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Background: The role of flow cytometry (FCM) in diagnosing myelodysplastic syndromes (MDS)
remains controversial, because analysis of myeloid maturation may involve subjective interpretation of
sometimes subtle patterns on multiparameter FCM.

Methods: Using six-parameter marker combinations known to be useful in evaluating the myeloid com-
partment in MDS, we measured objective immunophenotypic differences between non-neoplastic (n =
25) and dysplastic (n = 17) granulopoiesis using a novel method, called Fisher information nonparamet-
ric embedding (FINE), that measures information distances among FCM datasets modeled as individual
high-dimensional probability density functions, rather than as sets of two-dimensional histograms. Infor-
mation-preserving component analysis (IPCA) was used to create information-optimized “rotated” two-
dimensional histograms for visualizing myelopoietic immunophenotypes for each individual sample.

Results: There was a consistent trend of segregation of higher-grade MDS (RAEB and RCMD) from he-
nign by FINE analysis. This difference was accentuated in cases with morphologic dysgranulopoiesis
and in cases with clonal cytogenetic abhnormalities. However, lower grades of MDS or cases that lacked
morphologic dysgranulopoiesis showed much greater overlap with non-neoplastic cases. Two cases of
reactive left shift were consistently embedded within the higher-grade MDS group. IPCA yielded two-
dimensional histogram projections for each individual case by relative weighting of measured cellular
characteristics, optimized for preserving information distances derived through FINE.

Conclusions: Objective analysis by information geometry supports the conclusions of previous studies
that there are immunophenotypic differences in the maturation patterns of benign granulopoiesis and
high grade MDS, hut also reinforces the known pitfalls of overlap hetween low-grade MDS and benign
granulopoiesis and overlap between reactive granulocytic left shifts and dysplastic granulopoiesis.
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The role of flow cytometric immunophenotyping in
the diagnosis of myelodysplastic syndromes (MDS) is
controversial. There is an emerging consensus that mye-
lodysplastic hematopoiesis displays immunophenotypic
aberrancies that may be helpful in diagnosis (1-4). How-
ever, the numerous studies on this topic have often
used different approaches, and there is no single stand-
ard for immunophenotypic assessment of myelodyspla-
sia. Furthermore, most studies rely on individual
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interpretation of patterns displayed on two-dimensional
projections of higher dimensional flow cytometry (FCM)
data, often using subjective descriptions of subtle shape
differences between dysplastic and benign hematopoie-
sis on such plots (3-6). Although in many ways the sub-
jective interpretation of such patterns (as opposed to
assessment of individual marker expression by often ar-
bitrary quantitative thresholds) is a step forward-analo-
gous to the subjective interpretation of histopathologic
patterns in surgical pathology, this approach also raises
concern over interobserver reproducibility in the inter-
pretation of myelodysplastic versus benign hematopoie-
sis and renders such interpretations susceptible to
observer bias.

Recently, we described a method of objectively meas-
uring differences in the high-dimensional data distribu-
tions created by multicolor FCM datasets (7). This
method, known as Fisher information nonparametric
embedding (FINE), uses the principles of information ge-
ometry to determine information distances between
individual high-dimensional FCM list mode files, with
each file treated as a single high-dimensional distribution
or object, rather than as a series of two-dimensional dot-
plots (7,8). A related method, information preserving
component analysis (IPCA), allows direct visualization of
an information-optimized two-dimensional histogram for
each case, derived from all measured FCM markers
based on the differences in information among different
cases (9).

In this study, we use the FINE and IPCA algorithms to
compare the immunophenotypic signatures of benign
and myelodysplastic myelopoiesis using marker combina-
tions previously reported to be useful in this distinction.
Our goal was to determine whether the previously
reported ability of FCM to discriminate benign from dys-
plastic myelopoiesis could be reproduced when full
datasets are objectively compared by this method.

