/,

and nD =nD̄ =nÅ
D =nÅ

D̄
=250. Again, varying ρ, {0:1, 0:3, 0:5, 0:7, 0:9}, and thresholds y corres-

ponding to v=1−SD̄.y/={0:1, 0:3, 0:5, 0:7, 0:9} and SD.y/= {0:989, 0:936, 0:841, 0:682, 0:389}
in the target population are considered. In the auxiliary population, corresponding to the same
set of specificities as in the target population, values of SÅ

D are {0:995, 0:966, 0:903, 0:781, 0:507}
respectively, whereas, corresponding to the same set of sensitivities as in the target population,
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values of 1 − SÅ
D̄

are {0:163, 0:411, 0:618, 0:795, 0:943} respectively. Results of relative bias for
PPV-estimators with weights selected by a normal model or by the penalized bootstrap are
presented in Table 5 as a function of v and ρ, where ρ is assumed to be known. Overall, by
including the extra penalty term, the estimators with weights selected by the penalized boot-
strap have much smaller bias compared with the estimators with weights selected assuming
normality under the equal classification accuracy assumption. When the weights are deter-
mined parametrically, the magnitude of bias for ̂PPV:Aw.y/ relative to ̂PPVw.y/ tends to be
larger when y is at the lower end of its distribution and smaller when y is at the upper end of its
distribution. Intuitively this makes sense considering that bias in ̂PPVw and ̂PPV:Aw relates to
the difference between sensitivity at a given specificity and the difference between specificity at
a given sensitivity respectively. For two unequal ROC curves, the horizontal difference tends to
be smaller than the vertical difference at the lower end of the curve, i.e. where the ROC curve is
steeper, which corresponds to large y, whereas the order of the horizontal and vertical distance
reverses at the upper end of the ROC curve where the ROC curve is flatter and y is small. When

Table 5. Relative bias of ̂PPVw.y/ and ̂PPV:Aw.y/ for varying ρ and v DF ND.y/†

ρ Weight Parameter Results for the following values of v:
selection

v=0.1 v=0.3 v=0.5 v=0.7 v=0.9

0.1 PPV(y) 0.109 0.129 0.157 0.202 0.302
Normal % bias of ̂PPVw.y/ 0.44 2.56 5.25 9.13 15.78

% bias of ̂PPV:Aw.y/ 0.94 3.71 6.67 10.22 15.52
Bootstrap % bias of ̂PPVw.y/ 0.09 0.78 1.21 1.98 4.53

% bias of ̂PPV:Aw.y/ 0.06 0.73 1.10 1.72 4.00
0.3 PPV(y) 0.320 0.364 0.419 0.494 0.625

Normal % bias of ̂PPVw.y/ 0.40 1.76 3.53 5.61 7.36
% bias of ̂PPV:Aw.y/ 0.79 2.65 4.51 6.27 7.07

Bootstrap % bias of ̂PPVw.y/ 0.14 0.47 1.05 1.35 1.92
% bias of ̂PPV:Aw.y/ 0.11 0.42 0.97 1.19 1.64

0.5 PPV(y) 0.523 0.572 0.627 0.695 0.796
Normal % bias of ̂PPVw.y/ 0.25 1.19 2.20 3.27 3.94

% bias of ̂PPV:Aw.y/ 0.50 1.75 2.75 3.64 3.82
Bootstrap % bias of ̂PPVw.y/ 0.08 0.35 0.61 0.94 1.17

% bias of ̂PPV:Aw.y/ 0.05 0.33 0.56 0.87 1.06
0.7 PPV(y) 0.719 0.757 0.797 0.842 0.901

Normal % bias of ̂PPVw.y/ 0.18 0.70 1.23 1.59 1.83
% bias of ̂PPV:Aw.y/ 0.34 1.00 1.55 1.82 1.77

Bootstrap % bias of ̂PPVw.y/ 0.08 0.25 0.39 0.36 0.54
% bias of ̂PPV:Aw.y/ 0.07 0.23 0.37 0.33 0.50

