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Abstract: We consider a class of facility location problems with a time dimension, which requires assigning every customer to
a supply facility in each of a finite number of periods. Each facility must meet all assigned customer demand in every period at a
minimum cost via its production and inventory decisions. We provide exact branch-and-price algorithms for this class of problems
and several important variants. The corresponding pricing problem takes the form of an interesting class of production planning
and order selection problems. This problem class requires selecting a set of orders that maximizes profit, defined as the revenue
from selected orders minus production-planning-related costs incurred in fulfilling the selected orders. We provide polynomial-time
dynamic programming algorithms for this class of pricing problems, as well as for generalizations thereof. Computational testing
indicates the advantage of our branch-and-price algorithm over various approaches that use commercial software packages. These
tests also highlight the significant cost savings possible from integrating location with production and inventory decisions and
demonstrate that the problem is rather insensitive to forecast errors associated with the demand streams. © 2011 Wiley Periodicals,

Inc. Naval Research Logistics 58: 419-436, 2011
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1. INTRODUCTION

The design of a supply chain network structure has sig-
nificant impacts on operating costs. The locations of supply
facilities, the assignment of customer demands to these facil-
ities, and the management of production and inventory at the
facilities are all important contributors to overall supply chain
performance. When these location, assignment, and produc-
tion planning decisions are undertaken separately, the supply
chain may end up incurring significantly (and unnecessarily)
high operating costs. A potential for significant cost sav-
ings can often arise as a result of considering these decisions
simultaneously in the planning phase. This article considers
such an integrated location and production planning problem,
where individual customers have dynamic demand streams
over a finite horizon. We must determine a set of operational
facilities and assign the demand of each customer in every
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time period to an open facility. We must then manage the
production and inventory levels within each open facility in
order to meet assigned demands in every time period. The
goal is to minimize total facility opening costs, assignment
costs, and production planning costs incurred while meeting
all customer demands.

Typical facility location problems (see, for example,
Daskin [7]) seek an assignment of customers to open facilities
that minimizes the sum of the assignment costs (of customers
to open facilities) and the facility opening costs. These facil-
ity location problems are often static in nature, meaning that
they cannot, except at a very coarse level, model problems
where customer demands vary over time. Dynamic facil-
ity location problems (see Wesolowsky [28], Van Roy and
Erlenkotter [20], and Chardaire et al. [4]) are discrete mod-
els in which customer demands vary over time where we
wish to assign the demand of each customer in each time
period to an open facility. These dynamic models are not only
interested in determining where to locate facilities but also
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when to open the facilities. In these dynamic models, each
customer must be assigned to an open facility in every time
period and the facility must meet the demand of its assigned
customers. However, these dynamic location models do not
capture the typical economies of scale observed in produc-
tion at the facilities. Further, and more importantly, these
dynamic models assume that all demand assigned to a facil-
ity in a time period is produced during that time period, i.e.,
they do not permit facilities to carry inventory between time
periods.

Typical modeling approaches attempt to capture the pro-
duction and inventory costs at a facility as a component of
the linear assignment or connection cost incurred when serv-
ing a customer from the facility. However, this can typically
only serve as an approximation because of the economies
of scale often seen in production (for example, fixed-charge
production set up costs), which require knowledge of the
entire set of demands assigned to the facility before com-
puting total production cost. Effective model precision and
accuracy requires location models that explicitly account for
the production and inventory decisions at each facility. Recent
research has incorporated production and/or inventory deci-
sions and associated costs within facility location problems
to varying degrees. Daskin et al. [6], Shen et al. [23], and Shu
et al. [24] consider joint inventory-location models where
each customer has uncertain demand (although the parame-
ters of the associated probability distributions are static over
time) and each facility must determine when to produce (or
reorder) and the amount of safety stock to hold to meet a
prescribed system-wide service level. Huang et al. [12] con-
sider a continuous-time single-sourcing problem where each
customer has a constant, static demand rate and each facility
must determine its optimal order policy based on the total
demand rate assigned to it in the face of classic economic
order quantity costs. These models incorporate production
and/or inventory decisions at facilities, but customer demands
(or the distributions of these demands) are assumed to be
stationary over time.

The previous research on assigning customers to facilities
when customers have dynamic demand has focused on the
multi-period single-sourcing problem (MPSSP); however,
this problem does not account for strategic facility opening
decisions (see Romeijn and Romero Morales [16—18] and
Freling et al. [9]). Moreover, previous work on the MPSSP
has made the simplifying assumption that production and
inventory costs are linear (although production and inven-
tory quantities may be capacitated), meaning that this work
does not account for economies of scale in production. Frel-
ing et al. [9] developed an exact branch-and-price algorithm
for a special case of the MPSSP where the demand patterns
follow the same seasonal pattern and the goal is to assign a
customer to the same facility for the entire horizon. This spe-
cial case of the MPSSP can be reduced to a location problem
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with static demand, for which the branch-and-price algorithm
was developed.

The integrated facility location and production planning
models developed in this article overcome several of the
shortcomings of the aforementioned work by including facil-
ity location decisions, dynamic customer demands, and
economies of scale in production within the model. These
models will make the practical assumption, typically seen in
distribution systems, that we operate under a single-sourcing
strategy. This means that a customer’s demand in a period
is not split among multiple supply facilities. This strategy
offers several practical advantages, such as reduced coordi-
nation complexity between facilities, and has been assumed
in the joint inventory-location model, the continuous-time
single-sourcing problem, and the MPSSP. In the context
of our problem where customers have dynamic demand
streams, we will interpret the single-sourcing strategy to
mean that a customer’s demand in any given period is not split
across multiple facilities. We will, however, allow assignment
decisions in our location model to vary dynamically. The
branch-and-price approaches previously developed for the
joint inventory-location model, the continuous-time single-
sourcing problem, and the MPSSP did not permit dynamic
assignments.

As noted previously, we develop exact branch-and-price
algorithms to solve our integrated facility location and pro-
duction planning models. Romeijn et al. [19] considered a
similar class of integrated location and production planning
problems, but they were concerned with developing approx-
imation algorithms for this class of problems. In particular,
Romeijn et al. [19] require that a customer is assigned to
the same facility over the problem’s horizon and prove that
it is unlikely that there exists a constant factor approxima-
tion algorithm for this problem. For the special case where
the demand patterns of the customers follow the same sea-
sonal trend, Romeijn etal. [19] develop a 1.52-approximation
algorithm. The problems we consider in this article are strate-
gic planning problems and fast solution times are, therefore,
not of paramount importance. This means that finding a
good solution quickly may not be as important as finding
an optimal solution in a time frame that can aid in supply
chain planning activities. Further, we are able to explore cer-
tain characteristics of our problem class by determining an
optimal solution using a branch-and-price algorithm. This
permits characterizing potential cost savings by comparing
the integrated model solution to that obtained using a sequen-
tial approach that first solves the classical facility location
problem and then determines the optimal production and
inventory levels for the corresponding facility set. We also
explore the sensitivity of our problem class to forecast errors
in the customer demand streams. These comparisons would
be less meaningful if we were to base them on heuristic
solutions.
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We use a branch-and-price algorithm to solve the set-
covering formulation of the integrated facility location
and production planning problem. Savelsbergh [21] first
developed a branch-and-price algorithm for a set-partitioning
formulation of the Generalized Assignment Problem. There
has been much success (see, for example, Shen et al. [23],
Freling et al. [9], Huang et al. [12], and Shu et al. [24])
in applying branch-and-price algorithms to set-partitioning
or set-covering formulation(s) of customer assignment mod-
els. It turns out that the pricing problems that arise in these
algorithms are often interesting supply chain planning prob-
lems in their own right. In particular, the pricing problem
is typically a supply chain planning problem with customer
(or order) selection. In these problems, the supplier selects
a subset of customers that maximizes profit, i.e., revenues
from customers minus the costs necessary to serve the cus-
tomers. In the context of our integrated facility location and
production planning model, this pricing problem takes the
form of a production planning problem with order selection.
This problem is a generalization of the problem studied by
Geunes etal. [10] and can also be interpreted as a joint pricing
and production planning problem. The pricing problem in this
article considers general concave production cost functions,
as opposed to the fixed-charge plus linear production cost
functions in Geunes et al. [10]. Therefore, the contribution of
this article lies not only in the integrated location and produc-
tion planning problem but also in developing algorithms to
solve this production planning problem with order selection
and various extensions thereof.

The remainder of this article is organized as follows.
We formally describe and formulate the integrated facility
location and production planning problem and discuss its
applications in Section 2. The set-covering formulation and
the branch-and-price algorithm for this problem are then
discussed in Section 3. We discuss the pricing problem,
i.e., the production planning and order selection problem,
in Section 4. We provide the results of our computational
testing in Section 5. These computational tests include com-
paring our algorithm to various approaches using commercial
solvers. They also analytically characterize the value of inte-
grating location with production and inventory decisions and
examine the sensitivity of our model to forecast errors in
customer demand streams. We discuss how to modify the
branch-and-price algorithm to account for several important
variants of our integrated location and production planning
problem in Section 6. These extensions lead to several vari-
ants of the production planning and order selection problem.
We conclude the article in Section 7.

