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Summary. Two common approaches to regression with missing covariates are complete-case
analysis and ignorable likelihood methods. We review these approaches and propose a hybrid
class, called subsample ignorable likelihood methods, which applies an ignorable likelihood
method to the subsample of observations that are complete on one set of variables, but possi-
bly incomplete on others.Conditions on the missing data mechanism are presented under which
subsample ignorable likelihood gives consistent estimates, but both complete-case analysis and
ignorable likelihood methods are inconsistent. We motivate and apply the method proposed to
data from the National Health and Nutrition Examination Survey, and we illustrate properties of
the methods by simulation. Extensions to non-likelihood analyses are also mentioned.
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1. Introduction

Missing data are an important practical problem in many applications of statistics. We consider
multivariate regression with missing data. Reviews of previous research on the topic include
Little (1992), Ibrahim et al. (1999, 2002, 2005) and Chen et al. (2008). Three approaches are

(a) complete-case (CC) analysis, which discards the incomplete cases,
(b) ignorable likelihood (IL) methods, which base inferences on the observed likelihood given

a model that does not include a distribution for the missing data mechanism (examples of
IL methods include ignorable maximum likelihood (IML), Bayesian inferences, or multi-
ple imputation based on the predictive distribution from a Bayesian model (Rubin, 1987),
as in SAS PROC MI (SAS Institute, 2010) or IVEware (Raghunathan et al., 2001)) and

(c) non-ignorable modelling, which derives inference from the likelihood function based on
a joint distribution of the variables and the missing data indicators (this approach is less
common in practice, because of the difficulty in specifying the model for the missing data
mechanism, sensitivity to misspecification of this distribution, problems with identify-
ing the parameters (Little and Rubin (2002), chapter 15) and lack of widely available
software).

IL methods have the advantage of retaining all the data, but they assume that the missing data
are missing at random (MAR), in the sense that missingness of variables that contain missing
values does not depend on the missing values, after conditioning on available data (Rubin, 1976;
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Little and Rubin, 2002). CC analysis involves a loss of information but has the advantage of
yielding valid inferences when missingness depends on the missing covariates X but not the
response Y , a potentially non-ignorable mechanism where IL methods are subject to bias. This
advantage of CC analysis is sometimes overlooked in comparisons of the methods.

Can the information loss in CC analysis be mitigated, while retaining the useful property
of allowing missingness to depend on the values of missing covariates? This paper shows that
the answer is yes, under particular assumptions about the missing data mechanism which are
formalized in Section 4. The key idea is to divide the covariates into three sets—one set (say
Z) fully observed, one set (say W ) for which missingness is assumed to depend on W and
other covariates, but not on the outcomes Y , and a third set (say X ), which together with Y
are assumed MAR in the subsample of cases with W fully observed. The method proposed,
subsample ignorable likelihood (SIL), then applies an IL method to the subsample of cases
with W observed. Particular forms that are discussed below are subsample ignorable maximum
likelihood (SIML), which applies IML to the subsample, and subsample ignorable multiple
imputation (SIMI), which applies an ignorable data model to multiply-impute the missing val-
ues in the subsample.

Section 2 presents a motivating application based on data from the National Health and
Nutrition Examination Survey (NHANES) (Centers for Disease Control and Prevention, 2004),
where the regression of interest concerned the effect of income and education on blood pressure,
adjusting for age, gender and body mass index (BMI). In this application, age and gender were
fully observed, but the other variables had missing values; it was thought reasonable to assume
that the missingness of education, BMI and the blood pressure measures was at random, but
missingness of income was thought likely to be dependent on income. Thus, in this example,
Z consists of age and gender, W consists of income and X consists of education and BMI.
The method consists of applying an IL method to the subset of cases with income observed. We
formulate the problem in a way that encompasses multivariate regression and repeated measures
analyses with missing data in outcomes and covariates.

Section 3 reviews properties of CC and IL analyses, and Section 4 presents properties of the
proposed SIL methods. In particular, conditions on the missing data mechanism are presented
under which SIL gives consistent estimates, but both IL and CC analyses are inconsistent. In
other circumstances, IL is inconsistent and SIL and CC analysis are consistent, but SIL is more
efficient than CC analysis since it uses more of the data. Section 5 presents simulations that
illustrate the properties of SIL and alternative methods. In Section 6 we apply the method to
the motivating data from the NHANES (Centers for Disease Control and Prevention, 2004).
We conclude with some discussion in Section 7.

