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The amino acid neurotransmitter GABA has long been recognised

as being of prime importance in the control of GnRH release

and thereby gonadotrophin secretion in mammals. Indeed, the

first report of GABA modulation of luteinising hormone (LH)

secretion was published in Science in 1974 (1) and a PubMed

search of ‘GABA & GnRH’ presently generates a list of 413 pub-

lications. A large number of in vivo intracerebral and i.c.v. stud-

ies now support an important role for GABA in the control of

many aspects of gonadotrophin secretion, and in a variety of

species (2). The prevailing view from these in vivo studies has

been that GABA acts through GABAA receptors to suppress both

pulsatile and surge modes of LH secretion (2), although there

are also examples of stimulatory actions of GABA action on

GnRH ⁄ LH release (3, 4). However, the precise mechanisms and

loci of GABA action within the GnRH neuronal network (i.e.

GnRH neurones, afferent neurones and associated glial cells),

remain unclear. Studies examining the effects of GABA on GnRH

neurones at a cellular level have progressed from GT1 cell and

embryonic nasal placode models through to brain slice work in

transgenic mice. Experiments in the latter preparation have

enabled the actions of GABA to be examined on GnRH neurones

closer to the in situ situation. This review intends to provide a

background to understanding GABAA receptor function and

experimental interpretation, and to address the controversy that

has arisen regarding the effects of direct GABAA receptor activa-

tion on adult GnRH neurones.
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The gonadotrophin-releasing hormone (GnRH) neurones represent the final output neurones of

a complex neuronal network that controls fertility. It is now appreciated that GABAergic neuro-

nes within this network provide an important regulatory influence on GnRH neurones. However,

the consequences of direct GABAA receptor activation on adult GnRH neurones have been con-

troversial for nearly a decade now, with both hyperpolarising and depolarising effects being

reported. This review provides: (i) an overview of GABAA receptor function and its investigation

using electrophysiological approaches and (ii) re-examines the past and present results relating

to GABAergic regulation of the GnRH neurone, with a focus on mouse brain slice data. Although

it remains difficult to reconcile the results of the early studies, there is a growing consensus

that GABA can act through the GABAA receptor to exert both depolarising and hyperpolarising

effects on GnRH neurones. The most recent studies examining the effects of endogenous GABA

release on GnRH neurones indicate that the predominant action is that of excitation. However,

we are still far from a complete understanding of the effects of GABAA receptor activation upon

GnRH neurones. We argue that this will require not only a better understanding of chloride ion

homeostasis in individual GnRH neurones, and within subcellular compartments of the GnRH

neurone, but also a more integrative view of how multiple neurotransmitters, neuromodulators

and intrinsic conductances act together to regulate the activity of these important cells.
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GABAA receptor function

Types of GABA receptors

GABA binds to two classes of receptors: GABAA and GABAB, with a

third class, GABAC, being considered by some to be a subclass of

the GABAA group with similar structure and function (5, 6). GABAA

and GABAB receptors can be located on the pre- and postsynaptic

membrane, and also outside the synapse at extrasynaptic locations

(Fig. 1).

Although this review focuses upon the GABAA receptor, it is

important to recognise that GABAB receptors are also likely to play

a role in the direct GABAergic modulation of GnRH neurone excit-

ability (7). GABAB receptors are metabotropic seven-transmembrane

domain G-protein-coupled receptors that regulate downstream

channels (8). It is worth emphasising that the GABAB receptor itself

is not an ion channel with changes in membrane current generated

in response to GABAB receptor activation being a result of recep-

tor-mediated changes in downstream effector channels. Typically,

the postsynaptic GABAB receptor is coupled to potassium channels,

whereas the presynaptic GABAB receptor is linked to calcium chan-

nels (8). Although information remains scarce, this is likely to be

the situation for GnRH neurones (Fig. 1). Stimulation of GABAB

receptors results in the activation of a specific class of potassium

channels that generates membrane hyperpolarisation and inhibition

of GnRH neurone firing (7). Preliminary data also indicate that cal-

cium channel-linked GABAB receptors are present on GABAergic

nerve terminals regulating GnRH neurone excitability (X. Liu & A. E.

Herbison, unpublished data). Although there is some evidence that

GABAB receptors can act to suppress high-frequency activated

GABA inputs to GnRH neurones (9), the roles of endogenous GABA

in activating GABAB receptors on GnRH neurones remain largely

unknown.

The GABAA receptor is a ligand-gated ion channel composed of

five subunits (typically 2a, 2ß plus a variable fifth), each of which

contributes to a central pore (10). Binding of two GABA molecules

at the a–ß interfaces most effectively gates (i.e. opens) the channel

(11), although both single ligand and ligand-independent opening

are possible (12, 13). The GABAA receptor pore is permeable in both

directions to monovalent anions, the most physiologically relevant

of which are Cl) and HCO�3 (14, 15). A variety of GABAA receptor

subunits are expressed in GnRH neurones (see below), functional

GABAA receptor-mediated currents can be measured in response to

both exogenous and endogenous GABA (16–18), and spontaneous

GABAergic transmission is altered in different reproductive condi-

tions (see below). Thus an understanding of the consequences of

GABAA receptor activation is important in forming a complete pic-

ture of GnRH neurobiology.

The opening of the intrinsic ion channel of the GABAA receptor is

neither innately excitatory, nor inhibitory to a cell (10, 19). Rather, as

with any ion channel, the net current flow through the pore depends

primarily on two variables: the concentration gradients of the perme-

able anions and the membrane potential of the cell at the time the

channel opens. These forces define the electrochemical potential that

drives ion flow through the open channel. The membrane potential

at which these two forces are equal and opposite is referred to as

the reversal potential for the current through that class of channels;

at this potential, there is no net current flow.