2. PROBLEM STATEMENT

The integrated location and production planning prob-
lem can be mathematically formulated as follows. We are

given a set of m facilities, n customers, and 7 time peri-
ods. The demand of customer j in period ¢ is given by d,
(j=1,...,n,t =1,...,T). Aconnection cost, ¢;j;, i asso-
ciated with facility i and customer j in time period #, which
is expressed as a cost per unit of demand. Each facility has
an associated opening cost of f;, which is incurred if we
assign any customers to the facility. Each facility i has an
associated concave cost function that corresponds to the cost
of producing p units in time period ¢, P;;(p), and a per-unit
inventory cost, h;;, for holding a unit of inventory in time
period . We allow customer assignments to vary dynami-
cally over the horizon, i.e., in each time period # we must
determine which facility will supply the demand of customer
J. We thus define a binary variable x;;, fori = 1,...,m,
j=1,...,n,and ¢t = 1,...,T, which equals 1 if we assign
customer j to facility 7 in time period ¢, and equals O other-
wise. The binary variable y; fori = 1,...,m is equal to 1
if facility i is open. We further define the variables p;; and
Iiyfori =1,...,mandt = 1,...,T as the production and
inventory levels, respectively, at facility i in time period . Our
integrated facility location and production planning problem
can be formulated as follows:

m T
minimize Z (fi)’i + Z(Pit(pit) + hitliz)>
i=1 t=1
m n T
+ Z Z Z djiCijiXiji

i=1 j=I t=I

subject to (1)

forj=1,...,n,t=1,...,T

(D

Xijr < Vi fori=1,...,m, j=1,...,n,
t=1,...,T (2

xijr € {0,1} fori=1,...,m, j=1,...,n,
t=1,...,T 3)

yi € {0, 1} fori=1,....,m ()

Iiy—1 + pis :Zdjtxijt""lit
Jj=1

fori=1,....m,t=1,...,T

Q)

Iio=0 fori=1,...,m (6)
pit> Iiy > 0 fori=1,....m,t=1,...,T.
@)

Constraints (1)—(4) are traditional (dynamic) facility loca-
tion constraints and constraints (5)—(7) are production plan-
ning constraints at each facility to ensure that, in each time
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period, we meet the demand of all customers assigned to
the facility. If we know the set of customers assigned to a
given facility in all time periods, then we simply need to
solve an uncapacitated production planning problem at the
facility. This production planning problem is a generaliza-
tion of the classic economic lot-sizing problem (see Wagner
and Whitin [27]), where concave production cost functions
replace fixed-charge plus linear production costs. This sub-
problem can be solved via a dynamic programming algorithm
in O(T?) time (see Veinott [25] or Denardo [8]). In terms of
the facility location model, we can essentially view each cus-
tomer j as T separate customers, one for each time period,
since we can assign the demand of customer j to different
facilities in different time periods.

The application of problem (P) is appropriate in the strate-
gic planning phase when evaluating supply chain design
options. The purpose of such models is typically to evalu-
ate supply chain design alternatives and to aid in long-range
budget planning. As noted by Shapiro [22], accounting for
inventory costs in such models serves to approximate the way
in which inventory plans influence supply chain costs. Thus,
our model provides a mechanism to more closely approx-
imate these production- and inventory-related costs when
economies of scale in production strongly influence total
costs. Application of the model therefore requires judicious
balancing between long-term (location) costs and shorter-
range (production- and inventory-related) costs. While a
deterministic demand assumption is often employed in strate-
gic planning models in the literature (and in location models
in particular), the deterministic demands used in our model
are clearly used to represent projected customer demands
over a long-range (or strategic) planning horizon, and how
these contribute to operational costs. Although a determinis-
tic demand assumption is often an abstraction from reality, as
we later show in Section 5.3, the longer-term strategic loca-
tion decisions our model provides are reasonably insensitive
to errors in forecasted demand, while the resulting model
costs provide good estimates of overall costs for use in bud-
get planning. We also recognize the limitations introduced by
ignoring facility capacity limits. This limitation may necessi-
tate use of a capacity requirements planning or finite-capacity
scheduling function for application to existing facilities with
hard capacity limits (see Zipkin [30] for a discussion on
how similar limitations are addressed in existing material
requirements planning systems). Alternatively, for new facil-
ity locations, we might account for a linear approximation
of the cost of capacity as part of the facility connection cost
parameters, and plan facility capacity levels based on the
demands assigned to a facility in the optimal solution.

Problem (P) can be used to solve problems where the costs
and customer demand patterns repeat over time. In such situa-
tions, the problem horizon is then interpreted as the duration
of the pattern before it repeats. We note that if the cost or
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demand patterns at different customers have different cycle
lengths, then the overall cycle length (or horizon of (P)) will
be the least common multiple of the different cycle lengths
of the cost and demand patterns. In these settings, the facility
opening costs, f;, might contain (i) an annualized opening
cost and (ii) the operating cost of the facility over the hori-
zon. It may also be appropriate to model the problem so that
the inventory entering the first period equals the inventory
leaving the last period (i.e., [;o = I;7 foralli = 1,...,m). It
is not difficult to show that in an optimal solution to (P), we
have I;o = I;7 = 0 foralli = 1,...,m, but we may want
to allow these inventory levels to take non-negative values in
practice. We show that our branch-and-price algorithm can
solve this extension of (P), which we refer to as cyclic, in
Section 6.2.

Problem (P) can also be applied to multi-item production
planning problems with component substitutions (see, for
example, Balakrishnan and Geunes [1] and Wu and Golbasi
[29]). In this setting, each facility corresponds to a particu-
lar “component” that may be used in producing different end
products (the customers). Each end product has an associated
demand stream over the finite horizon. The connection cost
of end product j to component i is then interpreted as the
“substitution” or “conversion” cost for using component i in
end product j. The facility opening cost for component i can
then be interpreted as the cost of acquiring the capabilities
of producing the component (e.g., a design cost). We then
account for economies of scale in producing component i
in each of the time periods over the horizon of our produc-
tion planning problem, and the ability to hold components
in inventory. Balakrishnan and Geunes [1] considered this
multi-item production planning problem with substitutions
in the absence of component acquisition costs and when the
production cost of a component consists of a fixed charge
setup cost plus a per unit variable production cost. Our prob-
lem (P) can thus be used to model more general situations
than considered by Balakrishan and Geunes [1], where we
have component acquisition costs and a more general form
of economies of scale in component production.

3. A BRANCH-AND-PRICE ALGORITHM

In this section, we develop a branch-and-price algorithm
for (P) that will solve the problem to optimality. The current
formulation of (P) is a large-scale mixed integer nonlinear
programming problem. We develop an equivalent formula-
tion of (P) that removes the nonlinearity of the objective func-
tion of (P) by posing the problem as a set-covering problem.
However, this set-covering formulation contains an exponen-
tial number of variables. To address this problem, we use the
column generation approach of Gilmore and Gomory [11]
to solve the relaxation of the set-covering formulation. This
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procedure will be used to calculate the linear programming
(LP) bounds at each node of a branch-and-bound tree, leading
to a branch-and-price algorithm to solve (P).

It is easy to see that any feasible solution to (P) can be
viewed as a partition of the customer/time period pairs into
m subsets, each of which is assigned to a facility. Denote the
number of distinct subsets that can be feasibly assigned to a
facility by L. Inparticular, L = 2"T since each customer/time
period pair can be included or not included in the subset. Fur-
thermore, we let the binary matrix . represent the £th subset
associated with facility i, where ozfjl = 1 if customer/time
period pair (j,¢) belongs to the subset, and 0 otherwise. For
consistency with past approaches (for example, Savelsbergh
[21]), we will also refer to ozf__ as the £th column associated
with facility i. Furthermore, let ¢; (afﬂ) denote the cost associ-
ated with serving the set of customers/time periods given by
o at facility i. If we then define the decision variable y! to
be equal to 1 if facility i serves the £th associated subset and
0 otherwise, the set-covering formulation (SC) of (P) reads:

m L
minimize Z Z i (Olf )Y,

i=1 {=1

subject to (SC)

m L
ZZO‘:Z/ le forj=1,...,n,t=1,...,T

i=1 t=1
yl- €{0,1} fori=1,...,m

Without loss of generality, we assume that ! represents the

empty set, so clearly ¢; (oel.l__) = 0. Otherwise, we have

n T
= fi + Z Zdjzcijtafjt

j=1 =1

n n
§ : € § : 4

djlaijl""’ djTaijT 5 (9)
j=I1 j=1

where g; (D1, ..., Dr) is equal to the optimal solution value
of an associated production planning problem:

T
minimize Z(Pi,(p,-,) + hi 1)

t=1
subject to
iy 1+ pi=D+1;; fort=1,...,T

lip =0
Pit» Liy >0 fort=1,...,T.