2. Motivating problem

The effect of socio-economic status on blood pressure has been studied by many researchers
(Gulliford et al. (2004); Colhoun et al. (1998), etc.). The results provide an important basis for
public health interventions. The effect of socio-economic status on blood pressure generally
varies by geographical region and time as the risk factors in populations change (Mackenbach,
1994). The data set that is analysed in this paper is from the 2003–2004 NHANES (Centers for
Disease Control and Prevention, 2004), which was a survey designed to assess the health and
nutritional status of US adults and children. To study the effect of income and education on
blood pressure, we extract the following data:

(a) two outcome measures, systolic blood pressure SBP and diastolic blood pressure DBP;
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Table 1. Percentages of missing data in the NHANES, 2003–2004

Partition† Variable % missing, full data % missing, subset with
(n = 9041) HHINC observed

(n = 5400)

W HHINC ($1000 per 40.27 0
year)

Z Age (years) 0 0
Gender 0 0

X Education (years) 17.24 16.74
BMI (kg m−2/ 9.84 9.48

Y SBP (mm Hg) 25.02 24.5
DBP (mm Hg) 25.02 24.5

†Partition based on covariate missingness and subsample MAR.

(b) two socio-economic status measures, household income HHINC and years of education
EDU;

(c) three other covariates, age (in years), gender and BMI (in kilograms per metre squared).

Regressions of SBP and DBP on the covariates are fitted to study the effect of socio-economic
status on blood pressure.

Some of the variables have missing values—see Table 1 for the proportion of missing val-
ues for each variable. CC analysis suffers from the loss of a large proportion of the cases. IL
methods capture the partial information in the incomplete cases that is lost by CC analysis but
assume that the missing values are MAR. It is reasonable to assume the values to be MAR for
education, BMI and the two blood pressure measures, but missingness of household income is
thought more likely to be missing not at random (MNAR), since the probability of responding
to income is thought likely to depend on the underlying value of income—often individuals
with high or low values of income are considered less likely to respond to income than others. If
these assumptions are correct, IL methods yield biased regression estimates. This motivates the
new method SIL, which allows assumptions of missingness at random for some variables (SBP,
DBP, EDU and BMI) and assumptions of missingness not at random for others (HHINC), in
a sense that is defined precisely in Section 4.

Before considering SIL, it is useful to review more precisely the assumptions underlying IL
and CC methods. This is the topic of the next section.

3. Complete-case and ignorable likelihood methods

In this section, we consider the data with the structure in Table 2. Let {.zi, wi, yi/, i=1, . . . , n}
denote n independent observations on a (possibly multivariate) outcome variable Y and two sets
of covariates, Z and W , where Z is fully observed and W and Y have missing values. Interest
concerns the parameters φ of the distribution of Y given (Z, W ), say p.yi|zi, wi,φ/.

The rows of Table 2 divide the cases into two patterns. Pattern 1 (i = 1, . . . , m/ consists of
CCs, for which .zi, wi, yi/ are fully observed. Pattern 2 consists of cases where at least one of
the variables in wi, and possibly components of yi, are missing. The column R.wi,yi/ represents a
vector of response indicators for .wi, yi/, with entries 1 if a variable is observed and 0 if a variable
is missing; Rwi and Ryi denote the response indicators for wi and yi respectively. To describe
missing data patterns for a set of variables (say v), it is convenient to write uv = .1, . . . , 1/ to
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Table 2. General missing data structure for Section 2†

Pattern Observation i zi wi yi R.wi,yi/

1 1, . . . , m � � � u.w,y/ = .1, . . . , 1/
2 m+1, . . . , n � × ? ū.w,y/

†‘�’ denotes observed, ‘×’ denotes at least one entry missing and
‘?’ denotes observed or missing.

denote a vector of 1s of the same length as the vector v, and ūv to denote a vector of 0s and
1s of the same length as v for which at least one entry is 0. Then, for the cases i in Table 2,
R.wi, yi/ =u.w,y/ for the CCs in pattern 1 and R.wi,yi/ = ū.w,y/ for the incomplete cases in pattern
2. The pattern of missing values will typically vary over these cases, but we do not need to
distinguish them for the present discussion.

IL inference requires a model for the distribution of W and Y given Z indexed by parameters
θ, say p.wi, yi|zi, θ/—the fully observed covariates can be treated as fixed (Little and Rubin
(2002), section 11.4.) The IL is obtained by integrating the missing variables out of this joint
distribution, and treating θ as the argument of the resulting density, i.e.