0.9 PPV(y) 0.908 0.923 0.938 0.953 0.972
Normal % bias of ̂PPVw.y/ 0.06 0.22 0.36 0.49 0.51

% bias of ̂PPV:Aw.y/ 0.11 0.31 0.46 0.56 0.50
Bootstrap % bias of ̂PPVw.y/ 0.03 0.08 0.10 0.15 0.16

% bias of ̂PPV:Aw.y/ 0.03 0.08 0.10 0.14 0.15

†The weight w is selected by using the asymptotic formula assuming a normal model or based
on the bootstrap procedure to minimize PMSE.
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the bias-penalized bootstrap procedure is used for weight selection, the bias is similar between
̂PPVw and ̂PPV:Aw.

5. Application to PCA3 study

In the PCA3 study (Deras et al., 2006), information was collected for 267 subjects from the
initial biopsy population and another 269 different subjects from the repeat biopsy population.
As mentioned in Section 1, researchers are interested in evaluating PCA3’s ability to identify
high risk subjects in the initial biopsy population and its ability to identify low risk subjects in
the repeat biopsy population. PPV(60) and NPV(20) were chosen as the measures to evaluate.

Define ̂NPVw to be the weighted estimator for NPV by using specificity at a particular sen-
sitivity as the bridge between populations and let ̂NPV:Aw be the alternative estimator where
sensitivity at a particular specificity is used as the bridge. To evaluate the validity of assumptions
for ̂PPVw.60/, ̂PPV:Aw.60/, ̂NPVw.20/ and ̂NPV:Aw.20/, tests are conducted using bootstrap
variance estimates for equivalence between the two populations with respect to

(a) sensitivity corresponding to 1− specificity=SD̄.60/,
(b) specificity corresponding to sensitivity=SD.60/,
(c) specificity corresponding to sensitivity=SD.20/ and
(d) sensitivity corresponding to 1− specificity=SD̄.20/.

With respect to these four measures, point estimates in the initial and repeat biopsy populations
are

(a) {0:314, 0:236},
(b) {0:081, 0:132},
(c) {0:730, 0:764} and
(d) {0:503, 0:487} respectively.

None of the test results are significant. The p-values are 0.433, 0.315, 0.665 and 0.864 respec-
tively.

Although the equal classification accuracy assumption appears plausible from the data, with-
out a better understanding of the potential biological mechanism behind it, we decide to be
conservative and apply the bias-penalized bootstrap method of weight selection for robust-
ness against a possible difference in accuracy of classification between the two populations.
We investigate the performance of the four estimators over a series of w varying from 0 to 1.
The variance and bias of the weighted estimators are computed on the basis of 2000 bootstrap
samples, where individuals are sampled separately from each population. The ratio of PMSE
for the default estimator versus weighted estimators is plotted as function of w (Fig. 2). The
optimal weights that minimize PMSE for estimating PPV and NPV are identified. Observe that
̂PPV:Aw.60/ is slightly more efficient compared with ̂PPVw.60/ at optimal weights. ̂NPVw.20/

and ̂NPV:Aw.20/ have similar optimal efficiency, with the latter slightly better.
Results comparing ̂PPV:Aw.60/ and ̂NPV:Aw.20/ at their optimal weights and correspond-

ing default estimators are presented in Table 6. For both PPV(60) and NPV(20), the weighted
estimate and the default estimate are fairly similar to each other. In terms of variance, the gain
in efficiency based on the weighted estimator is around 38% for PPV(60) and 93% for NPV(20).
This is not surprising, considering that in the initial biopsy population the numbers of cases and
controls are more balanced and there is more variability due to the disease prevalence estimate
(since ρ is closer to 0.5). PMSE for the default estimator exceeds that of the weighted estimator
by around 20% for PPV(60) and 78% for NPV(20).
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Fig. 2. Ratio of PMSE for the default estimator versus the weighted estimator of (a) PPV(60) ( , ̂PPVw;
, ̂PPV:Aw) and (b) NPV(20) ( , ̂NPVw; , ̂NPV:Aw) as functions of weight
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Table 6. Comparison of the two strategies for estimating PPV and NPV†