For convenience, throughout the remainder of this paper, we
will refer to v(Problem) as the value of the optimal solution
to Problem. We will also refer to ProblemR as the problem
that is obtained if the integrality constraints in Problem are
relaxed. Itis easy to see that v(SC) is equal to v(P). Therefore,
v(SCR) is a lower bound on v(P). We will prove that v(PR)
provides a tighter bound on v(P) than v(SCR) in Section 3.2.
However, we first describe the branch-and-price algorithm
that we will use to solve (SC).

3.1. Components of the Algorithm

We next discuss a branch-and-price algorithm for solving
(SC). We solve the relaxation of (SC) through column gen-
eration (see, for example, Gilmore and Gomory [11]) at each
node of a branch and bound tree. There are many impor-
tant factors involved in designing an efficient and effective
branch-and-price algorithm (e.g., Barnhart et al. [3]). In this
section, we focus on two of the main theoretical factors that
arise in the design of a branch-and-price algorithm for our
problem: (i) the pricing problem in the algorithm and (ii) the
branching rules in the algorithm.

3.1.1.  The Pricing Problem

The most vital factor in the success of a branch-and-price
algorithm is the ability to solve (either exactly or heuristi-
cally) the pricing problem that arises as a result of the column
generation approach. In this section, we derive the optimiza-
tion problem that arises as the pricing problem for solving
problem (P). Suppose that N is the current set of columns in
the reduced LP relaxation of (SC). We let (SCR(V)) denote
the corresponding relaxation and let u*(N) be the optimal
dual multipliers associated with constraints (8). The columns
will be evaluated for each facility i = 1,...,m in order to
determine if there is an eligible nonbasic variable (or col-
umn) to enter the basis. In particular, we must determine if
a column exists such that the optimal solution value to the
problem

n T

min E
€{0,1)7xT

j:1 =

n
E djixij1,- .., E dirxijr
-1 =1

jothszt

—_

n T
=YY W (N)xip + fi - (10)

j=1 =1

is negative. We may disregard the constant f; in solving this
problem and define r;;;, = ,uj,(N) — djcij;, which can be
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interpreted as the revenue associated with selecting customer
Jj- This means that the pricing problem can be formulated as

n T
max E E TijtXijt
x;..€{0,1}<T

-
n n

—8&i E djlxijlau-,z dirxijt | ¢ >
Jj=1 j=1

where 81'(2?:1 djixij1s .. ., Z';.:l djrx;jT) represents the
optimal cost of serving the demands of the selected cus-
tomers through production and inventory decisions at facility
i. This formulation of the pricing problem can be interpreted
as selecting the set of customers that maximize our prof-
its, i.e., the revenues received from them minus the costs
associated with serving the customers. We refer to this prob-
lem as the production planning and order selection problem
(PPOSP), which we will study in Section 4.

3.1.2. The Branching Rule

If the optimal solution to (SCR) is not integral, one can
add cutting planes to (SCR) or apply branch-and-bound in
order to obtain an integral optimal solution to solve (SC). A
natural choice for a branching rule would be to branch on
the variables yf, but as mentioned in Savelsbergh [21], this
branching rule destroys the structure of the pricing problem to
be solved at successive nodes of the branch-and-bound tree.
In particular, this branching rule may require us to determine
a kth best solution to the pricing problem, where k is equal to
the depth of the current node in the branch and bound tree. If
the solution to (SCR) is fractional, there exists at least some
y! with £ > 2 that is fractional. This implies that at least one
underlying location variable, y;, and one underlying customer
assignment variable, x; ;;, in (P) are also fractional. This leads
to two potential branching rules: (i) branch on the underlying
location variable or (ii) branch on the underlying customer
assignment variable. The fact that we branch on these under-
lying variables preserves the structure of our pricing problems
at the nodes of the branch and bound tree (see, for example,
Savelsbergh [21]). In most situations, it will be advantageous
to branch on the underlying location variable first, since we
can often expect that a set of customer assignment variables
will be fractional in the solution to (SCR).

3.2. Tightness of the Set Covering Formulation

In this section, we will focus on comparing the tightness of
(SC), i.e., the value v(SCR), and the tightness of (P), i.e., the
value v(PR). We will prove that v(PR) provides a better lower
bound on v(P) than v(SCR). The main idea behind our proof
is to show that: (i) the problem (PR) is equivalent to another
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problem, which we denote by (P'R), and (ii) any solution to
(P'R) (and hence (PR)) can be converted to a feasible solu-
tion to (SCR) with an objective function that is less than or
equal to the objective function in (P'R). We summarize this
result in the following theorem.

THEOREM 3.1: v(PR) > v(SCR).
PROOF: The full proof appears in the appendix. U

Despite this negative result about the tightness of (SCR)
compared with the tightness of (PR), there is still an inherent
advantage to solving (SCR) rather than (PR). This is because
(SCR) is linear (although the pricing problems are nonlinear)
and (PR) is nonlinear. Therefore, if we can solve the pricing
problem for (SCR) effectively, we generally expect that the
branch-and-price algorithm will perform well. Further, our
computational results indicate that (SCR) (and, therefore,
(PR)) often provides the optimal objective function value
to (P).

4. THE PRODUCTION PLANNING AND ORDER
SELECTION PROBLEM

In this section, we consider the pricing problem associated
with (SCR). Recall that we determined previously that the
pricing problem associated with (SCR) can be formulated as

n T
max E E TijtXijt
x;..€{0,1}<T

j=1 =1

n n
—&i E djlxijl,--wg dirxijt | ¢ >
Jj=1 Jj=1

where g; represents the optimal cost of serving the demands
of the selected customers through production and inventory
decisions at facility i. We can suppress the index i in the
decision variables and include the production and inventory
decisions explicitly in our formulation of the pricing problem,
i.e., we can formulate it as

n T T
maximize Z er,xj, - (Z(P,(p,) + htlt)>
j=11=1 =1

subject to (PPOSP)

n
Lyv+po=)Y dixj;+1, fort=1,....T
j=1

Iy =0
pi, I, >0 fort=1,...,T
x € {0,1}yT.
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The (PPOSP) can be intuitively described as follows: a sup-
plier is given a set of orders, each with an associated demand
level, revenue, and time period. The supplier wishes to deter-
mine a selection of orders that maximizes profit, i.e., the
revenues received from selected orders minus the production
and inventory costs associated with meeting those orders.
The (PPOSP) is closely related to the problem considered by
Geunes et al. [10]. In their problem, they consider an inte-
grated pricing and lot-sizing model where the demand to be
satisfied in each time period is determined by the price level.
They assume that the revenue function in each time period
is piecewise linear and concave and show that the problem
can be interpreted as an order selection problem. This means
that the problem of Geunes et al. [10] is a special case of the
(PPOSP) where the production cost functions are those of the
traditional economic lot-sizing problem, i.e., a fixed-charge
setup cost plus a per-unit production cost. They propose a
dynamic programming algorithm for this special class of the
(PPOSP) that runs in O(nT?) time where 7 is the largest
number of orders in a single time period (i.e., the number of
customers in the problem).

The dynamic programming (DP) algorithm we use to solve
(PPOSP) is quite similar to the DP algorithm for the classic
production planning problem (see Denardo [8]). It relies on
the fact that we can decompose the optimal solution to the
(PPOSP) into a sequence of subplans defined by the periods
in which we hold zero inventory. A subplan is defined by two
time periods # and ¢’ such that < ¢’ with the property that
we have no inventory entering and leaving the subplan (i.e.,
I,y = Iy_; = 0), and we produce all the selected demand
between periods 7 and ¢ — 1 using production in time period
t. It is well known that if production and inventory costs are
concave in the production planning problem, then an opti-
mal solution exists that is composed of a series of subplans
(see, for example, Wagner [26], Veinott [25], and Love [14]).
This holds true for the (PPOSP) as well because if we know
the optimal selection of customers, the problem reduces to a
production planning problem with concave cost functions.

For our problem, we define the function p(¢,t’) (with
t < t') to be equal to the maximum profit obtained in the
subplan (¢,1"). The value of p(z,t’) is equal to the optimal
solution value of the problem

t'—1 n

Pt szjsxjs

s=t j=1

=1 n

maximize E E TjsXjs —

s=t j=1

t'—1 s—1 n

=22 he D djsxis
s=t §'=t j=1
subject to (SP-P)

xjs €{0,1}for j=1,...,n, fors =1,...,¢t' — 1.

We can simplify the objective function of this problem by
grouping together the revenues and inventory holding costs
of each customer in the problem. In other words, we define
Rjs =rjs — Zi;lt hgdjs and we can formulate (SP-P) as

t'—1 n t'—1 n

maximize Z Z Rjxjs — P Z Zdjsxjs

s=t j=1 s=t j=1

subject to (SP-P")

xjs €{0,1}for j=1,...,n, fors =1,...,1' — L.