Lign.θ/= constant
n∏

i=1
p.wobs,i, yobs,i|zi, θ/, .1/

where .wobs,i, yobs,i/ are the observed components of .wi, yi/ respectively. For Bayesian infer-
ences this likelihood is multiplied by a prior distribution for θ. Inferences about the parameter
φ=φ.θ/ of interest are obtained from inferences of θ in the usual way. In particular, the maxi-
mum likelihood (ML) estimate is φ̂=φ.θ̂/, where θ̂ is the ML estimate of θ, and draws from the
posterior distribution of φ are φ.d/ =φ.θ.d//, where θ.d/ is a draw from the posterior distribu-
tion of θ. Rubin’s (1976) theory shows that a sufficient condition for valid inferences based on
likelihood (1) is that the data are MAR, i.e.

p.Rwi , Ryi |zi, wi, yi,ψ/=p.Rwi , Ryi |zi, wobs,i, yobs,i,ψ/, .2/

where ψ are parameters for the missing data mechanism. If, in addition, the parameters θ and
ψ are distinct, inferences based on likelihood (1) are fully efficient, but missingness at random
is the important condition in practice.

CC analysis bases inferences for φ on the complete observations in pattern 1. In a likelihood
context, the method bases inference on the conditional likelihood corresponding to the CCs,
namely

Lcc.φ/= constant
m∏

i=1
p.yi|wi, zi, R.wi,yi/ =u.w,y/;φ/: .3/

The key condition under which inference based on Lcc.φ/ is valid is that the probability that
an observation is complete does not depend on the outcomes, i.e.

p.R.wi,yi/ =u.w,y/|zi, wi, yi,ψ/=p.R.wi,yi/ =u.w,y/|zi, wi,ψ/ for all yi: .4/

This condition allows missingness to be not at random, since it can depend on the values of W
which are sometimes missing. CC analysis works in this case because equation (4) implies that

p.yi|wi, zi, R.wi,yi/ =u.w,y/,φ/=p.yi|wi, zi,φ/,
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Table 3. Missing data pattern of example 1†

Pattern Observation i zi wi yi R.wi,yi/

1 1, . . . , m � � � (1,1)
2 m+1, . . . , n � × � (0,1)

†‘�’ denotes observed and ‘×’ denotes missing.

so the regression based on the CCs is the regression of interest for the whole sample. The
likelihood for a fully specified model with parameters .φ,γ/ can be written as

L.φ,γ|Z, Wobs, Yobs, R.w,y//=Lcc.φ/Lrest.φ,γ/,

and the component Lrest.φ,γ/ is discarded. ML estimates based on Lcc.φ/ are consistent and
asymptotically normal, but they are not necessarily fully efficient, since Lrest.φ,γ/ may contain
information about the parameters of interest φ. However, recovering this information requires
a model for the missing data mechanism, which may be difficult to specify correctly, and which
is not needed for CC analysis.

3.1. Example 1: missing data in a single covariate
Table 3 displays a special case of Table 2 where wi and yi are single variables, and the incomplete
cases have wi missing (denoted ×) but not yi. Condition (2) for values MAR becomes

p{R.wi,yi/ = .1, 1/|zi, wi, yi,ψ}=p{R.wi,yi/ = .1, 1/|zi, yi,ψ} for all wi, .5/

and condition (4) becomes

p{R.wi,yi/ = .1, 1/|zi, wi, yi,ψ}=p{R.wi,yi/ = .1, 1/|zi, wi,ψ} for all yi: .6/

The choice between IL or CC rests on whether condition (5) or (6) is a better assumption for the
missing data mechanism, i.e. on whether missingness of W is thought to depend on Y and Z
(but not W ) or on W and Z (but not Y ). Little and Wang (1996), example 2, presented a normal
pattern–mixture model where missingness is a function of wi +λyi, for which the ML estimates
correspond to IL when λ=0 and CC when λ=∞. An interesting feature of that example is that
CC analysis is not just consistent but also fully efficient under condition (6).

We note that CC analysis is viewed with disfavour in the missing data literature, because of
the loss of information in the incomplete cases. Many simulation studies in the literature (e.g.
Little (1979) and Chen et al. (2007)) show superiority of IL over CC but are biased towards IL
because they are based on MAR data. The above arguments also apply to repeated measures
models where Y is multivariate and both Y and covariates contain missing values. In this set-
ting, CC is still a superior alternative to IL if missingness depends on covariates, including those
with missing values, but not on the repeated measures Y. We are not aware of this advantage
of CC being considered in the repeated measures setting, where attention has been focused on
capturing the information in the incomplete cases.