As noted above, both Cl) and HCO�3 can flow through the GABAA

receptor pore. The permeability of GABAA receptors to Cl) is typically

two to five-fold greater than that to HCO�3 (14, 20) in mammalian

cells. Under physiological conditions, Cl) is the main charge carrier

through the GABAA receptor. However, HCO�3 can also contribute to

net current via the GABAA receptor depending on both pH and intra-

cellular [Cl)] (21, 22). Hence, although dominated by Cl), the reversal

potential for the GABAA receptor (EGABA) results from the flow of

both Cl) and HCO�3 ions. Intracellular bicarbonate levels tend to

accumulate because of the action of carbonic anhydrase to generate

HCO�3 from CO2 and H2O (23). As the reversal potential for HCO�3 is

quite depolarised, EGABA is slightly more depolarised than the reversal

potential for Cl) (ECl), alone. Importantly, as shown below, ECl can

vary from cell to cell and with developmental stage, and this results

in concomitant variations in EGABA.

Cation chloride co-transporters

The intracellular chloride concentration of a cell is essentially set by

the action of cation chloride co-transporters (Fig. 2). These trans-

porters are secondary active transporters that utilise the driving

force in Na+ and K+ gradients established by the Na-K ATPase (19).

The chloride-cation co-transporters are electrically neutral; thus,

their rate of transport does not contribute in and of itself to mem-

brane potential. There are two primary classes: K-Cl co-transporters

(KCCs) and Na-K-Cl co-transporters (NKCCs). Under physiological

Ca++
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GABAA receptors
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GABAA receptors
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Fig. 1. Schematic representation of GABA signalling at the gonadotrophin-

releasing hormone (GnRH) neurone in the mouse. GABA terminals (grey)

synapsing on GnRH neurones (green) are likely to have GABAB receptors

that act to inhibit calcium entry to the terminal, thereby suppressing pre-

synaptic activity. GABA released from the nerve terminal activates postsyn-

aptic GABAA receptors within the synapse to generate a fast phasic

depolarising or hyperpolarising response and also GABAB receptors that acti-

vate potassium channels that hyperpolarise the membrane. Spill-over of

GABA from the synapse activates extrasynaptic GABAA receptors (expressing

the delta receptor subunit) that provide a low level tonic influence on mem-

brane polarisation.
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conditions, KCCs extrude Cl) from the cell, lowering intracellular

Cl) levels. By contrast, NKCCs accumulate Cl) and raise intracellular

Cl) levels (Fig. 2).

The intracellular Cl) concentration in most neurones is reduced

from elevated to low levels during early postnatal life. This shift

has been associated with an increase in KCC expression and func-

tion, in particular KCC2B, concomitant with a reduction in NKCC1

(24) (Fig. 2). Although this neonatal developmental shift has

become somewhat dogma, cell types are still being identified that

do not follow this developmental pattern, with several cell types

continuing to exhibit elevated intracellular Cl) concentrations either

locally or globally into adult life (25–27). For example, primary

olfactory neurones maintain elevated intracellular Cl) throughout

adult life as a result of the continued function of NKCC1 and low

expression of KCC2 (28, 29). In addition to global expression pat-

terns, post-translational modification and subcellular location of

cation chloride transporters appear to be critical to sculpting

response to GABA. For example, NKCCs are activated by phosphory-

lation, whereas KCCs can be inhibited or activated by phosphoryla-

tion (30–33), and NKCC1 may be targeted to the axon initial

segment where axon potentials are initiated (34, 35). Thus, KCCs

and NKCCs set intracellular Cl) concentrations in a cell-type- and

subcellular location-specific manner and this, in turn, provides the

dominant force setting EGABA of the cell ⁄ region (Fig. 2).

Consequence of GABAA receptor activation

Whether activation of GABAA receptors results in depolarisation or

hyperpolarisation of a neurone’s membrane potential depends on the

relationship of EGABA to the membrane potential of the cell at the

time the receptor is gated by GABA (Fig. 2). When the membrane

potential of a cell is depolarised relative to EGABA, opening the intrin-

sic channel of the GABAA receptor will hyperpolarise the membrane;

similarly, when the membrane potential is hyperpolarised relative to

EGABA, opening this channel will depolarise the membrane (Fig. 2). In

other words, if the membrane potential of a cell was )60 mV and

EGABA was )40 mV, then opening the GABAA receptor would result

in an outward flow of Cl) in an attempt to depolarise the cell to a

membrane potential of )40 mV. If EGABA was )80 mV, then GABAA

receptor activation would result in Cl) entering the cell to hyperpola-

rise it. Hence, it can be seen that EGABA is critical to determining

whether GABA will depolarise or hyperpolarise a cell. The relationship

of EGABA to action potential threshold is also important; if EGABA is

more depolarised than threshold, activation of GABAA receptors can

depolarise a cell sufficiently to initiate action potential firing. As

noted above, EGABA is determined primarily by ECl, which is estab-

lished by the activity of the chloride ion co-transporters (Fig. 2). This

is why the neonatal developmental changes in NKCCs and KCCs

noted above are so fundamental to the shift from depolarising to
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Fig. 2. Schematic diagram showing the typical interrelationships between chloride transporters, chloride levels and GABAA receptor function that underlie de-

polarising and hyperpolarising actions of GABA in neurones. The balance of chloride ion transport into the neurone determines the intracellular chloride ion

concentration. In neurones under physiological conditions, this is dependent principally on the activity of the sodium-potassium-chloride co-transporter 1