MATERIALS AND METHODS
Data Retrieval and Preparation

Seventeen marrow samples diagnostic for MDS were
retrieved from the clinical FCM archive of the Medical
College of Wisconsin over a 3-year period. Twenty-five
samples of non-neoplastic bone marrow (drawn either
for staging of nonmyeloid neoplasms or for abnormal-
ities of peripheral blood cell counts) from a comparable
time interval were used as a control group. None of the
cases in the control group showed evidence of lym-
phoma, dysplasia, or myeloid neoplasm. MDS cases
included five refractory anemia with excess blasts
(RAEB), five refractory cytopenia with multilineage dys-
plasia (RCMD), two refractory anemia with ring sidero-
blasts (RARS), two therapy related MDS (t-MDS), and
three MDS, unclassified (MDS-U), based on 2008 World
Health Organization diagnostic criteria (1). Data from
cytogenetic analysis were available in 13 of the 17 MDS
cases and 19 of the 25 non-neoplastic cases. For the spe-
cific comparison of cases with and without morphologic
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granulocyte dysplasia, 14 of the 17 MDS cases were
available for morphologic reassessment and were graded
for the presence or absence of morphologic dysgranulo-
poiesis in at least 10% of granulocyte precursors based
on WHO 2008 criteria (1).

Because the FINE algorithm uses single high-dimen-
sional datasets, we selected cases for analysis based on
availability of data from a single tube that contained
markers previously reported as useful in the analysis of
dysgranulopoiesis in MDS (3,4,10-12): CD11b, CDI16,
CD45, and CD56. When available for a given case, we
also separately analyzed a single tube that contained
CD13, CD16, HLA-DR, and CD45, a combination also
previously reported as useful in the analysis of the mye-
loid compartment in MDS (2-4,12). Each tube included
analysis of forward and side angle light scatter for a total
of six measurements per cell per assay and the creation
of a six-dimensional probability density function for anal-
ysis in each case. All antibody reagents were obtained
from Becton-Dickinson (Franklin Lakes, NJ), with fluores-
cent conjugates as follows: for the first antibody combi-
nation, CD11b-allophycocyanin (APC), CD16-fluorescein
isothiocyanate (FITC), CD45-peridinin chlorophyll pro-
tein (PerCP), and CD56-phycoerythrin (PE); and for the
second antibody combination, CD16-FITC, CD13-PE,
HLA-DR-PerCP, and CD45-APC. Heparin or EDTA-anticoa-
gulated bone marrow samples were prepared via ammo-
nium chloride lysis, and after routine staining and
fixation, each sample was analyzed using a Becton-Dick-
inson FACSCalibur flow cytometer, and 30,000 cellular
events were captured for each assay. Data were collected
using Cell Quest acquisition software (Becton-Dickinson)
and saved in standard fcs format.

For each analysis, CD45-negative events (nucleated
red blood cells, debris, etc) were excluded. Then, analy-
ses were performed on (1) datasets that included all
nonlymphoid CD45-positive cellular events (with sepa-
rate analyses restricted to cases with available cytogenet-
ics data and cases reviewable for morphologic
dysgranulopoiesis) and (2) datasets restricted to cellular
events resembling blasts based on CD45 and side angle
light scatter characteristics. The gated list mode data
were then converted to tab-delimited text using WinMDI
software (Scripps Research Institute, La Jolla, CA) or
Winlist 6.0 (Verity Software House, Topsham, ME).

Fisher Information Nonparametric Embedding Analysis

Fisher information nonparametric embedding (FINE)
is a method by which the information contained within
FCM datasets can be objectively compared by treating
each dataset as a high-dimensional probability density
function (or “shape”) rather than as a series of two-
dimensional histograms. The differences in the nature of
the high-dimensional distributions created by each n-pa-
rameter FCM dataset are measured using computational
estimates of the Fisher information distance (a measure
of the differences among probability density functions
embedded on statistical manifolds). The underlying prin-
ciples of FINE and information geometry are described
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Fic. 1. Schematic overview of Fisher information nonparametric embedding (FINE). N-parameter event data from flow cytometry list mode files are
converted into probability density functions (PDFs); the PDFs are embedded as points on a high-dimensional virtual construct known as a statistical
manifold, and the differences in information contained within the PDFs are represented as distances along the statistical manifold (Fisher informa-
tion distance) using a computational estimate; finally, the high-dimensional neighborhood map on the statistical manifold is reduced to a lower
dimensional plot (two or three dimensions) for visualization. Details of the FINE method are provided in references (7,8).

in detail in earlier studies (7,8), and a schematic repre-
sentation of the method is provided in Figure 1.