4. Subsample ignorable likelihood methods—theory

We consider the missing data pattern in Table 4, in which another set of incomplete covari-
ates X is added. The observations are grouped into three patterns: pattern 1 consists of the
CCs (Rwi = uw; R.xi,yi/ = u.x,y//, pattern 2 incomplete cases with W fully observed (Rwi = uw;
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Table 4. General missing data structure for Section 3†

Pattern Observation i zi wi xi yi Rwi R.xi,yi/

1 1, . . . , m � � � � uw u.x,y/
2 m+1, . . . , m+ r � � ? ? uw ū.x,y/
3 m+ r +1, . . . , n � × ? ? ūw u.x,y/ or ū.x,y/

†‘�’ denotes observed, ‘×’ denotes at least one entry missing and ‘?’ denotes
observed or missing.

R.xi,yi/ = ū.x,y// and pattern 3 cases with W incomplete (Rwi = ūw/. Interest concerns the param-
eters φ of the distribution of Y given (Z, W , X/, say p.yi|zi, wi, xi,φ/. We propose SIL, which
applies an IL method to the subsample of cases in patterns 1 and 2 with both Z and W observed.

The division of covariates into W and X for SIL is determined by assumptions about the
missing data mechanism. Specifically, the method is valid under the following two assumptions.

(a) Covariate missingness of W : the probability that W is fully observed depends only on the
covariates and not Y , i.e.

p.Rwi =uw|zi, wi, xi, yi,ψw/=p.Rwi =uw|zi, wi, xi,ψw/ for all yi: .7/

(b) Subsample missingness at random of X and Y : X and Y are MAR within the subsample
of cases for which W is fully observed, i.e.

p.R.xi,yi/|zi, wi, xi, yi, Rwi =uw;ψxy·w/=p.R.xi,yi/|zi, wi, xobs,i, yobs,i, Rwi =uw;ψxy·w/

for all xmis,i, ymis,i: .8/

To establish the validity of SIL under conditions (7) and (8), we first consider the conditional
likelihood for a set of parameters ζ based on the joint distribution of X, Y , R.X,Y/ given W and
Z and Rwi =uw, i.e. restricted to cases i with W fully observed:

Lcc,w.ζ/=
m+r∏
i=1

p.xobs,i, yobs,i, R.xi,yi/|wi, zi, Rwi =uw; ζ/,

where ζ= .θ,ψ/. By a direct application of Rubin’s (1976) theory, under the subsample missing-
ness at random condition (8), this likelihood factorizes as

Lcc,w.ζ/=
m+r∏
i=1

p.xobs,i, yobs,i|wi, zi, Rwi =uw; θ/
m+r∏
i=1

p.R.xi,yi/|wi, xobs,i, yobs,i, zi, Rwi =uw;ψ/,

where the second component on the right-hand side does not involve θ, and the first component
on the right-hand side, namely

Lign,w.θ/=
m+r∏
i=1

p.xobs,i, yobs,i|wi, zi, Rwi =uw; θ/,

is the likelihood for the subsample with wi observed, ignoring the distribution of the missing
data indicators R.xi,yi/. Thus inference about θ, the parameter of the distribution .X, Y/ given
.W , Z/, based on Lign,w.θ/, is valid. Now factorize

p.xi, yi|wi, zi, Rwi =uw; θ/=p.yi|xi, wi, zi, Rwi =uw; θ/p.xi|wi, zi, Rwi =uw; θ/:
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By assumption (7), p.yi|xi, wi, zi, Rwi =uw; θ/=p.yi|xi, wi, zi,φ/, where φ=φ.θ/ is the parame-
ter of the regression of interest, and the conditioning on the cases with W observed is removed.
Thus, under assumptions (7) and (8), we can base inferences about θ on Lign,w.θ/ and then
derive likelihood inferences about φ=φ.θ/ as in Section 2.

The missing data mechanism that is defined by conditions (7) and (8) is suitable in empirical
studies where it is natural to assume covariate-dependent missingness for some covariates and
subsample missingness at random for others. For example, in the motivating example concern-
ing the regression of blood pressure on socio-economic variables in Section 2, HHINC may
be covariate dependent and the education and BMI values may be subsample MAR. In envi-
ronmental health research, values of variables that are missing because they lie below the limit
of detection are MNAR. If missing values exist for other variables and can be assumed to be
MAR, then SIL on the subsample with measurements within the detection limit yields valid
regression inference.