Parameter ˜PPV (60) ̂PPV:Aw(60) ˜NPV (20) ̂NPV:Aw(20)

Weight 1 0.87 1 0.52
Estimate (95% 0.77 (0.62, 0.88) 0.76 (0.63, 0.85) 0.86 (0.69, 0.94) 0.85 (0.74, 0.92)

confidence interval)
Bias* 0.0012 −0.020 0.004 −0.008
Variance 0.0044 0.0032 0.0037 0.0019
PMSE 0.0044 0.0036 0.0038 0.0020
Efficiencya 1.00 1.38 1.00 1.93
Efficiencyb 1.00 1.22 1.00 1.87

†Here Bias* is the difference between the weighted estimate and the default estimate; Efficiencya is the ratio of
the variance of the default estimator ( ˜PPV or ˜NPV) versus the variance of the weighted estimator; Efficiencyb is
the ratio of PMSE of the default estimator ( ˜PPV or ˜NPV) to PMSE of the weighted estimator.

Next we study robustness of ̂PPV:Aw.60/ and ̂NPV:Aw.20/ at their optimal weights to vio-
lation from the equal classification accuracy assumption. Fig. 3 shows how large the difference
in 1 − specificity corresponding to sensitivity=SD.60/ needs to be between the two populations
to cause 5% (relative bias) overestimation or underestimation in PPV(60). Also displayed is the
required difference in sensitivity corresponding to 1 − specificity=SD̄.20/, to cause 5% overes-
timation or underestimation in NPV(20). For PPV(60) to be overestimated or underestimated
by 5% by using the optimally weighted estimator, 1 − specificity corresponding to sensitivity
=SD.60/ needs to be smaller by 0.13 or larger by 0.14 in the repeat biopsy population compared
with the initial biopsy population. These correspond to 0 and 91.6 percentiles in the distribu-
tion of the 1− specificity differences constructed by bootstrap resampling. Consequently, it
is unlikely that the optimally weighted estimator can lead to 5% overestimation in PPV(60),
although there is some chance that PPV(60) might be underestimated. In contrast, for NPV(20)
to be overestimated or underestimated by 5% by the optimally weighted estimator, a sensitiv-
ity corresponding to 1 − specificity = SD̄.20/ needs to be larger by 0.16 or smaller by 0.18 in
the initial biopsy population than in the repeat biopsy population. These correspond to 99.0
and 1.7 percentiles in the bootstrap distribution of the sensitivity difference. Therefore, it is
highly unlikely that the optimally weighted NPV(20) estimator can lead to 5% overestimation
or underestimation. The weighted estimators seem to be fairly robust in this example.

To obtain a more conservative view of the bias–variance trade-off in our example, we enter-
tained the worst case bias defined as the boundary of the 95% confidence interval for the differ-
ence in classification accuracy between the two populations. We look at upward or downward
bias in the weighted PPV and NPV estimators separately. Suppose that the true predictive values
are overestimated by weighting. Weighting leads to 25.7% and 15.5% decreases in PMSE for
estimating PPV(60) and NPV(20) respectively. If the true predictive values are underestimated,
weighting leads to a 4.0% drop in PMSE for estimating NPV(20), and a 21.3% increase in
PMSE for estimating PPV(60). These results further press our point that the weighted estima-
tor is desirable in the PCA3 example especially for estimating NPV(20) in terms of reducing the
mean-squared error.