FINE analysis and IPCA analysis (see below) were per-
formed in the MATLAB 2010b computing environment
(MathWorks, Natick, MA) using the tab-delimited text
data files as noted earlier. The MatLab FINE and IPCA
codes are available at the University of Michigan Infor-
mation Geometric Dimensionality Reduction (IGDR)
Toolbox web page, https://tbayes.eecs.umich.edu/kmcar-
ter/igdr/index.html.

Information Preserving Component Analysis

To illustrate and contrast the distinguishing character-
istics of the six-parameter FCM datasets for a given case
within the FINE plot of information distances, IPCA was
performed to obtain information-optimized two-dimen-
sional FCM histogram projections for each case. By
necessity, FCM data must be projected via histograms of
limited dimensionality (typically, two-dimensional projec-
tions) even though datasets are of higher dimensionality.
Generally, these projections plot one measured parame-

ter (either fluorescence intensity of a surface marker or
a light scatter characteristic) against another measured
parameter—in essence a “head-on” projection of the six-
dimensional “object” in the case of six-parameter FCM.
IPCA derives an information-optimized (in essence
rotated) 2D projection of the six-dimensional dataset.
The optimization is based upon determining the 2D pro-
jection that will best preserve the information distances
between each case, as determined by the FINE algo-
rithm. IPCA is explained in more detail in a previous
publication (9) and involves minimization of the loss of
information in the conversion from six-dimensional to
two-dimensional distributions, based on the mathemati-
cal principle of gradient descent.

FINE and IPCA are both data visualization methods that
are based on preserving information in the full high-dimen-
sional FCM datasets. The fundamental difference between
them is that FINE is used for visualizing a population of
subjects, representing each subject’s dataset as a point in
two or three dimensional space, while IPCA is used for vis-
ualizing the optimal shape of each subject’s dataset.
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Fic. 2. Three-dimensional Fisher information nonparametric embed-
ding (FINE) plots illustrating information distances between cases by
analysis of flow cytometry datasets as single high-dimensional distribu-
tions. Panel A is based on a four-color (six-parameter) combination of
forward scatter (FS)/side scatter (SS)/CD16/CD56/CD45/CD11b. Panel
B is based on a four-color (six-parameter) combination of FS/SS/
CD16/CD13/HLA-DR/CD45. Arrows indicate benign bone marrow sam-
ples located in a part of the FINE plot dominated by high-grade myelo-
dysplastic syndromes. One such case was not available for the marker
combination illustrated in panel B. The axes (FINE 1, FINE 2, and
FINE 3) are derived components that represent computational esti-
mates of relative Fisher information distance between each analyzed
case. See text for additional comments. RCMD, refractory cytopenia
with multilineage dysplasia; RAEB, refractory anemia with excess
blasts; RARS, refractory anemia with ring sideroblasts; MDSU, myelo-
dysplastic syndrome, unclassified; TMDS, therapy-related myelodys-
plastic syndrome.

RESULTS

For the analysis of nonlymphoid CD45 positive cells,
three-dimensional projections of information distance
maps between individual cases for each of the two four-
color (six-parameter) marker combinations are shown in
Figure 2. Exact distances varied somewhat depending
upon the mathematical information distance measure-
ment used [the data shown use the Hellinger distance
(7], but the trends were consistent and are accurately
depicted in Figure 2. Although there was some overlap
between MDS and non-neoplastic cases, both marker
combinations revealed a region of FINE space dominated
by MDS cases. Cases of “high grade” MDS (RAEB and
RCMD) tended to occupy the areas of greatest informa-
tion distance from non-neoplastic cases. Cases of RARS
and subsets of each of the other MDS categories were
essentially indistinguishable from non-neoplastic cases.
This general pattern was reproduced through various
iterations of the FINE algorithm using different informa-
tion distance measurements and different nearest neigh-
bor parameters for constructing the 2D and 3D FINE
plots (data not shown).