(NKCC1), bring chloride into the cell, and the potassium-chloride co-transporter 2 (KCC2), removing chloride from the cell. Cells with a relatively high intracel-

lular chloride ion concentration will have a relatively depolarised reversal potential for chloride (depol ECl) that, in turn, sets a relatively depolarised reversal

potential for GABA (depol EGABA), in this case imagined to be )40 mV. When the cell is exposed to GABA, the GABAA receptor will open and the cell mem-

brane potential will move towards EGABA as chloride ions leave the cell, thus generating a depolarising response. The opposite pattern of events occurs for cells

with a relatively low intracellular chloride concentration resulting in hyperpolarisation (right). Note that a level of intracellular chloride could be attained at

which EGABA is similar to the resting membrane potential (imagined here to be )60 mV), in which case activation of the GABAA receptor would have minimal

effects on membrane potential. Adapted with permission (138).
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hyperpolarising responses to GABAA receptor activation in many

forebrain neurones (36, 37). It also explains why it is not easy to pre-

dict whether GABAA receptor activation will be hyperpolarising or de-

polarising because Cl) homeostasis is not static in neurones, even in

the adult. Furthermore, EGABA can be near the resting potential mem-

brane potential of a cell thereby making its effects on membrane

potential small or even negligible.

A further complication in defining GABAA receptor activation as

being excitatory or inhibitory is that hyperpolarisation and depolar-

isation may not necessarily be equated with inhibition and excita-

tion, respectively. For excitation to occur (i.e. initiation of action

potential firing), a depolarising response must be sufficient to acti-

vate the voltage-gated sodium channels that generate the sharp

spike of the action potential (38, 39). That is, the membrane must

depolarise to the threshold for action potential initiation. A depolar-

isation in membrane potential that is insufficient to reach threshold

for action potential initiation can generate two main responses.

First, it can activate other mechanisms such as voltage-dependent

channels, which further depolarise the membrane to the threshold

for action potential generation (21, 34, 40, 41). Second, it can

induce what appears to be a paradoxical inhibition of action poten-

tials through what is called ‘depolarising’ or shunting inhibition.

Whenever the GABAA receptor channel is open, there is a transient

increase in membrane conductance through the pores and thus a

decrease in membrane resistance (also called input resistance, Rin).

During this transient reduction in input resistance, a greater

amount of current is required to produce a unit change in mem-

brane potential (from Ohm’s law DVmembrane = IRin). As a result, a

depolarisation in membrane potential subsequent to GABAA recep-

tor activation may render a cell less responsive to other inputs,

leading to shunting inhibition (42). In cells with slow membrane

time constants (typically big cells with extensive dendritic trees),

the resultant slow depolarisation can also inactivate sodium chan-

nels needed for action potential generation, causing transient inhi-

bition through this mechanism (43).

The classic response to GABAA receptor activation in adults is a

hyperpolarisation in membrane potential that is typically inhibitory.

It is possible, however, for hyperpolarisation to remove inactivation

from sodium channels. This can result in rebound action potentials

after decay of the inhibitory postsynaptic potential (44–46). There

are thus many factors that must be taken into account before clas-

sifying a response to GABAA receptor activation as excitatory or

inhibitory.

An important final consideration when examining the effects of

GABAA receptor activation on membrane potential is that of experi-

mental approach (Fig. 3). As noted above, intracellular Cl) levels are

absolutely critical in determining EGABA and so it is essential that

the recording configuration does not alter the internal chloride

milieu of the recorded cell. There two practical ways to achieve this;

the first is to use an ‘on-cell’ recording approach in which an elec-

trode is placed on the cell without any attempt to break the mem-

brane of the cell (Fig. 3A). This allows the investigator to record the

firing pattern of the cell (47) without any perturbation of the intra-

cellular environment, or to estimate membrane potential (48). The

second approach is to use the ‘perforated-patch’ approach (Fig. 3B).
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Fig. 3. Schematic diagram showing the different electrophysiological

recording modes used to examine GABAA receptor functioning in gonadotro-

phin-releasing hormone (GnRH) neurones. (A) On-cell configuration in which

the recording electrode (grey) is placed on the cell membrane, a tight seal is

formed and currents recorded from the GnRH neurone. The current underly-

ing an action potential is recorded as an action current (in pA); this enables

the firing pattern of a GnRH neurone to be monitored without altering the

intracellular constituents (e.g. the chloride ion concentration) of the GnRH

neurone. The example trace shows a GnRH neurone activated to fire action

currents by GABA added to the bathing medium. (B) Perforated patch

recording mode in which the presence of an antibiotic (in this case gramici-

din) in the patch electrode results in ion-selective pores being made in the

membrane beneath the electrode. Gramicidin allows some ions (potassium

and sodium) to pass through the pores but not chloride. This enables the

membrane potential to be monitored at the same time as maintaining the

normal chloride ion concentration of the cell. The example shows a GnRH

neurone with a resting membrane potential of approximately )55 mV that

responds to GABA application with a short burst of action potentials and

more prolonged depolarisation. (C) Whole-cell recording mode in which the

membrane within the electrode is ruptured so that the intracellular contents

of the cell become dialysed with that of the pipette. In this way, the intra-

cellular ion environment of the GnRH neurone can be manipulated by the

contents of the pipette. This mode is commonly used to help isolate or aug-

ment a particular current for measurement. In this example, the recording

was optimised to monitor Cl) currents to measure the frequency of activa-

tion of GABAA receptors. The recording on the right shows postsynaptic cur-

rents as a result of chloride flow through GABAA receptors of the recorded

cell that were opened by synaptic release of GABA. Note the different time-

scale of this recording compared to that in (A) and (B). It is important to

note that one cannot use this approach to study the physiological response

of the recorded cell to activation of those receptors as the chloride ion con-

centration in the cell is artificial (Kiho Lee and Stephanie Constantin are

thanked for their help with preparing this figure).
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In this case, an electrode with the antibiotic gramacidin in its tip is