It has been shown (see Shen et al. [23] and Huang et al. [12])
that a problem of the form (SP-P’) with a concave function
P, can be solved by (i) sorting the variables in nonincreasing
order of the ratio Rj,/d;s and (ii) evaluating each solution
that selects the first £ customers in this ordering. In the
worst case, step (i) requires O(n(t’ — t)logn(®’ — t)) =
O((nT lognT) to sort the variables/customers and step (ii)
requires O (n(t' —t)) = O(nT) time. This means that to cal-
culate p(¢,t') forallt =1,...,Tandt' =¢+1,...,T +1
requires O (nT3lognT) time.

By using the value of a subplan, p(¢,¢') fort = 1,...,T
and ¥’ = ¢,...,T + 1, we can provide both a forward and
a backward dynamic programming algorithm. We define the
function C(¢) to be the maximum profit obtained in the prob-
lem (PPOSP) by only considering time periods 1,...,7. We
can set C(0) = 0 and define our recurrence relationship as

Coy= max {Ce)+ps+Le+D}  AD

s=0,..., t—1
fort =1,...,T. We can also define the function C’(¢) to be
the maximum profit obtained in the problem (PPOSP) by only

considering time periods ¢, +1,...,T.WesetC(T+1) =0
and define the recurrence relationship as

.....

for t = 1,...,T. In both these cases, the total time
required to solve the (PPOSP) by dynamic programming is
onT? lognT).

5. COMPUTATIONAL TESTING

In this section, we discuss our computational testing on
several issues surrounding the integrated location and produc-
tion planning problem. We note that all tests were performed
on a Dell Optiplex 755 with an Intel Core 2 Duo CPU
E8400 3.0 GHz processor and 4 gigabytes of memory. All
linear programs and integer programs that arise in the test-
ing were solved using the default options of CPLEX 11.0.
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Section 5.1 focuses on the performance of our branch-and-
price algorithm for the general problem (P) with concave
production cost functions. We compare its performance to
the global optimization software BARON and also to an
algorithm that solves successive linear approximations of (P)
using CPLEX 11.0 (see, for example, Magnanti et al. [15]).
For problems with fixed-charge plus linear production pro-
duction cost functions, preliminary testing demonstrated that
CPLEX 11.0 is extremely effective in solving a formulation
of (P) based on the plant-location formulation (see Krarup
and Bilde [13]) of the economic lot-sizing problem. We,
therefore, have focused our testing on the suitability of our
approach and the approaches using commercial software
packages for problems with general concave production cost
functions. Section 5.2 focuses on the value of integration of
the location and production planning decisions. Section 5.3
is concerned with examining the impact of errors in the fore-
casted demand vectors of the customers on the costs and the
solutions provided by our model.

There are many characteristics of the branch-and-price
algorithm that need to be set in the computational testing.
We have used the dual simplex method in CPLEX 11.0
to solve the relaxation(s) of the set-covering problem in
the branch-and-price approach. The initial pool of columns
in the reduced representation of (SCR) included, for each
facility, the column representing the assignment of all the
customers and time periods to that facility. The column gen-
eration approach used a multiple pricing scheme where we
solved the pricing problem for each facility and included any
column that had a negative reduced cost (i.e., we include
up to m columns, one for each facility, at each iteration of
the column generation approach). After the column genera-
tion approach solved (SCR), if the current optimal solution
was non-integral, we then solved an integer programming
problem over the set of columns currently in the reduced
formulation to determine if there was an alternative integral
optimal solution to (SCR).

In the computational testing, we examine three intervals
of facility opening costs: (i) f; is set equal to zero, i.e.,
(P) becomes a generalization of the uncapacitated multi-
period single-sourcing problem (see Romeijn and Romero
Morales [16] for the definition of this problem) with nonlin-
ear (concave) production cost functions, (ii) f; is uniformly
generated on the interval [100, 250], and (iii) f; is uniformly
generated on the interval [200, 500]. We have chosen to use
square root functions to model economies of scale in produc-
tion, a typical choice for concave production cost functions.
In particular, the production cost function at facility i in time
period ¢ is defined by P;;(pi:) = Ai:/Pii» where the term
A;; is uniformly generated on the interval [5, 15]. The hold-
ing costs, h;;, were uniformly generated on the interval [1, 4].
The demands of the customers, d;;, were generated on the
interval [5, 15]. In order to determine the connection costs,
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we generated the location of each facility and customer uni-
formly on the box [0, 10]%. The connection costs per unit of
demand, c;;;, were then set equal to the Euclidian distance
from the location of facility i to customer j.

5.1. Performance of the Branch-and-Price Algorithm
on the General Problem

We first analyze the performance of the branch-and-price
algorithm on randomly generated instances of (P) by compar-
ing the performance of the branch-and-price algorithm with
the commercial global optimization software BARON. To
solve (P), it is necessary to use the mixed-integer nonlinear
programming option of BARON. We note that BARON was
called using its GAMS interface.

‘We next compare the performance of the branch-and-price
algorithm with the solution of (P) through a series of lin-
ear approximations. This type of approach was shown to be
successful for other supply chain planning problems with
nonlinear economies of scale in Magnanti et al. [15]. At each
iteration of this approach (which we will refer to as the succes-
sive linear approximation (SLA) approach), we approximate
each of the concave production cost functions, P;;, by a piece-
wise linear concave function with §;, breakpoints (we call this
function ﬁi,). At each of these §;; breakpoints, the value of
the piecewise linear function is equal to the value of the pro-
duction cost function. This means that the piecewise linear
concave function is a lower approximation of P;;, and an
increased number of breakpoints results in a better approx-
imation. We then replace the production cost function P;
with the approximation P, in (P). Further, we can represent
the piecewise linear concave function by introducing a set
of continuous and binary variables. In particular, we formu-
lated each of the piecewise linear functions, 13,-,, using the
so-called multiple choice model (see, for example, Balakr-
ishnan and Graves [2] or Croxton et al. [5]) for converting
piecewise linear functions into equivalent mixed-integer lin-
ear programming formulations. We have included the details
of this conversion in the Appendix. We then solve the result-
ing mixed-integer linear programming formulation using the
integer programming solver within CPLEX 11.0. After deter-
mining the optimal solution to this problem, we then either
update the collection of breakpoints for one or several of the
production cost functions or determine that the solution is
also optimal to (P). In particular, if the optimal solution to
the approximation has a production level of p;;, we include
the value of p;, as a breakpoint in the approximation of P;; if
it has not already been included. If all production levels are
already breakpoints in the approximations of their respective
production cost functions, then the solution is optimal to (P).

We present the results for problems with a modest number
of customers (n = 10 and n = 15) first and then examine
problems with a larger number of customers. We examine
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Table 1. Computational results for n = 10 and m = 5 for the branch-and-price algorithm, the SLA approach, and the software package
BARON.
B&P algorithm SLA BARON

fi T Time (s) S.D. Wins  Time (s) S.D. Wins % Error  Time (s) S.D. Wins % Error
0 5 0.9 0.6 9 6.3 6.4 1 0 3600'° 0 0 0.7
U[100,250] 5 2.8 1.0 7 74 4.7 3 0 3600'° 0 0 0.2
U[200, 500] 5 33 1.8 3 3.6 4.3 7 0 2943.58 1313.5 0 0.7
0 10 68.3 98.4 6 457.0'  1064.3 4 0 360010 0 0 54
U[100,250] 10 111.2 48.1 5 1130.4> 13812 5 0.1 3600'° 0 0 2.5
U[200,500] 10 166.8 118.8 5 2759 369.1 5 0 3600'° 0 0 1.5

problems with 7 = 5 and T = 10 time periods and con-
sider each class of the facility opening costs. We observed
that for all instances considered, the branch-and-price algo-
rithm solves (SC) at the root node of the branch and bound
tree. This phenomenon has been observed before in solv-
ing uncapacitated customer assignment models with concave
cost functions (see, for example, Shen et al. [23] and Huang
etal. [12]).

5.1.1. Ten Customer Problems

In Tables 1 and 2, we report the average time (over 10 ran-
domly generated instances) required to solve (P) withn = 10
customers by our algorithm, the SLA approach, and BARON
for m = 5 and m = 10 facilities, respectively. We imposed
a time limit of 3600 seconds (1 hour) in our testing. In the
column that reports the time required to solve (P), the super-
script indicates the number of instances in which the SLA
approach or BARON did not obtain the optimal solution (or
verify the optimality) to (P) within an hour. In calculating
the average time for classes of problems in which the SLA
approach or BARON did not solve an instance within an hour,
we included these instances and set their time to 3600 s. This
means that the entries are actually lower bounds on the aver-
age time required by BARON or the SLA approach. The
percentage error column reports the average error of the best
solutions obtained within the time limit by the SLA approach

or BARON on instances that were not solved. Further, we
have presented the standard deviations associated with the
running times of each of the three methods and the num-
ber of “wins” (out of the 10 instances) for each method. In
other words, the number of wins for a method represents the
number of instances in which the method found an optimal
solution in the shortest amount of time.

