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Figure S1. A Cartoon depicting theoretical π-cation interactions between a tryptophan side 

chain on native gramicidin and the trimethylammonium cation located on the lipid head group of 

a DiPhyPC lipid. 
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Figure S2. Ultraviolet Resonance Raman spectra (UVRR) for native gramicidin in 

DiPhyPC lipid vesicles (2% mol/mol) suspended in a 20mM phosphate buffer at pH 7 

with various concentrations of CsCl added. The top three data traces are UVRR 

spectra recorded in aqueous solutions containing 0.0 M, 0.1 M and 2.0 M CsCl added 

to the buffer. Spectra were normalized for the band at ~ 760 cm-1. The difference 

between the spectrum in 0.0 M CsCl and the spectrum in 0.1 M CsCl solution (0.1 M 

- 0.0 M CsCl) and the spectrum in 0.0 M CsCl and the spectrum in 2.0 M CsCl 

solution (2.0 M – 0.0 M CsCl), respectively, are plotted as the bottom two traces.     

In the UVRR spectra of gramicidin, 0 – 2 cm-1 shifts are observed for all bands when 

comparing the 0.0 M CsCl spectrum to that of either the 0.1 M or 2.0 M CsCl 

spectrum. The small, but systematic derivations near ~760 and ~1010 cm-1 are not 

consistent in magnitude or shape with cation-π interaction.[1] 
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Figure S3. Tryptophan fluorescence spectra of native gramicidin in DiPhyPC lipid 

vesicles (2% mol/mol) in a 20 mM potassium phosphate buffer pH7 solution.  

Scattering signal from vesicles was subtracted from each spectrum.  Three data 

traces are shown for fluorescence measurements recorded with 0.0 M, 0.1 M and 2.0 

M CsCl added to the buffer.  The tryptophan fluorescence peak position is in 

agreement with previously reported fluorescence spectra for gramicidin tryptophan 

residues located at the interfacial region of the bilayer, and, in part, confirms the 

incorporation of gA channels in the lipid vesicles.[2] With the exception of decrease in 

Rayleigh scattering, the fluorescence spectra do not change with increasing CsCl 

concentration.  This observation indicates that the general environment of the 

tryptophan is not significantly altered by the high ionic strength. 
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Figure S4. Circular Dichroism (CD) spectra of native gramicidin in DiPhyPC lipid 

vesicles (2% mol/mol) in a 20 mM potassium phosphate buffer pH 7 solution. Three 

data traces are shown for CD measurements recorded with 0.0 M, 0.1 M and 2.0 M 

CsCl added to the buffer. The two peaks located at 215nm and 235nm are consistent 

with the β6.3 structure of gramicidin in a lipid bilayer environment.[2-5] The 

difference in the CD intensities for the three samples is attributed to variations in 

peptide concentration and low S/N on account of scattering from the vesicles and 

absorption by CsCl at λ< 215 nm. 

 
 

 



 

 - S6 - 

 
 

Figure S5. The conductance of the photoisomers gA-SP 4 and gA-MC 5 as a 

function of ionic strength and pH.  Recordings were performed in DiPhyPC lipids 

and 0.05 M – 1.00 M CsCl with a 0.05 – 10mM HEPES buffer. A) Schematic of the 

pH-dependent photoisomeric states of gA-SP (4) and gA-MC (5). When gA-SP (4) is 

exposed to UV light under acidic conditions it is converted to gA-MC (5). Under basic 

conditions, however, a zwitterionic species is formed as a result of the deprotonation 

of the acidic phenolic hydrogen to give gA-MC± (5’). B) A bar graph showing the 
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general trend for an increase in overall conductance as ionic strength is increased. 

Three different pH values were used for each of the four CsCl concentrations to 

discern if uncharged gA-SP (4), cationic gA-MC (5) and zwitterionic gA-MC± (5’) 

displayed different conductance behaviors. The bars shown in red correspond to pH 

5.5, bars in green to pH 7.0 and bars in blue to a pH of 9.0. At each of these three pH 

values, recordings under visible light (darker bar) and recordings under UV light 

(lighter bar) were conducted. It is expected that for all salt concentrations and all 

pH values that gA-SP (4) is present in the absence of applied UV light. For 

recordings during the application of UV light, the cationic gA-MC (5) is expected at 

all pH 5.5 values, zwitterionic gA-MC± (5’) is expected at all pH 9.0 values and some 

equilibrium between (5) and (5’) is expected at pH 7.0. C) Table of conductance 

values for the various photoisomeric states depicted in part B.  Based on this study 

of the interconversion of 4 and 5 on the conductance of this switchable ion channel 

as a function of pH and ionic strength, a pH of 5.5 was selected to investigate the 

effect of charge on the lifetime of channels formed from 4/5 as a function of ionic 

strength. 
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METHODS 

We purchased all reagents and chemicals from Sigma-Aldrich unless otherwise stated.  