We also try the model-based procedure for weight selection assuming normality of log(PCA3)
conditional on disease status. Smaller optimal weights are selected compared with bias-penal-
ized bootstrap weight selection (w =0:60 for ̂PPVw and w =0:49 for ̂NPV:Aw). Corresponding
PPV(60) and NPV(20) estimates are 0.73 (95% confidence interval 0.62–0.82) and 0.85 (95%
confidence interval 0.74–0.91) respectively, with 70% and 93% gain in efficiency compared with
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Fig. 3. Empirical ROC curves for PCA3 within the initial ( ) and the repeat ( ) biopsy populations
based on the pilot cohort study, and difference in accuracy of classification between the two populations to
achieve 5% overestimation or underestimation (relative bias) in PPV(60) and NPV(20): ", #, sensitivities in the
initial population corresponding to 1�specificityDS ND.20/, to cause 5% overestimation or underestimation in
NPV(20) of the repeat biopsy population , , 1�specificity in the repeat biopsy population correspond-
ing to sensitivityD SD.60/, to cause 5% overestimation or underestimation in PPV(60) of the initial biopsy
population

the default estimator based on the bootstrap variance. Although the model-based procedure
appears to be more efficient compared with the bias-penalized procedure for estimating PPV(60),
the corresponding estimators are further away from the default estimators as expected.

Finally, to illustrate an application of our methodology to a case–control design, we gener-
ated a case–control sample from the PCA3 data. Results are shown in the on-line supplementary
material. Again, a substantial gain in efficiency could potentially be achieved through weighting.

6. Concluding remarks

In this paper we proposed more efficient estimators for population-specific PPV and NPV, when
samples are available from both the target population and an auxiliary population which share
similar classification accuracy as measured by particular points on the ROC curve. Even if the
accuracy of the marker might depend on other variables, which are distributed differently across
populations, our method will still work as long as the marginal classification accuracy is similar
between the two populations. Our proposed estimators assign weights to samples from each
population. We propose two methods for weight selection to maximize estimation efficiency.
The method based on the asymptotic variance formula and normality assumption is easy to
implement and more efficient when the assumptions hold exactly. The bias-penalized bootstrap
method for weight selection provides a more robust alternative against possible violation of the
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common classification accuracy assumption, although it loses some efficiency relative to the
correctly specified model-based procedure.

In theory, the common classification accuracy assumption holds in the following scenario.
Suppose that cases and controls in the auxiliary population, after some monotone transfor-
mation g, follow the same distributions as cases and controls in the target population; then
SÅ

D̄
.YÅ

D/ = P.YÅ
D̄

� YÅ
D/ = P{g.YÅ

D̄
/ � g.YÅ

D/}= P.YD̄ � YD/ = SD̄.YD/, which implies the equiva-
lence between the ROC curves. This holds because P{SD̄.YD/� t}=P{YD �S−1

D̄
.t/}=ROC.t/,

i.e. ROC is the cumulative density function of SD̄.YD/, the ‘placement’ of YD among the control
distribution (Pepe and Cai, 2004). Here the population indicator is a confounder in evaluating
the accuracy of classification of the marker; the threshold of marker value to achieve a given
specificity is different across populations but the sensitivity corresponding to a given specificity
remains the same (Janes and Pepe, 2010a,b). Our methods provide a way to adjust for the con-
founding effect of population with a goal of estimating population-specific predictive values. In
practice, whether the accuracy of classification of a biomarker is similar across populations can
be explored by using the data. And we can further conduct tests for equal classification accuracy
as we did in the PCA3 example. This is analogous to a test of the interaction between a marker
and covariate in a standard regression setting to rule out the possibility that the covariate (in
our setting the population indicator) would affect the marker’s discriminatory performance. We
should also work closely with scientists to decide whether a reasonable true difference in ROC
curves would lead to intolerable bias in PPV- and NPV-estimation.
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Appendix A

Proofs of all results that are not given explicitly in the text are available in the on-line supplementary
material.

A.1. Asymptotic variance of the weighted PPV-estimators
Here we present asymptotic theory for the proposed estimator defined in Sections 2.1 and 2.2. We assume
that the following conditions hold:

(a) the distribution functions of YD, YD̄, YÅ
D and YÅ

D̄
are differentiable with density functions fD, fD̄,

fÅ
D and fÅ

D̄
respectively;

(b) as nD̄ →∞, nD=nD̄ →λ, nÅ
D̄

=nD̄ →λ1 and nÅ
D=nD →λ2. This implies that .nÅ

D + nÅ
D̄

/=.nD + nD̄/ →
.λ1 +λλ2/=.1+λ/, nD=.nD +nD̄/→λ=.1+λ/ and nÅ

D=.nÅ
D +nÅ

D̄
/→λλ2=.λλ2 +λ1/, i.e. the ratio of

the sample sizes from the two populations converges to a constant, and the proportion of diseased
in each population converges to a population-specific constant.