The results clearly indicate that both our branch-and-price
algorithm and the SLA approach outperform BARON for
these tests. For m = 5, the branch-and-price algorithm has
a better average running time than the SLA approach for all
classes and is more robust in the sense that it has a smaller
standard deviation (as a percentage of the average running
time) for all classes. For m = 10, the branch-and-price algo-
rithm outperforms the SLA approach: it has a much better
average running time for all classes and outperforms the
SLA approach on almost all instances. It is also interest-
ing to note that the SLA approach performs notably worse
for m = 10. This can be partially attributed to the fact
that the ratio of the number of customers to the number of
facilities plays an important role in the quality of the lin-
ear relaxations of standard customer assignment models. In
particular, as the ratio increases the quality of the relaxations
become extremely good and, therefore, the commercial soft-
ware packages benefit from these improved bounds (see, e.g.,
Savelsbergh [21]). These results indicate that this relationship
seems to apply to our class of problems as well.

Table 2. Computational results for n = 10 and m = 10 for the branch-and-price algorithm, the SLA approach, and the software package

BARON.
B&P algorithm SLA BARON
fi T Time (s) S.D. Wins Time (s) S.D. Wins % Error Time (s) S.D. Wins % Error

0 5 1.7 1.0 10 13.1 9.9 0 0 3600'° 0 0 9.3
U[100,250] 5 2.2 1.0 10 17.4 119 0 0 36000 0 0 2.2
U200, 500] 5 3.2 0.8 6 10.1 8.9 4 0 360010 0 0 1.1
0 10 13.3 4.6 10 2660.7’ 1507.6 0 1.3 36000 0 0 11.5
U[100,250] 10 63.5 34.1 10 2686.6 1458.4 0 1.1 3600'° 0 0 4.0
U200, 500] 10 243.3 264.0 9 1647.0* 1617.0 1 0.5 36000 0 0 2.1
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Table 3. Computational results for n = 15 and m = 5 for the branch-and-price algorithm, the SLA approach, and the software package

BARON.
B&P algorithm SLA BARON
fi T Time (s) S.D. Wins Time (s) S.D. Wins % Error Time (s) S.D. Wins 9% Error

0 5 3.4 1.4 8 23.6 423 2 0 3600'° 0 0 1.0
U[100,250] 5 19.7 14.2 4 23.8 39.1 6 0 36000 0 0 0.7
U200, 500] 5 27.8 16.2 2 22.7 33.7 8 0 36000 0 0 0.9
0 10 528.2 817.1 5 1626.03 1643.2 5 0.1 36000 0 0 4.2
U[100,250] 10 1683.5  1062.9 8 3083.6% 1126.9 2 0.3 36000 0 0 3.6
U200, 500] 10 1882.1'  1178.1 5 2059.4° 1618.2 5 0.6 360010 0 0 2.9

5.1.2.  Fifteen Customer Problems

Tables 3 and 4 report the results of our computational
testing for n = 15 customers with m = 5 and m = 10 facili-
ties. Once again, both the branch-and-price algorithm and the
SLA approach outperform BARON for these test problems.
For m = 5, although the SLA approach does outperform
the branch-and-price algorithm for a number of instances,
the results indicate that the branch-and-price algorithm has
a better average running time and is more robust than the
SLA approach. For m = 10, the branch-and-price algorithm
significantly outperforms the SLA approach in both average
running time and the number of instances in which it has
the fastest running time. The results indicate the branch-and-
price algorithm actually solves problems with m = 10 more
effectively than problems with m = 5. We believe that this
can be attributed to the fact that there is more opportunity
for facilities with low operational costs to be located near
customers and, therefore, the customer assignment decisions
become clearer.

5.1.3. Larger Scale Problems

We next present the results of applying the branch-and-
price algorithm and the SLA approach to problems of
increased size. We will focus on testing the boundaries of
each of these approaches, meaning that we set a high time

limit to see if these approaches can provide an optimal solu-
tion (or a solution of high-quality) within this limit. The main
reason that we do not examine the global optimization soft-
ware package BARON is that we have already reached the
limits of this package for problems withn = 10 and n = 15.
We note that since (P) is a strategic problem used in supply
chain planning, it is not unreasonable to run either of these
approaches for a few hours in order to determine an optimal
solution. Therefore, we set the time limit for these tests to 8
hours (480 minutes). For these results, we present the num-
ber of minutes required to solve the problem, as opposed to
the number of seconds presented in Sections 5.1.1 and 5.1.2.
Table 5 presents the computational results for an instance
of each problem from classes with n = 20 and T = 10.
Table 6 reports the computational results for instances with
n = 30 and T = 10. The SLA approach either failed to
find the optimal solution to (P) or CPLEX 11.0 ran out of
memory while solving one of the linear approximations of
the problem for every instance considered with n = 20 and
n = 30. We note that the instances where the SLA approach
ran out of memory are denoted by a “*” and we report the
current best known bounds at the time of termination of the
approach. Further, in calculating the error for the branch-and-
price algorithm for the instances it did not solve to optimality,
we compared it with the best known lower bound given by
the SLA approach. The branch-and-price algorithm outper-
forms (in computational time and solution quality) the SLA

Table 4. Computational results for n = 15 and m = 10 for the branch-and-price algorithm, the SLA approach, and the software package

BARON.
B&P algorithm SLA BARON
fi T Time (s) S.D. Wins Time (s) S.D. Wins % Error Time (s) S.D. Wins % Error

0 5 3.6 1.7 9 118.7 184.6 1 0 3600'° 0 0 7.8
U[100,250] 5 11.5 4.4 8 66.1 94.9 2 0 360010 0 0 1.7
U200, 500] 5 26.7 17.2 4 23.4 24.0 6 0 360010 0 0 1.9
0 10 42.0 25.7 10 3002.88 1261.0 0 3.2 36000 0 0 10.0
U[100,250] 10 613.1 320.6 10 36000 0 0 3.1 3600'° 0 0 4.2
U200, 500] 10 1489.3  1683.2 10 360010 0 0 2.5 360010 0 0 2.6
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Table 5. Computational results for » = 20 and 7 = 10 for the
branch-and-price algorithm and the SLA approach.

Table 7. Computational results for n = 40 and T = 10 for the
branch-and-price algorithm and the SLA approach.

B&P algorithm SLA B&P algorithm SLA
fi m  Time (min) % Error Time (min) % Error fi m  Time (min) % Error Time (min) % Error
0 5 42.5 0 480! 0.003 0 20 54.2 0 248.2* 26.7
U[100,250] 5 333.9 0 480! 2.2 U[100,250] 20 480! 21.2 380* 28.2
U[200,500] 5 367.4 0 480! 1.1 U[200,500] 20 480! 22.5 480! 32.6
0 10 1.2 0 391.4* 1.8
U[100,250] 10 33.1 0 480! 2.2
U[200,500] 10 55.1 0 400* 1.2

approach for all the instances considered. We again see that
the branch-and-price algorithm performs better on instances
with a lower customer-to-facility ratio: it solves all problems
within the time limit for » = 30 and m = 15, but only
one instance within the time limit for » = 30 and m = 10,
and no instances for n = 30 and m = 5. Based on these
observations, we have tested our algorithm on instances with
n =40, m = 20, and T = 10 in Table 7. The results in
Tables 5-7 indicate that our algorithm is especially suitable
for large-scale problems with a low customer-to-facility ratio
that focus simply on the assignment decisions since it solves
the instances of the problem with (f; = 0,n = 20,m = 10),
(fi =0,n =30,m =15),and (f; = 0,n =40,m = 20) in
under an hour.

5.2. The Value of Integration

In this section, we characterize the “value” of integrating
the facility location and production planning decisions for
each of the problem classes considered in Section 5.1. In
other words, we determine the percentage of additional costs
incurred by undertaking the location and assignment deci-
sions separately from the production planning decisions, i.e.,
we consider them sequentially. This means that we determine
the location and assignment decisions based on solving a

Table 6. Computational results for » = 30 and 7 = 10 for the
branch-and-price algorithm and the SLA approach.

B&P algorithm SLA
fi m  Time (min) % Error Time (min) % Error
0 5 480! .8 480! 1.9
U[100,250] 5 480! 0.7 480! 1.5
U[200,500] 5 480! 0.8 480! 1.4
0 10 14.1 0 307.1* 4.7
U[100,250] 10 480! 4.0 396.6* 5.8
U[200,500] 10 480! 3.5 480! 13.6
0 15 10.2 0 480! 8.6
U[100,250] 15 291.2 0 386.6* 8.9
U[200,500] 15 448.5 0 480! 12.0

facility location problem with m facilities and nT customers
and then determine the production and inventory levels at
each facility by solving a production planning problem based
on the optimal assignments from the facility location prob-
lem. If we let v* denote the total cost (location, assignment,
and production planning costs) incurred in an optimal solu-
tion for (P) and let v(S.A.) denote the total cost obtained by
the sequential approach to the problem, then the value of the
integration is defined as

%
Value of Integration = 100 x w

To “normalize” the costs of a particular instance of (P), we
have removed the base connection costs from the problem
(which does not change the optimal solution to (P) or the
facility location problem). In particular, for each customer
and time period, we determined the minimum cost associated
with transporting the demand of the customer/time period
over all facilities and subtracted this minimum cost from the
model.