placed on the cell membrane. With time, gramicidin forms small

pores in the membrane beneath the electrode through which

monovalent ions such as sodium and potassium can pass, although

these pores are not permeable to chloride ions. Hence, in this con-

figuration, the investigator has a relatively good electrical connec-

tion with the cell and can measure firing rate and membrane

potential changes without altering the internal chloride ion balance

(49). It is important to note here that the most common electro-

physiological technique called ‘whole-cell’ recording (Fig. 3C) is not

appropriate for determining the effect of GABAA receptor activation

on membrane potential or firing rate because this method dialyses

the intracellular milieu of the cell with the solution in the patch

electrode buffer, and thus alters the native intracellular [Cl)]. The

whole-cell mode can, however, be used to good effect to examine

the dynamics of the individual GABAA receptors because, by filling

the cell with a high Cl) concentration through the pipette, one can

amplify the Cl) ion movements and observe GABAA receptor ion

channel openings and closings with ease.

GABA inputs, GABAA receptors and GnRH neurones in
the mouse

GnRH neurones receive GABAergic input

One of the most consistent observations revealed during the initial

electrophysiological investigations of GnRH neurones in the brain

slice preparation was that these cells receive GABAergic input (18,

50). Almost all GnRH neurones exhibit GABAA receptor-mediated

postsynaptic currents (p.s.c.s.) and respond to exogenous GABA (16,

18, 50, 51). In both voltage- and current-clamp recording configu-

rations, the great majority of fast postsynaptic activity at the GnRH

neurone soma is attributable to GABAA receptor activation (18, 50).

The remaining fast p.s.c.s. result from the activation of glutamate

receptors, principally the AMPA receptor (16, 52–54); however, it is

important to note that the glutamatergic component is small com-

pared to the GABAergic component. In experiments in which GABA

and glutamate p.s.c.s. have been recorded from GnRH neurones, the

rate of GABAA-mediated events is typically five- to ten-fold greater

than glutamate events (52, 55–58). The potential role of glutama-

tergic and GABAergic transmission to distal dendrites remains to be

determined (59, 60).

GABAA receptor signalling occurs in two forms: ‘phasic’ and

‘tonic’. Phasic refers to the normal fast activation of GABAA recep-

tors within the synapse, whereas tonic represents the activation of

extrasynaptic GABAA receptors by GABA in the extracellular space

(61) (Fig. 1). Phasic activation is observed electrophysiologically as

the brief opening and closing of GABAA receptors, resulting in

p.s.c.s. Tonic currents are evident as a persistent current that has a

sustained influence on membrane potential. Although phasic GABAA

receptor signalling has long been recognised in GnRH neurones, it

is only recently that tonic GABAA signalling has been identified in

these neurones (62, 63). Mediated by d subunit-containing GABAA

receptors and partly dependent upon the activity of glial and neu-

ronal GABA transporters, which clear GABA from the extracellular

space, tonic GABAA receptor signalling was found to hyperpolarise

the membrane by approximately 5 mV in mouse GnRH neurones

(63). As such, modulation of this tonic GABA current could have

important roles in determining the excitability of GnRH neurones.

A feature of phasic GABAA receptor activity in GnRH neurones in

the brain slice preparation is that it often does not appear depen-

dent to any large extent upon electrical activity in the presynaptic

GABA terminal. The frequency of GABAA-mediated miniature (action

potential independent) p.s.c.s. is often similar to that of spontane-

ous (action potential dependent and independent) p.s.c.s. (57, 64,

65). This type of activity-independent GABA release is observed in

other neurones (66–68); however, its regulation and function

remain poorly understood (69, 70). Indeed, a variety of chronic and

acute gonadal steroid treatments known to modulate the frequency

of GABAA p.s.c.s. in GnRH neurones (see below) do so by changing

the rate of action potential-independent GABA release with no or

little measured effect on activity-dependent GABA release (57, 62,

64, 65, 71). Because there is evidence to suggest that activity-inde-

pendent GABA release is related to the degree of GABAergic input

existing at a cell (68), it is possible that the changes in GABAA min-

iature postsynaptic currents (m.p.s.c.) frequency represent altera-

tions in the number or extent of GABAergic inputs to GnRH

neurones. Unfortunately, little is presently known about GABA-

GnRH neurone ultrastructural rearrangements with steroid treat-

ment. On the basis of in vivo microdialysis and neurochemical stud-

ies it has been suggested that the oestrogen regulation of GABA

release in the preoptic area results from a reorganisation of GABA

presynaptic terminal dynamics (72). Recent work also suggests ret-

rograde endocannbinoid signalling from GnRH neurones can alter

m.p.s.c. frequency, suggesting that signalling at the presynaptic ter-

minal can bring about functional changes that are not dependent

on structural rearrangements (73).