Generally, SIL methods are based on a partial likelihood (Cox, 1972) with the component
Lign,w.θ/ discarded from the analysis and hence involve a loss of efficiency relative to full likeli-
hood methods. However, they are more efficient than CC analysis and avoid the need to specify
the form of the missing data mechanism beyond assumptions (7) and (8).

Assumptions (7) and (8) differ from the assumptions under which IL and CC methods are
valid. Specifically, IL inference assumes that the data are MAR, i.e.

p.Rwi , R.xi,yi/|zi, wi, xi, yi,ψ/=p.Rwi , R.xi,yi/|zi, wobs,i, xobs,i, yobs,i,ψ/

for all wmis,i, xmis,i, ymis,i: .9/

This differs from conditions (7) and (8), where missingness of both wi and .xi, yi/ can depend
on missing components of wi. CC analysis yields valid inferences if the probability that an
observation is complete does not depend on the outcomes, i.e.

p.Rwi =uw, R.xi,yi/ =u.x,y/|zi, wi, xi, yi,ψ/=p.Rwi =uw, R.xi,yi/ =u.x,y/|zi, wi, xi,ψ/

for all yi: .10/

This differs from assumption (8) in that missingness of .xi, yi/ in condition (8) can depend
on the observed components of yi. If this is not so, then CC yields valid inferences but is less
efficient than SIL, since SIL uses the data in pattern 2, which are discarded by CC.

4.1. Example 2: normal regression model with two incompletely observed covariates
Table 5 displays a special case of Table 4, where W, X and Y (but not necessarily Z) are univar-
iate, Z and Y are fully observed, X is missing and W is observed in pattern 2, and W is missing
and X is observed in pattern 3. Restating assumptions (7) and (8) in this special case yields

p.Rwi =1|zi, wi, xi, yi,ψw/=p.Rwi =1|zi, wi, xi,ψw/ for all yi, .11/

p.Rxi =1|zi, wi, xi, yi, Rwi =1,ψxy·w/= p.Rxi =1|zi, wi, yi, Rwi =1,ψxy·w/

for all xi: .12/

Under this mechanism, SIL yields consistent estimates, but
(a) CC analysis may yield inconsistent estimates since missingness of X may depend on the

outcome Y , and
(b) IL methods may yield inconsistent estimates, since missingness of W can depend on

missing values of W (i.e. MNAR).
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Table 5. Missing data structure for example 2†

Pattern Observation i zi wi xi yi Rwi Rxi

1 1, . . . , m � � � � 1 1
2 m+1, . . . , m+ r � � × � 1 0
3 m+ r +1, . . . , n � × � � 0 1

†‘�’ denotes observed and ‘×’ denotes missing.

5. Simulation study

As a numerical illustration of the theory in Section 4, we simulate data for the pattern of example
2, under a variety of missing data mechanisms. For each of 1000 replications, 5000 observations
.zi, wi, xi, yi/, i=1, . . . , 5000, on Z, W , X and Y were generated as follows:

.zi, wi, xi/∼ind N.0, Σ/,

where N.μ, Σ/ denotes the normal distribution with mean μ and covariance matrix

Σ=
( 1 ρ ρ
ρ 1 ρ
ρ ρ 1

)
,

and

.yi|zi, wi, xi/∼ind N.1+ zi +wi +xi, 1/:

Missing values of W and X were then generated from the following two logistic models:

logit{P.Rwi =0|zi, wi, xi, yi/}=α
.w/
0 +α.w/

z zi +α
.w/
w wi +α.w/

x xi +α.w/
y yi,

logit{P.Rxi =0|Rwi =1, zi, wi, xi, yi/}=α
.x/
0 +α.x/

z zi +α
.x/
w wi +α.x/

x xi +α.x/
y yi

with xi fully observed when wi is missing.
For the missing data generation schemes above, CC analysis is valid if both α.w/

y and α.x/
y are

0; IL is valid if α.w/
w , α.w/

x and α.x/
x are 0; SIL is valid if α.w/

y and α.x/
x are 0. Four missing data

mechanisms were created by using different sets of values for the regression coefficients such
that, in mechanism I, all three methods (CC, IL and SIL) are consistent, whereas, in mechanisms
II, III and IV, just one of the three methods is valid. The simulation set-up is summarized in
Table 6.