Note that there is flexibility in determining the assignment
costs of customer j in time period ¢ to facility i in the tra-
ditional facility location problem during the sequential plan-
ning process. We set this assignment cost equal to ap;, + ¢;j,
where ap;, is an approximation of the production/inventory
costs of a unit of demand assigned to facility i in time period
t and ¢;j; is the connection cost per unit demand of customer
J to facility i in time period ¢. We examine three different
classes of ap;,: (i) the FL class: ap;, = 0 meaning that the
facility location problem disregards the production/inventory
costs, (ii) the 20% class: ap;, = P;;(0.2d,)/0.2d,, where d,
is the cumulative demand of the customers in time period ¢,
which represents the average cost per unit demand of produc-
ing 20% of d, in period ¢ at facility i, and (iii) the 40% class:
ap;, = P;,(0.4d,)/0.4d, which represents the average cost
per unit demand of producing 40% of d; in period ¢ at facility
i. Note that (ii) and (iii) essentially assume that we produce
all demand assigned to facility 7 in time period ¢ with produc-
tion in time period ¢. Note that (ii) would be better suited than
(iii) for problems where we expect to have a larger number
of facilities operational.

Table 8 reports the average value of integration for each
of the different classes of approximation production costs
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Table 8. The value of integrating location and production planning problems with n = 10 and n = 15 customers.
n=10,m=>5 n=10,m =10 n=15m=>5 n=15m=10
fi T FL 20% 40% FL 20% 40% FL 20% 40% FL 20% 40%
0 5 18.8 11.2 14.3 22.0 12.2 14.5 16.8 10.5 12.2 21.1 13.9 15.8
U[100,250] 5 3.8 42 3.9 5.0 43 43 53 6.3 6.8 55 6.7 6.8
U[200, 500] 5 1.7 2.0 1.8 3.6 2.2 2.1 2.9 23 32 6.2 2.8 34
0 10 12.5 8.0 8.1 21.7 11.3 135 9.4 6.8 73 19.0 11.1 12.1
U[100,250] 10 5.2 34 39 9.2 5.6 5.8 6.6 53 54 7.6 9.3 7.9
U[200,500] 10 3.6 3.6 3.4 4.5 6.3 52 42 7.2 6.8 8.0 6.1 6.1

over the 10 instances considered in each problem class from
Sections 5.1.1 and 5.1.2. Table 9 reports the value of inte-
gration for the instances considered in Section 5.1.3, where
the value of integration is calculated based on the best known
current solution to the problem since we did not solve the
problem to optimality for certain instances with n = 30 and
n = 40. This means the reported values are lower bounds on
the actual value of integration. It is clear from these results
that there are benefits (significant, in some cases) from inte-
grating facility location and production planning decisions
for all problem classes, even when the location and assign-
ment decisions are made by incorporating an approximation
of the production/inventory costs into the facility location
portion of the sequential decision-making process. Further,
the results indicate that we can obtain a better understand-
ing of the costs involved with serving our customer base
by integrating the facility location and production planning
decisions.

5.3. Sensitivity of the Model to Forecasting Errors

This section examines the impact of customer demand
forecast errors on the key strategic decisions, i.e., the location
decisions and optimal total costs in our model. Understand-
ing these impacts is important since we may not know the
customer demand vectors with certainty at the time that we
must make strategic facility location decisions. Therefore,
we are interested in examining whether the optimal locations
obtained when using demands containing forecast errors are
the same as (or similar to) the optimal locations with the actual
demand vector. Our model (P) will be quite useful in supply
chain planning activities if it can provide optimal strategic

decisions that are robust to changes in demands in addition
to an accurate estimate of the long-range costs.

We examine the same 10 problems considered in each class
of problems from Sections 5.1.1 and 5.1.2 that used positive
facility opening costs. For each of these instances, we exam-
ined 10 “forecasted instances”: five forecasted instances with
“low” errors and five forecasted instances with “high” errors.
The procedure to create a forecasted instance with a low error
involved generating 7 errors uniformly on the interval [—2, 2]
for customer j. We then sorted these errors from the smallest
to largest according to their absolute values. This provides
us with our error vector for customer j. The reason that we
sorted the errors was that we can expect that the forecast-
ing errors will increase as we go further out in the horizon.
We then added the error vector of customer j to the actual
demand vector of customer j to get the forecasted demand
vector for customer j. The procedure was identical for gen-
erating a forecasted instance with a high error, except that
the errors were generated uniformly on the interval [—4,4].
We note that the magnitude of the absolute expected error
is 6.6% for the low errors and 13.3% for the high errors.
For each actual instance and error class, we are interested
in: (i) the average absolute error of the cost of the forecasted
instances (taking into account the expected “base cost” as we
did in Section 5.2) and (ii) the number of forecasted instances
that provide a different location vector than optimal location
vector for the problem with the actual demand.

Tables 10 and 11 report the results on the sensitivity of
the model to forecasting errors. We present the absolute
error of the cost of the forecasted instances across all actual
instances (the “Abs. % Error” column), the number of actual
instances where all forecasted instances provide the same

Table 9. The value of integrating location and production planning problems with n = 20, n = 30, and n = 40 customers.

n=20,m=>5 n=20,m=10 n=30,m=>5 n=230,m=10 n=230,m=15 n=40,m =20
fi T FL 20% 40% FL 20% 40% FL 20% 40% FL 20% 40% FL 20% 40% FL 20% 40%
0 10 11.7 98 9.7 194 119 155 21.1 187 19,5 199 109 11.7 347 162 19.6 27.7 17.6 22.0
U[100,250] 10 44 15 12 128 1.1 8.4 79 74 74 105 105 11.7 175 140 143 13.0 9.6 123
U[200,500] 10 82 62 63 00 0.1 0.1 25 15 14 64 59 5.7 7.8 10.1 5.8 78 72 7.5
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Table 10. Computational results for n = 10 on the sensitivity of the model to forecasting errors.

Low variability High variability
fi T m  Abs. oerror #All cor. Avg. #diff. Max. #diff. Abs. % error # Allcor. Avg. #diff. Max. # diff.
U[100,250] 5 5 1.3 7 0.7 3 32 7 0.7 3
U[200,500] 5 5 2.0 7 0.3 1 4.7 7 0.5 3
U[100,250] 10 5 1.0 9 0.1 1 4.0 9 0.2 2
U[200,500] 10 5 2.2 10 0 0 4.3 9 0.1 1
U[100,250] 5 10 1.3 9 0.3 3 43 7 0.3 1
U[200,500] 5 10 1.4 8 0.3 2 3.1 5 0.7 2
U[100,250] 10 10 1.5 8 0.2 1 4.1 4 0.9 3
U[200,500] 10 10 1.7 10 0 0 23 8 0.2 1

location vector as the optimal location vector (the “# All
Cor.” column), the average number of forecasted instances
that provide a different location vector (the “Avg. # Diff.”
column), and the maximum number of forecasted instances
(across all actual instances) that provide a different location
vector (the “Max. # Diff.” column). These results indicate
that for low forecast errors, applying (P) to the forecasted
demand streams of the customers provides a very accurate
estimate of the costs (between 0.5% and 2.7% in absolute
error) associated with the problem with the actual demand
stream. Further, for most instances in each problem class, the
strategic location decisions were the same in all of the fore-
casted problems with low variability. For high forecast errors,
applying (P) to the forecasted demand streams does provide a
less accurate estimate of the costs (between 2.2% and 5.5% in
absolute error). However, for most instances in each problem
class, the strategic location decisions were the same in all of
the forecasted problems with high variability. Therefore, (P)
can be quite useful in planning activities, even if there are
errors in the forecasts associated with the customer demand
streams.

6. EXTENSIONS OF THE GENERAL PROBLEM

In this section, we will discuss several extensions of our
integrated facility location and production planning problem,

(P), and how to modify the branch-and-price algorithm to
solve them. The key factor in this modification lies in effec-
tively solving the pricing problem, which will be a general-
ization of the (PPOSP). We will actually show that for several
of these generalizations, we can solve the problem by using
a similar dynamic program as the one for (PPOSP) with-
out increasing the worst-case complexity of O(nT>lognT)
time. In Section 6.1, we first consider the situation in which
the facility opening/closing decisions are dynamic, i.e., we
can open a new facility at any point over the horizon and
close it throughout the horizon. We then discuss a model in
which the demand patterns of the customers are cyclic (see
Section 6.2), i.e., the patterns repeat over time.

6.1. The Problem with Dynamic Openings
and Closings

Our formulation of the integrated facility location and pro-
duction planning problem, (P), assumes that it is necessary
for all open facilities to be acquired (or built) prior to the first
time period and that all facilities will be operational for the
entire problem horizon. In certain situations, it may not be
necessary (or possible) for all facilities to be acquired prior
to the first time period, or it may be possible to sell off (or
close) a facility prior to the end of the horizon. In other words,
we may need to model the possibility that facility i can be

Table 11. Computational results for n = 15 on the sensitivity of the model to forecasting errors.