It is important to note that all of the GABAA p.s.c.recordings

have been undertaken in the acute brain slice preparation in which

many, or possibly most, of the GABAergic (and other) afferents to

GnRH neurones have been severed. As such, it may be that much

of the activity-dependent GABA input is absent in the slice prepara-

tion. Indeed, recordings from other neuronal cell types in vivo have

revealed that levels of synaptic activity and firing rates are up to

50-fold higher in vivo compared with the acute brain slice prepara-

tion (74, 75). Establishing the actual rate and pattern of GABAA

p.s.c.s in GnRH neurones in a more intact preparation is an impor-

tant future goal for this field.

At present, the locations of the GABAergic cell bodies innervating

GnRH neurones are not well established. The anteroventral periven-

tricular nucleus (AVPV), a region that has been suspected as provid-

ing GABAergic inputs for many years (76–79), has just recently been

confirmed using an electrophysiological approach (9). By cutting

horizontal brain slices, it was found possible to maintain the AVPV

input to GnRH neurones in GnRH-GFP transgenic mice and this was

shown to provide a very substantial GABAergic input to GnRH neu-

rones. Another study has examined the potential locations of GABA

neurones contributing to p.s.c.s. in GnRH neurones at the time of

oestradiol positive feedback by looking for differences between lat-

eral and medial (containing AVPV) sagittal and coronal brain slices
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(57). However, with one exception, no differences were detected in

GABAA p.s.c. frequency between any of the slice configurations, or

any tetrodotoxin (TTX)-sensitivity found. The exception was that the

p.s.c. frequency of GnRH neurones recorded in medial sagittal slices,

and exhibiting high p.s.c. frequency at the time of the GnRH surge,

was reduced by approximately 50% by TTX or by a cut through the

slice made just caudal to the AVPV. One interpretation of this finding

is that an activity-dependent GABA input originating caudal to the

AVPV, perhaps the suprachiasmatic nucleus, is activated at the time

of the surge (57). Further work is required to establish the origins of

GABAergic inputs to GnRH neurones.

GnRH neurones express a range of GABAA receptor
subtypes

As mentioned above, the GABAA receptor is a pentamer made up of

different combinations of subunits that define its binding affinity

to a variety of allosteric modulators (10). Several methodologies

including dual-label in situ hybridisation and single cell reverse

transcriptase-polymerase chain reaction have been used to define

the GABAA receptor subunits expressed by GnRH neurones in the

rodent (50, 62, 63, 80–85). These studies suggest that there are sex

differences, as well as postnatal developmental alterations in the a,

b and c GABAA receptor subunits expressed by GnRH neurones. For

example, in the adult female mouse, there is a predominance of a1,

a3, a5, b1 and c2 mRNA in contrast to the male in which tran-

scripts for almost all of the a, b and c GABAA receptor subunits

can be detected (84). Also, whereas many different subunits are

detected in prepubertal GnRH neurones, this appears to become

more restricted in adults (50, 81). Much less attention has been

paid to the uncommon GABAA receptor subunits, although the d
and e subunits have now been identified in these cells (62, 63, 82).

Although studies have shown that both androgen and progesterone

derivatives are potent allosteric modulators of GABAA receptors

expressed by GnRH neurones (86, 87), the full functional relevance

of the many different GABAA receptors likely to be expressed by

GnRH neurones is not known.

The precise locations of GABAA receptors on GnRH neurones also

remain unexplored. Recent studies have shown that GnRH neurones

in the mouse extend long dendrites that are often well over

1000 lm in length (88) and often intertwine (89). This, along with

evidence that action potentials can be initiated in the dendrites of

GnRH neurones (90), has required a re-evaluation of how GnRH

neurones receive and integrate afferent input. Although not yet

demonstrated, it appears likely that the full length of GnRH neu-

rone dendrite will receive GABAergic inputs. Studies to date show

the density of vesicular GABA transporter-containing appositions

on the proximal dendrites of GnRH neurones to be double that

found on the soma (91). Understanding the location of GABAA

receptors and their spatial relationship to other receptors, particu-

larly glutamatergic receptors (21), will be essential in defining GABA

action on GnRH neurones. For example, it has recently been pro-

posed that shared GABAergic synapses on intertwined magnocellu-

lar neurone dendrites play a role in synchronising oxytocin neurone

activity (92).

Effects of GABAA receptor activation on immature GnRH
neurones

It is now well established that GABA exerts a depolarising and

excitatory influence upon many neurones in the embryonic and

perinatal brain in altricial species (93). Recordings from immature

GnRH neurones indicate that they are probably not an exception to

the rule. Experiments using the immortalised GT1-7 GnRH neuronal

cell line indicate a depolarising effect of GABAA receptor activation

as GABA induced action potential firing in GT1-7 cells recorded in

the ‘on-cell’ configuration (94). Calcium imaging further revealed

that GABA induced increases in intracellular calcium in GT1-7 cells

that were dependent upon action potential generation and cell

membrane calcium channels. This was the first indication that acti-

vation of GABAA receptors in GnRH neurones might be other than

inhibitory, and was followed quickly by a study in which GABAA

receptor activation in these GT1-1 and GT1-7 cells was shown to

increase GnRH release (95, 96). The pure nature of GT1 cultures

assists interpretation of these studies as secondary effects as a

result of other cell types are precluded. It is arguable, however, that

the excitatory response of GT1 cells might be the result of an arte-

fact of transformation of the cells, which might result in behaviours

different from native GnRH neurones. It is also possible that the

co-transporter profile was ‘fixed’ at a relatively ‘immature’ stage by

an earlier transformation event despite the derivation of this cell

line from an adult mouse.