These missing data mechanisms all generate from 20% to 35% of values missing in W and X
respectively. Two values of the correlation of X and W , ρ=0 and ρ=0:8, are chosen, to examine
the effect of correlation between the covariates.

Four specific versions of the methods are applied to estimate the regression coefficients:

(a) CC analysis, using ordinary least squares;
(b) IML for the whole data set;
(c) SIML, IML for the subsample with W observed;
(d) BD, least squares estimates from the regression before deletion, as a benchmark method.

For each method, Table 7 summarizes the root-mean-squared errors RMSE of estimates
of all the regression coefficients, and Tables 8 and 9 report respectively the empirical bias and
RMSE of estimates of the individual regression coefficients. Results in italics reflect situations
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Table 6. Missing data mechanisms generated in the simulations†

Mechanism α
.w/
0 α

.w/
z α

.w/
w α

.w/
x α

.w/
y α

.x/
0 α

.x/
z α

.x/
w α

.x/
x α

.x/
y

I, all valid −1 1 0 0 0 −1 1 0 0 0
II, CC valid −1 1 1 1 0 −1 1 1 1 0
III, IML valid −2 1 0 0 1 −2 1 1 0 1
IV, SIML valid −1 1 1 1 0 −2 1 1 0 1

†Missing values of W and X are generated on the basis of the following logistic models:

logit{P.Rwi =0|zi, wi, xi, yi/}=α
.w/
0 +α

.w/
z zi +α

.w/
w wi +α

.w/
x xi +α

.w/
y yi;

logit{P.Rxi =0|Rwi =1, zi, wi, xi, yi/}=α
.x/
0 +α

.x/
z zi +α

.x/
w wi +α

.x/
x xi +α

.x/
y yi:

The four missing data mechanisms are as follows: I, missingness of W =f.Z/, missingness of X=f.Z|W observed/
and all four methods are valid; II, missingness of W =f.Z, W , X/, missingness of X=f.Z, W , X|W observed/ and
only CC analysis is valid; III, missingness of W = f.Z/, missingness of X = f.Z, W | observed/ and only IML is
valid; IV, missingness of W =f.Z, W , Y/, missingness of X=f.Z, W , Y |W observed/ and only SIML is valid.

Table 7. Summary RMSEs of estimated regression coefficients for BD, CCs, IML and SIML, under four
missing data mechanisms†

Method RMSE× 1000 for the following values of ρ and mechanisms:

ρ=0 ρ=0.8

I II III IV I II III IV

BD 27 28 28 27 50 46 50 46
CC 45 44 553 322 86 71 426 246
IML 37 231 36 116 58 96 53 90
SIML 42 133 360 49 70 80 319 69

†The four missing data mechanisms are as follows: I, missingness of W = f.Z/, missingness of X = f.Z|
W observed/ and all four methods are valid; II, missingness of W = f.Z, W , X/, missingness of X =
f.Z, W , X|W observed/ and only CC analysis is valid; III, missingness of W =f.Z/, missingness of X=f.Z, W |
W observed/ and only IML is valid; IV, missingness of W =f.Z, W , Y/, missingness of X=f.Z, W , Y |W observed/
and only SIML is valid. The RMSE-estimates are 1000

√
E.‖βr −βTRUE‖2/, with r denoting the rth repetition.

Values in italics are for methods that are consistent for the mechanism generating the data.

where the method is consistent on the basis of the theory of Section 4, and hence should do
well. The results are based on 1000 repetitions in each simulation.

In general, the simulation results are in line with theoretical expectations. Results for SIML
lie between those for CC analysis and IML for mechanisms I, II and III, where one or both
of CC analysis and IML are consistent—both CC and IML in mechanism I, CC analysis in
mechanism II and IML in mechanism III. This finding reflects the fact that SIML is a hybrid of
CC analysis and IML, sharing features of both methods. In mechanism IV, SIML is consistent
but CC analysis and IML are inconsistent, and in this case SIML has small empirical bias and
generally performs best, except for some individual coefficients where the gain in efficiency of
IML compensates for the bias of that method. We now describe results in a little more detail.

For mechanism I, all three methods yield consistent estimates, IML is best since it makes full
use of the data, CC analysis is the worst since it discards the most information and SIML lies
between CC analysis and IML, since it retains some incomplete cases and drops others.
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For mechanism II, CC analysis is valid and in general has the lowest RMSEs, whereas both
IML and SSIML are biased, with SIML having RMSEs lying between those of CC analysis and
IML. However, for ρ=0:8, SIML and IML yield comparable or even smaller RMSEs than CC
analysis for βz and βw, reflecting gains in efficiency that compensate for bias in these parameter
estimates.