Low variability High variability
fi T m Abs.%error #Allcor. Avg. #diff. Max.#diff. Abs. %error #Allcor. Avg. #diff. Max. # diff.
U[100,250] 5 5 1.3 9 0.2 2 5.4 7 0.5 3
U[200,500] 5 5 2.7 10 0 0 5.5 10 0 0
U[100,250] 10 5 22 10 0 0 44 8 0.3 2
U[200,500] 10 5 22 10 0 0 3.6 7 0.6 2
U[100,250] 5 10 1.7 9 0.2 2 4.6 7 0.5 3
U[200,500] 5 10 1.9 9 0.1 1 2.2 7 0.3 1
U[100,250] 10 10 1.3 8 0.3 2 2.7 6 0.5 2
U[200,500] 10 10 0.5 10 0 0 25 8 0.3 2

Naval Research Logistics DOI 10.1002/nav



432 Naval Research Logistics, Vol. 58 (2011)

acquired/opened in any time period + = 1,...,T and the
possibility that facility i can be closed in any time period. A
salvage value might be obtained from selling the facility, and
we can no longer operate the facility (i.e., we cannot sell off a
facility and reacquire it in a later time period). To modify our
integrated facility location and production planning problem
(P) to model the situation with dynamic openings and clos-
ings (P-DOC), we introduce binary variables y;; and w;, for
i =1,...,mand r = 1,...,T that represent the decision
of opening facility i in time period ¢ and closing facility i
in time period ¢, respectively. We denote the facility opening
cost and salvage value of facility i in time period ¢ as f;; and
sis. To formulate the (P-DOC) of the problem with dynamic
openings and closings, we replace the facility opening costs
in the objective function of (P) with

m T
Z Z(fizyit — S Wit).

i=1 t=1

In the constraints of (P-DOC) we need to ensure that (i)
we only assign the demand of a customer in a time period
to a facility which is currently operational (i.e., it has been
opened but not yet closed) in that time period, (ii) we open
each facility at most once, (iii) we only close a facility in
a time period after which it is opened, and (iv) we close a
facility at most once. To ensure that (i) occurs, we replace the
constraints (2) of (P) with the constraint

t t
Xijr < Zy” _Zw” fori =1,...,m,
s=1 s=1
.oont=1,...,T. (12)

If we open a facility i in time period ¢" and close it on or before
time period ¢, then the right side of this equation will be equal
to 0, so that we cannot assign a customer to facility i in time
period ¢, so that (i) is satisfied. The binary constraints on x;;;
and constraints (12) ensure that (iii) holds. It is not difficult
to ensure that (ii) and (iv) hold by including the constraints

T
D yi<lfori=1,....m (13)
=1
T
> wy < lfori=1,....m. (14)
=1

To effectively solve the (P-DOC), we will need to modify
the branch-and-price algorithm to solve (P) from Section 3.
Note that, again, the definition of the cost of assigning the
£th column to facility i will change. In particular, we let ¢,
and 1, be the first and last time period in which the demand
of any customer is selected in the £th column associated with
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facility i. We then define the cost of assigning the £th column
to facility i as

&i(o.)
n T

. . z K
= fan Jir + t:IIIéHHT(—Siz) + Z Zdjtcijal‘j; + gi(af).

t=1,...,
j=1 =1

.....

This definition of the cost ensures that our facility opening
cost is as cost-effective as possible given the set of cus-
tomers/time periods associated with the £th column, and that
we recover the largest possible salvage value for closing
the facility when it no longer needs to be operational. For
the column generation approach to solve (SCR), we need to
account for the flexibility of opening/closing the facility in the
pricing problem. This means that we end up with an exten-
sion of the (PPOSP) in which we must determine the time
period to open a facility and (potentially) determine the time
period to close the facility. We refer to this extension of the
(PPOSP) as the (PPOSP-DOC). We can extend the dynamic
programming algorithm for (PPOSP) to solve this variant of
the (PPOSP-DOC). In particular, we simply disregard (for
now) the facility opening/closing decisions in the DP algo-
rithm. We then solve for the maximum profit for each of the
subplans, p(t,t') forallt = 1,...,T,¢ =1t,...,T + 1. In
the (PPOSP-DOC), it is possible that we open the facility in
any time period t and close the facility in any time period t’
(where T < 1’). Therefore, for any two time periods t and
7/, we will need to determine the maximum amount of profit
obtained by only selecting customers with demand between
7 and t’. Therefore, we define the function C(z,1’) to be
the maximum amount of profit obtained by only selecting
demands in time periods 7,...,7’. It is not difficult to see
that we can determine the values C(z,t') fort =1,...,T,
v/ =1,...,T by applying a forward recurrence relationship
similar to (11) from the starting point t. This would require
O(nT?lognT) time to determine p(z,¢) and O(T?) time
to apply each of the recurrence relations from the starting
points T for t = 1,..., T. The optimal solution value to the
(PPOSP-DOC) would then be equal to

max  max {C(t,t’) — min f; + max ws} .
t=1,...,T tv'=1,....T s=1,...,T s=t',....,T

The time required to determine this value would include
determining p(z,t’) for ¢t = 1,..., T, t' = ¢,...,T
(O(nT?lognt) time), determining C(z, ') for each starting
point T (O(T?) time), and determining the maximum value
given by the equation (O(T?) time). This means that the
bottleneck operation of this algorithm to solve the (PPOSP-
DOC) would be calculating p(¢,t’) and, therefore, we can
solve the (PPOSP-DOC) in O (nT3 lognT) time.

We have currently assumed in the (P-DOC) (and the
(PPOSP-DOCQ)) that the decisions related to the opening and
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closing of a facility have no effect on the production and
inventory costs associated with the facility. It may be the case
that the facility requires a “ramp-up time” and a “ramp-down
time” to open or close. If the facility cannot operate during
these times, then the only aspect of the ramp-up/ramp-down
time that affects our decision making is the first/last time
period in which the facility can operate and thus the previ-
ously discussed model and algorithm for the pricing problem
can solve this problem. However, it may be the case that we
can operate the facility during the ramp-up and ramp-down
times, but the production and inventory costs are affected.
To solve the pricing problem that arises in this variant of
the (P-DOC), we can solve O(T?) problems of the form
(PPOSP). In particular, we examine the problem (PPOSP)
that corresponds to starting the ramp-up time (i.e., opening
the facility) in time period ¢ and ending the ramp-down time
(i.e., closing the facility) in time period ¢, where t < ¢'.
Since we know the opening time period and closing time
period of the facility, we will know the production and inven-
tory costs associated with each time period, so we can solve
the (PPOSP) for these opening/closing time periods. For each
pair of values (¢, t'), we then incorporate the opening cost and
the salvage value of the facility and then take the maximum
over all pairs to determine the optimal solution to this variant
of the (PPOSP-DOC).

6.2. The Cyclic Problem

It may be possible that the demand for each customer and
the production and inventory costs at each facility are in an
equilibrium situation, meaning that the demand and the costs
are stationary with a cycle length T'. In other words, we have
that d; 741 = dji,djr42 = djs,..., for each customer j,
Pir41(p) = Pi(p), Pir42(p) = Pa(p), .. ., for each facil-
ity i and production level p, and h; 741 = hi1,hir4o =
his, ..., for each facility i. In other words, the production
planning problems faced by each facility are cyclic in nature.
The MPSSP has been considered when the demand patterns
are cyclic, see, for example, Romeijn and Romero Morales
[16,17].

This cost and demand structure imply that the inventory
levels at each of the facilities will be cyclic as well. In other
words, rather than require that the initial inventory level I;
is equal to zero for each facility, we assume that the starting
inventory level of a facility during a cycle must be equal to
the ending inventory level of the facility, i.e., constraints (6)
of (P) are replaced by

Il‘():I,‘T fori:l,...,m. (15)
This is the only modification to the model (P) that is nec-

essary to solve the integrated facility location and production
planning problem with cyclic demands (P-CD). We note,

however, that the interpretation of the facility opening costs,
fi> needs to be slightly modified in (P-CD) since we will
not be “opening” the facilities in every cycle of the prob-
lem. However, we may think of the facility opening costs in
(P-CD) as a composition of (i) the fixed operating costs of
that facility during a cycle (such as the salaries of workers
and/or maintenance costs of the equipment in the facility) and
(ii) an amortized portion of the initial long-term investment
required to obtain the facility. If we use this interpretation of
the facility opening costs f;, we see that we are minimizing
all relevant costs incurred during a cycle to meet the demand
of the customers in our problem. To solve (P-CD) with the
branch-and-price algorithm from Section 3, we (again) need
to redefine the cost function associated with the £th column of
facility i. In particular, we interpret the production planning
cost function g; (af“) as the optimal production and inventory
costs in the cyclic production planning problem to meet the
demand of the customer/time periods in the £th subset. This
leads to another variant of the (PPOSP), which we call the
production planning and order selection problem with cyclic
demand (PPOSP-CD), where the initial inventory must equal
the inventory in the last time period.