A depolarising influence of GABAA receptor activation in imma-

ture GnRH neurones also receives support from calcium imaging

studies undertaken in the embryonic nasal explant model (97, 98).

Mouse embryonic GnRH neurones have been shown to exhibit a

sharp increase in intracellular calcium levels in response to GABAA

receptor activation; an effect compatible with membrane depolar-

isation (99).

One study using perforated-patch recordings examined the

effects of direct GABAA receptor activation on prepubertal GnRH

neurones (postnatal day 10–30) in the mouse brain slice and found

consistent depolarising actions (100). Together, these findings

indicate that GABAA receptor activation exerts a predominant

depolarising and excitatory response from embryonic through to

pre-pubertal age GnRH neurones.

Effects of GABAA receptor activation on adult GnRH
neurones

Unlike the coherent picture of a depolarising response to GABA in

pre-pubertal GnRH neurones, the consequence of GABAA receptor

activation in adult GnRH neurones has been controversial, although

a more unified view is beginning to emerge.

The first two studies

The development of GnRH-promoter driven reporter genes allowed

the question of GABA action to be addressed in acutely-prepared

brain slices from mice (16, 101, 102). Han et al. used GnRH neuro-

nes expressing beta-galactosidase (GnRH-LacZ), which can convert
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substrates to a fluorescent state allowing identification of cells

expressing this enzyme. In this model, gramicidin-perforated patch

recordings suggested a developmental change in the direction of

response to GABA from depolarising to hyperpolarising that resem-

bles that in pyramidal neurones (100). GABA was depolarising in

young (day 10–17 postnatal) GnRH neurones but hyperpolarising in

cells from more mature mice (day 36–55 postnatal). This suggested

a change in response during the peripubertal period and a possible

link to puberty onset. However, no such change in response was

observed by DeFazio et al. (103) using enhanced green fluorescent

protein (eGFP)-identified GnRH neurones. Rather, both on-cell and

gramicidin-perforated patch recordings of GnRH neurones revealed

an excitatory response to GABAA receptor activation regardless of

sex, time of day or age (note that alterations in GnRH neurone

response to GABA possibly contributing to reproductive senescence

have not been studied by either laboratory).

How to account for these different results? One possibility is that

of reporter gene (GFP fluorescence versus LacZ). However, this

appears unlikely because the same adult hyperpolarising effects of

GABAA receptor activation have been observed using GnRH-eGFP

mouse lines (63, 104); it is perhaps noteworthy that the GnRH-GFP

mice used by the two laboratories are different although GFP itself

does not appear to confound the data (103). A further difference

was that DeFazio et al. (103) examined GABAA receptor activation

in the presence of ionotropic glutamatergic receptor antagonists

and the study by Han et al. (100) did not. This should not alter the

direction of response to GABA, particularly given the relative pau-

city of glutamatergic inputs to GnRH neurones, but becomes

important in later studies discussed below.

A main difference between these two studies was duration and

type of GABA application. In the study by Han et al., GABA (10–

100 lM) was bath-applied for approximately 30 s to 1 min (100); in

the study by DeFazio et al. (103), GABA (1 mM) was applied briefly

and locally for a couple milliseconds [GABA concentrations in the

synapse are estimated to be in the low millimolar range (105, 106)].

Bath application of the GABAA receptor agonist muscimol for

1–3 min invariably generated an initial excitatory response of a

barrage of action potentials from GnRH neurones (103). This was

followed by a failure to respond to exogenous GABA with either a

change in firing rate or membrane potential, and GnRH neuronal

quiescence that persisted for several minutes. This quiescence was

accompanied by a marked reduction in the membrane (input) resis-

tance of GnRH neurones, typically near 1 GX, to approximately

100 MX during and for a period after muscimol treatment.

Together, these data suggest the suppression of GnRH neurone

activity and lack of response to GABA after prolonged activation of

the GABAA receptor could be the result of a combination of phar-

macologically-induced collapse of the chloride gradient, shunting

inhibition as a result of reduced membrane resistance and ⁄ or

GABAA receptor desensitisation. This cannot, in and of itself,

account for the membrane hyperpolarisation observed in the study

by Han et al. in response to GABA (100). Activation of GABAB

receptors would be one possible explanation for this hyperpolarisa-

tion; neither study included blockers of GABAB receptors when

examining action potential generation although inclusion of GABAB

antagonists did not alter EGABA (103). However, the hyperpolarisa-

tion in the study by Han et al. was blocked by a GABAA receptor

antagonist, suggesting activation of GABAB receptors does not

explain these findings (100).

As mentioned above, cation-chloride co-transporters play a major

role in setting internal chloride and hence the response to activa-

tion of these receptors. Messenger RNA and protein for the chloride

accumulating NKCC1 have been demonstrated in murine GnRH

neurones (103). Some studies have reported protein for the chloride

extruding transporter KCC2 in a subpopulation of GnRH neurones

(107), whereas others have not detected this protein (103). In terms

of function, the specific NKCC1 inhibitor bumetanide hyperpolarises

EGABA in murine GnRH neurones (103) and in terminal nerve GnRH

neurones of teleosts (108). This action of bumetanide provides

functional evidence for chloride accumulation via NKCC1 at least

within GnRH neuronal cell bodies. Thus, at present, data on chloride

co-transporters in GnRH neurones at the expression level are some-

what mixed and not especially helpful in resolving the controversy;

however, functional data indicate GnRH neurones in brain slices

actively accumulate chloride, consistent with a depolarising ⁄ excit-

atory response to GABAA receptor activation.