For mechanism III, IML is the only valid method among the three and is clearly the best
method. Both CC analysis and SIML lead to biased estimates, as shown in Table 7, with SIML
being better than CC analysis since it incorporates features of IML as a method.

In mechanism IV, SIML is valid and CC analysis and IML are biased. The RMSEs from
SIML are generally the smallest, except that IML yields a smaller RMSE than SIML for βw.

In some of these situations, supporters of IML may note that it competes well with other
methods, despite its theoretical inconsistency and the quite sizable sample size. This suggests a
degree of robustness for IML, which has the virtue of retaining all the data.

6. Application to motivating example

We now apply the proposed method to the NHANES (2003–2004) data that were presented in
Section 2. Two blood pressure measurements, systolic blood pressure SBP and diastolic blood
pressure DBP, are regressed on household income HHINC, in dollars per year, and years of
education EDU, adjusting for age (in years), gender and BMI, in kilograms per metre squared.
Household income data are categorical with 11 categories in the NHANES, and we use the
median of the corresponding category as a proxy to the true household income. Education is
dichotomized to be high school and above versus less than high school.

Age and gender are fully observed, whereas household income, education, BMI and the two
blood pressure measures are subject to missing data, with the percentages shown in Table 1. We
assume covariate missingness for household income, given evidence that people with high or
low income are more likely to fail to report it, and we assume subsample missingness at random
for other variables:

(a) missingness of BMI and blood pressure measurements is probably completely at random
owing to missing visits;

(b) with income observed, it is reasonable to assume values MAR for education because
income and education are correlated (Tolley and Olson, 1971).

With these two plausible assumptions, SIL on the subsample with household income observed
yields consistent estimates of the regression, whereas IL on the whole sample may be biased.
CC analysis is also valid since there is little evidence to believe that missingness of covariates
depends on blood pressure; however, SIL is preferred over CC analysis since it uses more infor-
mation in the incomplete cases than does CC analysis. For simplicity, we ignore the design
features (weighting and clustering, etc.) of the NHANES. For the SIL method, we use IVE-
ware to multiply-impute missing values in the subsample with household income observed, and
then use SAS software (SAS Institute, 2010) to perform the regression analyses and to combine
results from individual imputed data sets. We denote this method SIMI. For the IL method,
we use IVEware to multiply-impute the full sample, and we use SAS software for regression
analyses and combining the results. We denote this method IMI. The results of CC analysis,
SIMI analysis and IMI are shown in Table 10. All three methods yield similar estimates of the
effect of household income on blood pressure (statistically not significant for SBP but significant
for DBP), with blood pressure increasing with income. There is a negative association between
education and SBP and a positive association between education and DBP, regardless of the
method of analysis. For education, SIMI and CC analysis yield similar and stronger effects
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Table 10. Estimates of the effect of socio-economic status on blood pressure (NHANES, 2003–2004)

CC analysis IMI analysis SIMI analysis

Estimate Standard p-value Estimate Standard p-value Estimate Standard p-value
error error error

SBP
Intercept 87.80 1.16 < 0:0001 89.28 1.06 < 0:0001 87.53 1.35 < 0:0001
HHINC −0.84 0.97 0.3907 −0.84 1.11 0.4574 −0.88 0.94 0.3482

($100000)
EDU (years) −2.30 0.57 < 0:0001 −2.06 0.44 < 0:0001 −2.38 0.55 < 0:0001
AGE (years) 0.49 0.01 < 0:0001 0.50 0.01 < 0:0001 0.50 0.01 < 0:0001
Female 3.31 0.48 < 0:0001 2.78 0.44 < 0:0001 3.15 0.46 < 0:0001
BMI (kg m−2/ 0.46 0.04 < 0:0001 0.41 0.03 < 0:0001 0.47 0.04 < 0:0001

DBP
Intercept 45.46 1.06 < 0:0001 46.94 1.00 < 0:0001 45.46 1.19 < 0:0001
HHINC 2.97 0.89 0.0008 2.82 0.87 0.0026 2.83 0.97 0.0050

($100000)
EDU (years) 4.86 0.52 < 0:0001 4.06 0.43 < 0:0001 4.95 0.52 < 0:0001
AGE (years) 0.12 0.01 < 0:0001 0.11 0.01 < 0:0001 0.11 0.01 < 0:0001
Female 1.81 0.44 < 0:0001 1.83 0.36 < 0:0001 1.86 0.42 < 0:0001
BMI (kg m−2/ 0.43 0.04 < 0:0001 0.40 0.03 < 0:0001 0.44 0.04 < 0:0001

on the two blood pressure measures than IMI, implying possible bias in IMI given the above
assumptions about the missing data mechanism. The larger sample of SIMI over CC analysis
should result in a gain in efficiency for SIMI in this situation, although CC analysis and SIMI
have similar estimated standard errors for this particular sample.