Gramicidin A (gA) was purchased as gramicidin D from Sigma Aldrich and purified by silica 

chromatography using a literature procedure[6] (to afford a final purity of 97% of gA).  We 

purchased 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DiPhyPC) lipids from Avanti Polar 

Lipids, Inc.  All analyses by HPLC were performed on an Agilent Zorbax C-18 column (4.6 µm 

× 25 cm) using a gradient of 60 to 100% MeOH in H2O and a flow rate of 1 mL min-1 over 52 

min unless otherwise stated.   

 

Synthesis of taurinyl gramicidin (gA-T). Details of the synthesis of taurinyl gramicidin has 

been reported previously.[7]  

 

Synthesis of trimethyl-gramicidamine (gA-NMe3). Details of the synthesis of trimethyl-

gramicidamine have been reported previously. [8] 

 

Synthesis of spiropyran-gramicidin (gA-SP). Spiropyran-ethylamine was prepared as described 

previously.[9, 10] We dissolved 4 mg (2.2 µmol) of desethanolamine gramicidin[7] in 0.3 mL of 

anhydrous tetrahydrofuran. We added 34 µL (238 µmol) of Et3N and flushed the flask with N2 

gas. The reaction vessel was cooled to 0 °C and 1.2 µL of ethyl chloroformate was added. The 

solution was stirred at 0 °C for 3.5 h, and then a solution of 1.5 mg of spiropyran-ethylamine 

(dissolved in 30 µL of anhydrous THF) was added to the solution containing desethanolamine 

gramicidin.  The reaction was stirred for 30 min at 0 °C, warmed to 23 °C, and stirred an 

additional 12 h.  The solution was concentrated in vacuo and purified by HPLC to give a yield of 
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64%.  The retention time by HPLC was 48.7 minutes.  ESI-MS revealed a major peak at m/z = 

2172.4 corresponding to the expected [M + H]+ of the product. 

 

Formation of Lipid Vesicles. 

Lipid vesicles were prepared as reported previously by Rawat, et al.[2] Briefly, stock solutions of 

native gramicidin in methanol and DiPhyPC in chloroform were combined and dried with a 

stream of nitrogen.  The resulting film was resuspended with 2 mL 0.0 M CsCl, 0.1 M CsCl, or 

2.0 M CsCl in 20mM phosphate buffer pH 7 and sonicated for 30 minutes (50% duty cycle) using 

an ultrasonicator tip.  Samples were centrifuged to remove particulates and incubated in a shaker 

overnight (37° C) for spectral analysis the next day.  Resulting samples were ~ 25 µM gramicidin 

A and 1 mg/mL lipids (2% mol/mol).  Insertion of gramicidin into vesicles was confirmed by 

circular dichroism and fluorescence spectroscopy.[2-5] 

 

Ultraviolet Resonance Raman (UVRR) Measurements. 

A detailed description of the UVRR setup has been reported previously.[11] Vibrational spectra 

of the gA tryptophan residues in lipid vesicles were obtained by setting the fundamental laser 

wavelength to 912 nm to generate a 228 nm excitation beam.  A fresh sample volume of ~ 2 mL 

was flowed through a vertically mounted fused silica capillary at a rate 0.16 mL/min.  The UV 

power was ~ 3 – 4 mW at the sample.  Ten spectra from collection over one-minute intervals 

were summed for all samples.  For each experimental condition (i.e. gA vesicles in a 0.1 M CsCl 

20mM phosphate pH 7 buffer), spectra of blank solutions (i.e. no gA present) were also collected 

and subtracted from all raw spectra. 
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Fluorescence Measurements. 

Tryptophan fluorescence spectra of the gA in vesicles were acquired on a Jobin Yvon Horiba 

Fluorolog-3 spectrofluorometer.  The excitation wavelength was 290 nm, and the entrance and 

exit bandpass was 3 nm. For each experimental condition (i.e. gA vesicles in a 0.1 M CsCl 20mM 

phosphate pH 7 buffer), spectra of blank solutions (i.e. no gA present) were also collected and 

subtracted from all raw spectra. 

 

Circular Dichroism Measurements. 

Circular dichroism (CD) spectra of gA in vesicles were acquired on an Aviv202 

spectropolarimeter and were obtained by sampling every 1 nm for 5 seconds using a quartz 

cuvette with a 0.2 cm path length. For each experimental condition (i.e., gA in vesicles in a 0.1 M 

CsCl 20mM phosphate pH 7 buffer), spectra of blank solutions (i.e., no gA present) were also 

collected and subtracted from all raw spectra. 
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