Consistency of ̂PPVw.y/ and ̂PPV:Aw.y/ follows from the continuous mapping theorem.

Theorem 1.{ ̂PPVw.y/−PPV.y/}√
nD̄ is asymptotically normally distributed with mean 0 and variance

Σw =A11VD̄.y/+A12
fD.y/

fD̄.y/
.1−w/VD̄.y/

+A22

[
.1−w/2

(
1+ 1

λ1

){
fD.y/

fD̄.y/

}2

VD̄.y/+ 1
λ

{
w2 + .1−w/2 1

λ2

}
VD.y/

]
, .4/

where VD̄.y/=SD̄.y/{1−SD̄.y/}, VD.y/=SD.y/{1−SD.y/},
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A11 =
[

ρ.1−ρ/

{ρSD.y/+ .1−ρ/SD̄.y/}2

]2

SD.y/2,

A12 =−2
[

ρ.1−ρ/

{ρSD.y/+ .1−ρ/SD̄.y/}2

]2

SD.y/SD̄.y/,

A22 =
[

ρ.1−ρ/

{ρSD.y/+ .1−ρ/SD̄.y/}2

]2

SD̄.y/2:

When w = 1, Σw reduces to A11VD̄.y/ + A22VD.y/=λ, which is the asymptotic variance of the default
estimator P̃PV.y/.

Observe that Σw is a quadratic function of w, which is convex since A22 > 0. In addition, Σw can be
written as the product of [ρ.1−ρ/={ρSD.y/+ .1−ρ/SD̄.y/}2]2 and another term that is free of ρ.

Theorem 2. Asymptotic variance of ̂PPVw.y/ is minimized when

w =
A12

fD.y/

fD̄.y/
VD̄.y/+2A22

(
1+ 1

λ1

){
fD.y/

fD̄.y/

}2

VD̄.y/+2A22
1
λ2

1
λ

VD.y/

2A22

(
1+ 1

λ1

){
fD.y/

fD̄.y/

}2

VD̄.y/+2A22
1
λ2

1
λ

VD.y/+2A22
1
λ

VD.y/

: .5/

Since A12 < 0, the optimal w is always less than 1.

Theorem 3.{ ̂PPV:Aw.y/−PPV.y/}√
nD̄ is asymptotically normally distributed with mean 0 and variance

Σ:Aw =A11

[
.1−w/2

(
1+ 1

λ2

){
fD̄.y/

fD.y/

}2 1
λ

VD.y/+
{

w2 + .1−w/2 1
λ1

}
VD̄.y/

]
,

+A12
fD̄.y/

fD.y/
.1−w/

1
λ

VD.y/+A22
1
λ

VD.y/: .6/

Theorem 4. Asymptotic variance of ̂PPV:Aw.y/ is minimized when

w =
A12

fD̄.y/

fD.y/

1
λ

VD.y/+2A11

(
1+ 1

λ2

){
fD̄.y/

fD.y/

}2 1
λ

VD.y/+2A11
1
λ1

VD̄.y/

2A11

(
1+ 1

λ2

){
fD̄.y/

fD.y/

}2 1
λ

VD.y/+2A11
1
λ1

VD̄.y/+2A11VD̄.y/

: .7/

The optimal w is always less than 1.