The second two studies

The first studies performed in our laboratories used exogenous GABA

to evaluate the impact of GABAA receptor activation on GnRH neu-

rone excitability. This is a valid approach, used widely by electrophy-

siologists, although it does not answer the important question of

how GnRH neurones respond to endogenous GABA. Ideally, to exam-

ine this question, one would activate GABAergic afferents and moni-

tor the response of GnRH neurones using one of the approaches

that does not alter intracellular chloride milieu. This approach is

complicated by our relative lack of understanding of the location

of GABAergic neurones that are afferent to GnRH neurones. An

alternative approach is to block endogenous signalling via the GABAA

receptor using a specific antagonist and observe the response

of GnRH neurones. This is a rather poor surrogate for the following

reasons. Bath application of GABAA receptor blockers effectively treats

the entire GnRH neurone, which local application would likely not

achieve given the extensive dendrites in some of these cells (89).

However, with bath application, all cells in a brain slice are affected,

including non-GnRH neurones presynaptic to the recorded neurones.

This effectively removes GABAergic signalling via the A-type receptor,

which is inhibitory to many hypothalamic neurones in the same brain

slice (109). In the cortex and hippocampus, this approach is used as an

in vitro model of epilepsy because such treatment can cause

widespread ‘disinhibition’ of many neurones in the slice, including

excitatory inputs to one’s cell of interest (110–112).

Using this approach with a gramicidin perforated-patch and with-

out blocking ionotropic glutamate receptors, studies in the Herbison

laboratory (104) found that approximately 70% of GnRH neurones

were depolarised by the GABAA receptor antagonist bicuculline, 20%

showed no response and 10% were hyperpolarised. Using extracellu-

lar recordings after pretreatment with ionotropic glutamate receptor

blockers, experiments in the Moenter laboratory (113), found that
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GABAA receptor antagonists reduced the firing rate of 80% of active

GnRH neurones, had no effect on 10% and increased firing in 10%.

No increase in firing was observed in quiescent GnRH neurones,

indicating quiescence was not a result of GABAA receptor activation.

When the response of GnRH neurones to GABAA blockers was tested

in the absence of the glutamate receptor antagonists, 100% showed

an increase in firing rate (113). These results were interpreted in two

ways. One interpretation was that this demonstrated the key impor-

tance of on-going glutamatergic signalling to the direction of GABAA

receptor responses in GnRH neurones as found elsewhere in the

brain (21). The other interpretation was that the removal of GABAA

receptor actions throughout the brain slice resulted in the disinhibi-

tion of excitatory inputs to GnRH neurones, again a plausible expla-

nation given work in other brain areas (110–112).

More recent studies

It is important that many different experimental angles and models

are used to address difficult questions in a field. A major contribu-

tion was made when studies in the Kato laboratory (85) reported

that GABAA receptor activation excited GnRH neurones cultured

from a rat GnRH-eGFP model. Using perforated-patch electrophysi-

ology, it was found that GABA exerted a dose-dependent, GABAA

receptor-mediated depolarising action on all rat GnRH neurones

tested. A caveat of this study is that the membrane preserved in

these adult neurones in short-term culture is primarily perisomatic.

Other studies from this group using the same model have shown

that GABAA receptor activation also increases intracellular calcium

levels in GnRH neurone somata (114), supporting their electrophysi-

ological findings.

A recent study from the Herbison laboratory (115) has, to their

surprise, identified predominant stimulatory effects of GABAA

receptor activation upon intracellular calcium levels in GnRH neuro-

nes obtained from the GnRH-pericam transgenic mouse line. This

experimental model enables the real-time measurement of intracel-

lular calcium levels in GnRH neurones without any manipulation of

the cell in its native environment within the acute brain slice prep-

aration (116). GABAA receptor activation elevated calcium levels in

approximately 70% of prepubertal as well as adult GnRH neurones.

This effect involved activation of L-type calcium channels and sug-

gested that GABAA receptor-mediated depolarisation of GnRH neu-

rones was sufficient to activate these channels.

Another new study from the Herbison laboratory (9) agrees with

these more recent results. This study used an angled horizontal

brain slice preparation to examine the effects of endogenous GABA

inputs originating from the AVPV on GnRH neurones. That investi-

gation demonstrated that low frequency (< 1 Hz) electrical stimula-

tion of the AVPV could evoke monosynaptic responses from GnRH

neurones that were mediated predominantly by GABAA receptor

activation. Of the GnRH neurones that were activated by AVPV

stimulation, approximately 60% of GABAergic responses were excit-

atory, approximately 25% neutral and approximately 15% inhibitory

to GnRH neurone activity. Thus, it is apparent that endogenous

GABA inputs to GnRH neurones can exert both excitation and inhi-

bition, but that excitation predominates.