In the traditional setting (i.e., demand in each time period is
fixed and given) with cyclic demand, it is not difficult to show
that there exists a time period in which we carry no inventory
in the optimal production plan; however, this period is not
necessarily the T'th time period as is the case with normal
production planning problems. In other words, there exists
a period which we can refer to as the “starting period” in
our problem; however, this starting period does not necessar-
ily have to be period 1. As in the traditional problem, it is
not difficult to show that there exists an optimal solution to
(PPOSP-CD) where a time period exists in which we carry no
inventory. Using this property, we can modify the dynamic
programming algorithm for (PPOSP) to solve (PPOSP-CD).
In particular, we will calculate the maximum profit obtained
in a subplan, p(t,t'), forallt =1,...,Tandt' = 1,...,T,
since we may produce a unit of demand in time period ¢ and
hold it in inventory in time periods #,¢ + 1,...,T,1,...,¢.
This, again, requires O (nT>lognT) time. We then apply
the dynamic programming recurrence relationship from each
possible “starting” time period t = 1,..., T. In other words,
define the function V (¢) to be the maximum amount of profit
in (PPOSP-CD) when we consider time period ¢ as the starting
period for the problem. We can calculate V (¢) through either
the forward or backward recurrence relationship by consid-
ering time period ¢ as time period 1. We can solve for V (¢)
in O(T?) time foreacht = 1,..., T, so we require O(T?)
time to calculate V (¢) forallt = 1,...,T. The optimal solu-
tion value for (PPOSP-CD) is then equal to max,—;__r V (¢).
The bottleneck operation is again the calculation of all p(¢,¢")
and, therefore, (PPOSP-CD) can be solved in O (nT?> lognT)
time.
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7. CONCLUSIONS

In this article, we considered a problem that integrates three
important supply chain management decisions: the location
of supply facilities, the assignment of customers to these facil-
ities, and the management of the production and inventory
levels within the facilities. We formulated this problem and
developed a branch-and-price algorithm for its set-covering
formulation. It turns out that the pricing problem that arises
in this algorithm is an important supply chain planning prob-
lem in its own right. In particular, this problem is a production
planning and order selection problem in which the supplier
is given a set of potential orders and must select a subset of
these orders to maximize its profit, i.e., the revenues received
from selected orders minus the production planning costs
incurred in meeting the demand of the selected customers.
Computational testing of our proposed algorithm indicates its
advantages over a commercial global optimization software
package. These tests also characterized the value of integrat-
ing facility location and production planning decisions and
indicated that there are significant potential benefits from
simultaneously considering these decisions within an inte-
grated model. Further, our computational testing indicates
that our model is rather insensitive to errors in the fore-
casted demand streams and can, therefore, be valuable in
supply chain planning activities. We also considered several
extensions of the integrated location and production planning
problem, as well as the resulting extensions of the produc-
tion planning and order selection pricing problem that arise
in applying the branch-and-price algorithm. We provided
polynomial-time dynamic programming algorithms for each
of the extensions of the pricing problem.
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APPENDIX

PROOF OF THEOREM 3.1: To prove this result, we will focus on com-
paring v(PR) and v(SCR) with the optimal solution value to the following
problem:
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m n
minimize Z fivi + gi Zdjlxijl,u-
izl =1

n
,Zdﬂxiﬂ
j=1
m n T
+ Z Z Zdjtcijtxijt

i=1 j=11=1

subject to (P'R)
m

Y xijp=1 forj=1,...nt=1..T (16)
i=1

xijp <y fori=1,....m,j=1,....n,t=1,....,T (17

xijy >0 fori=1,....m,j=1,...,n,t=1,....T (18)

yi=0 fori=1,...,m (19)

Our first result shows that this problem is equivalent to (PR).
LEMMA A.1: v(PR) = v(P'R).

PROOF: Given an optimal solution, (x*,y*, p*, I*), to (PR), we will
examine the cost of the solution (x*, y*) to (P’'R). The cost of this solution
in (P'R) must equal the cost of the solution (x*, y*, p*, I'*) to (PR) or we
contradict (i) the optimality of (x*, y*, p*, I'*) to (PR) or (ii) the definition of
the functions g; (ZLI djixiji,. .., 27=1 djrxijr). Given an optimal solu-
tion (X, ) to (P'R), we examine the solution (X, y, P, I) where P;; and I;;
are the optimal production and inventory levels associated with the optimal
solution to g; (Z.'/;l djl)_fl‘j] sy 27=1 dﬂ‘iiﬂ‘). By definition, (x, y, P, I)
is feasible to (PR) and has the same objective function value as the optimal
solution to (P'R). Therefore, the optimal solution to (PR) has a solution in
(P'R) with the same objective function value and the optimal solution to
(P'R) has a solution in (PR) with the same objective function value. This
implies our desired result. O

We will prove that any solution to (P'R) has an equivalent solution in
(SCR) with an objective function that is less than or equal to the objective
function in (P'R). The fact that the functions g;(Dj,. .., Dr) are concave
will help relate the objective functions of these solutions.

LEMMA A.2: The functions g;(Di,...,Dr) for i = 1,...,m are
concave.

PROOF: This can be proven in a similar manner as Lemma 3.1 in Romeijn
etal. [19]. O

We now present the main result of this section.
THEOREM 3.1: v(PR) > v(SCR).

PROOF: Consider any solution, (x, y), to (P’R). We construct a solution
to (SCR) with an objective function that is less than or equal to the objec-
tive function value of the solution in (P'R). We initially set yié = 0 for all
i=1,...,mand? = 1,..., L.Forfacility i, we set the values ofyf that will
be positive in the solution to (SCR) recursively. At any point in this recursive
procedure, we let the value X;j; denote the remaining amount of the assign-
ment decision x;j, in (P’R) that has yet to be assigned in the solution y to
(SCR). Initially, we set X;j; = x;j; forall j = 1,...,nandt = 1,...,1.
An iteration of the recursive procedure for facility i proceeds as follows: we
have a set of customers and time periods, denoted by £, with strictly positive
values of x;j,. We then set yf = ming; ne¢ Xij and X;j; = X;j; — yf. At least
one (j,t) € £ will now have x;;; = 0. We then continue this procedure until
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all x;j, = 0. Itis not difficult to show (through an inductive argument) that at
any point in the recursive procedure we have Z/z 1 am), = Xjjr —Xijr. This

means that at the end of the recursive procedure that x;;; = Zle afj, yf.
Therefore,

m m

L
¢ b _ N
PRSI

i=1 (=1 i=1

so that Eq. (8) is satisfied in (SCR). We now set yi1 =1- Z[L:z yi[ (where
£ = 1 represents the empty set) so that Zle yf = 1. We further note that
25:2 yl.‘Z = max; max; x;j; < y;. We now show that objective function of
the solution in (SCR) is less than or equal to the objective function of the
solution in (P'R). Now observe that the solution value of y with respect to
facility 7 in (SCR) is equal to
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where the last inequality holds since the functions g; (D1, ..., Dr) are con-
cave and Z@L:l yf = 1. This implies that the optimal solution value to (P'R)

is greater than or equal to the optimal solution value to (SCR). Therefore,
by Lemma A.1, v(PR) > v(SCR). O

Mixed-Integer Formulation of Piecewise Linear
Approximation of Production Cost Functions

We now describe the procedure to obtain a mixed-integer program-
ming formulation of the problem where we approximate the production
cost functions with a piecewise linear function with § breakpoints. Let
a1ir, X2its - - -, sy denote the breakpoints of our piecewise linear function
approximation (call this function ﬁi,) of P;;. Further, let By;; and cy;, for
k = 1,...,8 denote y-intercept and the slope of the kth segment of Py
We introduce continuous variables Zx;, and binary variables j;, for each
segment of Pi,. The following constraints are placed on these variables

5

Pir =Y ks (20)

kit Vkit < Zkit < O(kt1)it Vkit (21)
5

Yir = L. (22)

k=

Note that if yx;, = 1, then the value p;; appears in the interval [otkir, @k +1i¢]-
Constraints (20)—(22) ensure that p;; belongs to exactly one of these inter-
vals. We also have the following relationship and therefore may replace Py
with a linear function of the variables in the objective function:

5
Pir(pin) = ) (chirZuir + Brir win)-

k=1

We note that in obtaining this approximate formulation of (P), we always
define the following two points as the first and last breakpoints of the func-
tion P, the first breakpoint was always 0 and the last breakpoint was always
Z_’;=1 ZL/ dj;, which is the tightest upper bound on production during a
particular time period. Further, due to the concavity of the piecewise lin-
ear (approximate) production cost functions (observed by Balakrishnan and
Graves [2]), it is not necessary to include the lower bound constraint in
(21) or constraint (22). However, we have included these constraints into
the mixed-integer programming formulation of this problem because pre-
liminary computational testing suggested that these redundant constraints
improve the computational performance of CPLEX 11.0 on the problem.
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