Theorem 5. Suppose that we use sample prevalence ρ̂ derived from a pilot cohort study with sample size
nc, such that var.ρ̂/=σ2=nc, and suppose that nc=nD̄ → ξ as nD̄ →∞. Then, compared with known ρ,
the asymptotic variance of { ̂PPVw.y/−PPV.y/}√

nD̄ as nD̄ →∞ increases by a term

σ2

ξ

SD.y/2 SD̄.y/2

{ρSD.y/+ .1−ρ/SD̄.y/}4
:

The same applies to the asymptotic variance of ̂PPV:Aw.y/.

A.2. Asymptotic bias of the weighted PPV-estimators
Theorems 6 and 7 present the asymptotic bias of ̂PPVw and ̂PPV:Aw as a function of the difference in
sensitivity between the two populations with specificity fixed at 1−SD̄.y/ and the difference in specificity
between the two populations with sensitivity fixed at SD.y/. The derivation is presented in the supplemen-
tary material.
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Theorem 6. Let δ =ROCÅ.t/−ROC.t/ for t =SD̄.y/. The asymptotic bias of ̂PPVw.y/ is monotonically
increasing in .1−w/δ, and equals

ρ.1−ρ/SD̄.y/

ROC{SD̄.y/}ρ+SD̄.y/.1−ρ/

.1−w/δ

ρ.1−w/δ +ρROC{SD̄.y/}+SD̄.y/.1−ρ/
: .8/

However, to cause an asymptotic bias r (such that |r| is smaller than or equal to the maximum
possible asymptotic bias that can be achieved) in terms of PPV, according to expression (8), we
have

δ = r

1−w
ρROC{SD̄.y/}+ .1−ρ/SD̄.y/

C+ −ρr
, .9/

where

C+ = ρ.1−ρ/SD̄.y/

ROC{SD̄.y/}ρ+SD̄.y/.1−ρ/
:

Theorem 7. Let η =−[SÅ
D̄

SÅ−1
D {SD.y/}−SD̄ S−1

D {SD.y/}]; the asymptotic bias of ̂PPV:Aw.y/ equals

ρ.1−ρ/SD.y/

ρSD.y/+ .1−ρ/SD̄.y/

.1−w/η

−.1−ρ/.1−w/η +ρSD.y/+SD̄.y/.1−ρ/
: .10/

However, to cause an asymptotic bias r (such that |r| is smaller than or equal to the maximum
possible asymptotic bias that can be achieved) in terms of PPV, according to expression (10), we
have

sη = r

1−w
ρ SD.y/+ .1−ρ/SD̄.y/

C− + .1−ρ/r
, .11/

where

C− = ρ.1−ρ/SD.y/

ρ SD.y/+ .1−ρ/SD̄.y/
:

A.3. Proof for cross-sectional or cohort study
Suppose that we randomly sample n observations Y , D, from the target population. Calculating ρ̂ =
Σn

i=1Di=n, and

ŜD.y/=
n∑

i=1
I.Yi >y/Di

/ n∑
i=1

Di,

ŜD̄.y/=
n∑

i=1
I.Yi >y/.1−Di/

/ n∑
i=1

.1−Di/:

Let D= .D1, D2, . . . , Dn/; then

cov{ŜD.y/, ρ̂}= cov

⎡
⎢⎢⎣E

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

I.Yi >y/Di

n∑
i=1

Di

∣∣∣∣∣∣D
⎫⎪⎪⎬
⎪⎪⎭, E

(
1
n

n∑
i=1

Di|D
)⎤

⎥⎥⎦+E

⎡
⎢⎢⎣cov

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

I.Yi >y/Di

n∑
i=1

Di

,
1
n

n∑
i=1

Di|D

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦

= cov
{

SD.y/,
n∑

i=1
Di

}
+E.0/

=0+0=0,
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where the second equality holds since

E

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

I.Yi >y/Di

n∑
i=1

Di

∣∣∣∣∣∣D
⎫⎪⎪⎬
⎪⎪⎭= 1

n∑
i=1

Di

E{I.Yi >y/|Di}

=

n∑
i=1

Di

n∑
i=1

[Di{SD.y/Di +SD̄.y/.1−Di/}]

=

n∑
i=1

Di

n∑
i

SD.y/Di

=SD.y/:
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