7. Discussion

The idea behind SIL, to apply an analysis that assumes values MAR to a subsample of the data
that is complete on a subset of the covariates, is both simple and powerful. SIL analysis has the
following strengths:

(a) it is easy to implement, since existing software for doing MAR value analyses is all that
is required, and this software is now widely available for many common models;

(b) it avoids discarding all incomplete cases, thus alleviating one of the drawbacks of CC
analysis;

(c) it applies to a broad class of univariate and multivariate regression models, including
multivariate linear regression, generalized linear models and generalized linear mixed
models;

(d) the method works for a class of missing data mechanisms, defined by conditions (7) and
(8), where both IL and CC methods fail to give consistent estimates.

This extends the class of models for data MNAR that can be handled by a selective use of MAR
data methods and allows combinations of MAR and MNAR data mechanisms for different
variables in the data set.

In another analysis which drops a subset of incomplete cases, Von Hippel (2007) applied
a multiple-imputation analysis with data MAR in the regression setting, where a univariate
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outcome Y has missing values, and then applied the final regression analysis to the subsample
of cases with Y observed, i.e. dropping the cases with Y imputed. This strategy reduces the
simulation error from multiple imputation, but it is applied within a univariate regression for
a MAR data model and hence is much less general than SIL and does not generate a method
that is consistent for a missingness not at random mechanism.

The general theoretical rationale of SIL is partial likelihood (Cox, 1972). This involves a
potential loss of efficiency relative to full modelling, but it is much simpler, since the latter
requires specifying the precise form of the missing data mechanism via a model for the missing
data indicators, which is vulnerable to model misspecification. Also, software for full MNAR
data models is not widely available.

An important topic is how much efficiency is lost by SIL relative to full likelihood methods.
SIL involves minimal loss when the fraction of cases in the subsample with the MNAR subset
W observed is relatively high, and hence the method is most beneficial relative to CC analysis
when the fraction of information in the pattern with W complete but other variables incom-
plete is relatively high. It can be shown by an extension of the arguments in Little and Wang
(1996) that, for the data in example 2, the SIL method is in fact full ML for a particular normal
pattern–set mixture model (Little, 1993). This aspect of SIL methods will be the subject of future
work.

The form of IL method in SIL is left unspecified in this paper where possible, for increased
generality. As noted, options for IL include IML, multiple imputation using software like PROC
MI or IVEware (Raghunathan et al., 2001) and fully Bayes methods using software such as
BUGS (Gilks et al., 1994). Mixing these methods is also advantageous in some settings.

The idea of SIL is presented here in the context of likelihood-based analyses, but it also applies
to non-likelihood analyses that are valid under the assumption of data MAR. For example, for
repeated measures data, the IL method applied to the subsample could be replaced by a method
such as weighted generalized estimating equations, which is also valid under data MAR, without
affecting the validity of the method under the stated assumptions (7) and (8).

From a practitioner’s viewpoint, the main challenge in applying SIL is deciding which co-
variates belong in the set W and which belong in the set X , i.e. which covariates are used
to create the subsample for the missingness-at-random analysis. The choice is guided by the
basic assumptions (7) and (8), concerning which variables are considered covariate-dependent
MNAR and which are considered subsample MAR. This is a substantive choice that requires
an understanding about the missing data mechanism in the particular context. It is aided by
learning more about the missing data mechanism, e.g. by recording reasons why particular val-
ues are missing. Although a challenge, we note that the same challenge is present in any missing
data method, including CC analysis, IL and weighted generalized estimating equations. When
faced with missing data, assumptions are inevitable, and they need to be as reasonable and as
well considered as possible.

In cases where a choice cannot be made, an alternative strategy is simply to see whether key
results are robust to alternative methods. Thus, one might apply CC analysis, IL and SIL for
subsamples judiciously chosen on the basis of assumptions (7) and (8), to assess sensitivity of
key inferences to alternative assumptions about the missing data mechanism.
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