Together, these more recent studies support the original proposal

by DeFazio et al. that GABA can provide an excitatory input to

adult GnRH neurones (103). Although the majority of GnRH neuro-

nes in coronal, sagittal and angled horizontal slice preparations are

excited by GABAA receptor activation, others exhibit the more clas-

sical inhibitory response. The subcellular and physiological reasons

for this heterogeneity remain to be established. It is interesting to

note that researchers examining the GABA responses of hypotha-

lamic suprachiasmatic nucleus neurones have long been involved in

a similar controversy as to whether GABAA receptor activation is

excitatory or inhibitory with current perspective being that both

responses exist (117–120). One source of variability among studies

and among individual cells is that chloride ion transporter activity

can be labile. Changes in transporter activity could alter a cell’s

response to GABAA receptor activation. In several cases, acute

activity-dependent changes in KCC2 function have been found to

switch the GABA responses of neurones (24, 121–124). Further-

more, in the context of studies that have been undertaken in cul-

ture or in the acute brain slice preparation, it is important to note

that cellular damage can rapidly modulate KCC2 activity promoting

depolarising effects of GABAA receptor activation (124–126). Of

note, as mentioned above, only a subpopulation of GnRH neurones

have been reported to express KCC2 protein (103, 107). It is also

important to point out that cellular damage results in reduced

membrane resistance and other changes that can alter the ability

of a cell to respond to inputs and intrinsic changes that are inde-

pendent of chloride co-transporters; cellular damage in slices with

poor health also impairs the ability to perform the high-quality

recordings needed to test these responses.

Modulation of GABAergic transmission to GnRH
neurones

Further evidence that can inform this debate is the study of how

GABAergic transmission to GnRH neurones varies with different

reproductive states. The frequency of GABAergic p.s.c.s. reveals how

often afferent GABAergic neurones are signalling to the GnRH neu-

rone being recorded. The amplitude of p.s.c.s. is attributable to both

presynaptic changes, such as how much transmitter is released,

and postsynaptic changes, such as number and type of receptors

and any post-translational modifications that alter conductance

through the pore or open probability.

Effects of steroid milieu, nutritional status and neuromodulators

on GABAergic transmission to GnRH neurones in sum indicate that

those conditions that favour increased GnRH release (mild hyperan-

drogenemia, oestradiol positive feedback, kisspeptin) increase GAB-

Aergic transmission to GnRH neurones and p.s.c. amplitude (55, 57,

64). By contrast, conditions that reduce GnRH release (progester-

one, fasting, oestradiol negative feedback) reduce GABAergic trans-

mission and p.s.c. amplitude (18, 57, 64, 65). The sole exception to

date to a direct relationship between the frequency of GABAergic

transmission and that of GnRH activity is a study of the effects of

long-term treatment with supraphysiological levels of synthetic

androgens to mimic anabolic steroid abuse, (62). In that study, an

inverse relationship between these parameters was observed. An
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interesting topic for future study will be to determine whether

androgen abuse alters chloride co-transporter function in GnRH

and other neurones.

It is interesting that amplitude and frequency of GABAergic

p.s.c.s. in GnRH neurones tend to move in the same direction. The

smaller p.s.c.s. detected in GnRH neurones with reduced activity

would be more likely to generate subthreshold depolarisations rather

than depolarisations that result in spike generation. This could com-

pound any effect of reduced frequency of GABAergic drive. Reduced

temporal summation of low frequency GABAergic p.s.c.s. would also

reduce the occurance of GABA-driven depolarisation that is suffi-

ciently large to reach action potential threshold. Although data from

studies such as these provides circumstantial evidence rather than

direct evidence of the consequence of GABAA receptor activation,

they are largely consistent with an excitatory role.

Summary and perspectives

Over approximately the past decade, the thinking on the conse-

quence of GABAA receptor activation on GnRH neurones has

evolved from a fairly stark controversy to a consensus. It appears

that considering GABA as purely inhibitory or excitatory is to some

extent an oversimplification as both responses can be observed.

Furthermore, the integration of GABAergic with other ionotropic

and neuromodulatory inputs (59, 60, 127–130) and intrinsic

conductances will sculpt the ultimate membrane response. For

example, on-going glutamatergic activity in the vicinity of the

GABAA receptor synapse may influence the GABAA receptor

response. Equally, it is possible that GABAA receptor activation at

the cell body could have different net effects on GnRH neurone

activity compared to activation of GABAA receptors located on the

dendrites (131).

GnRH neurones are regulated by a number of influences and the

importance of continued function of this system for passing on the

genome of a species suggests multiple regulatory systems, and also

that redundant systems will operate in the absence of specific

signalling. In this regard, a recent study demonstrated continued

fertility in a mouse model with knockdown of GABAA receptor-

mediated signalling in GnRH neurones via germline deletion of the

c-2 subunit (132). Similarly, there is GnRH neuronal activity even in

the absence of the most potent stimulator identified to date in

these neurones: kisspeptin (58, 133). Together, these observations

point to a need to move away from all-or-none statements to more

integrated viewpoints when considering the impact of specific neu-

rotransmitters on GnRH neurones. They also point to the impor-

tance of cellular level observations in examining mechanisms. In

this regard, the relationship between the predominantly excitatory

actions of GABAA receptor activation on GnRH neurones and the

primarily suppressive effects of GABA on LH secretion in vivo (2)

are most likely explained by indirect influences of even narrowly

focused drug treatments in vivo.

The present status of the GABA story, with mainly excitatory but

also inhibitory responses to this transmitter, suggests several

questions that need to be addressed in future studies. Is GnRH

neurone intracellular chloride differentially regulated in various sub-

cellular compartments (dendrites, soma, terminals)? Are chloride co-

transporters modulated by reproductive state, neural inputs or on-

going patterns of electrical activity? What happens with ageing?

Does GABA potentially have a role in synchronising GnRH neurones

as it does in some hippocampal networks (134)? The answers to

these and other questions will further evolve our understanding of

the role of GABA in sculpting GnRH neuronal activity. And finally,

how might our present view of GABAA-receptor mediated signalling

in GnRH neurones be revised when in vivo recordings of this

response become possible?
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