The optimized two-dimensional projection matrices,
derived via IPCA, are shown for each of the two marker
combinations in Tables 1 and 2, respectively. Figure 3
also illustrates the patterns of CD11b versus CD16 histo-
grams (projections), and optimized 2D projections
derived via IPCA, for representative subsets of cases rela-
tive to their positions on the 3D FINE plots, in order to
qualitatively illustrate the differences among cases that
are represented by the FINE information distances. The
axes on the IPCA plots are components derived from
weighted contributions of each of the measured markers
for each assay. For the CD16/CD56/CD45/CD11b combi-
nation, the X axis roughly corresponds to the difference
between forward angle light scatter and the combined
contribution of CD11b and CD16 expression, while the
Y axis is more heavily weighted to forward and side
angle light scatter characteristics. For the CD16/CD13/
HLADR/CD45 combination, the X axis is heavily
weighted toward the intensity of CD45 expression,
while the Y axis is weighted toward a roughly equal con-
tribution of CD16 intensity and side angle light scatter.
The IPCA algorithm determined that these were the
weightings that would best convey the differences
among cases when the six markers in each case were
projected into two dimensions.

Table 1
Projection Matrix for the Optimal Two-Dimensional Projection of Six-Parameter Data in Each Individual Case from a Single Tube
Including Forward Angle Light Scatter, Side Angle Light Scatter, CD16, CD56, CD45, and CD11b

Forward scatter Side scatter CD16 CD56 CD45 CD11b
X axis 0.6417 0.5812 0.3001 0.1457 0.2169 0.3034
Y axis 0.4468 0.0568 —0.6585 0.2067 0.0821 —-0.5604

The numbers in each cell of the table indicate the relative weighting of the individual parameter in generating the two-dimen-
sional projection for a given case that is most likely to preserve the information distances observed on FINE analysis. The informa-

tion in this matrix is represented graphically in Figure 3.

Cytometry Part B: Clinical Cytometry
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Table 2
Projection Matrix for the Optimal Two-Dimensional Projection of Six-Parameter Data in Each Individual Case from a Single Tube
Including Forward Angle Light Scatter, Side Angle Light Scatter, CD16, CD13, HLA-DR, and CD45

Forward scatter Side scatter CD16 CD13 HLA-DR CD45
X axis 0.0760 —0.0961 -0.1309 —0.0067 0.0922 0.9794
Y axis 0.0510 0.6435 0.6761 0.1530 —0.2694 -0.1739

See legends to Table 1 and Figure 3 for additional explanation.

Of note are two outliers (highlighted by arrows in Fig.
2). Two non-neoplastic marrow samples were located a
considerable distance from other non-neoplastic cases
on the FINE map using the CD16/CD45/CD56/CD11b
combination. Only one of these two cases was present
in the CD45/CD13/HLA-DR/CD16 combination, but
again, it was located in the MDS region. One of these
two cases was a marrow sample taken from a patient in
early recovery from transient agranulocytosis, thought to
be medication-related. The marrow in this patient’s case
showed a marked shift to immaturity (“maturation

arrest”) with eventual recovery of peripheral counts.
The other of these two cases was taken from a patient
with a history of heart transplant and immunosuppres-
sion therapy, who presented with a leukemoid reaction
in which his peripheral leukocyte count reached over
100 x 10%/1. This patient’s bone marrow sample showed
a marked granulocytic predominance with shift to imma-
turity. This patient was ultimately diagnosed with an in-
fectious cause for the leukocytosis, and the leukocyte
count corrected to 5 x 10°/1 within days after the bone
marrow biopsy.
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Fic. 3. FINE plot based on the FS/SS/CD16/CD56/CD45/CD11b combination, with overlay of two-dimensional flow cytometry contour plots for
each case. The lower panel represents CD11b versus CD16. The upper panel represents an optimized rotated two-dimensional projection of the six-
parameter (four-color) dataset, with optimization based on information-preserving component analysis (IPCA). See text for additional explanation,
including the components of the IPCA axes. 2D plots are shown for a case located in the myelodysplastic region of the plot (left), the centroid region
of the plot (center), and the nonneoplastic region of the plot (right). Note the difference in character of 2D projections between cases that are
located in different regions of the FINE plot.
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Fic. 4. Three-dimensional FINE plots limited to analysis of cases
with available cytogenetic analysis data. Panel A shows the results of
the FS/SS/CD16/CD56/CD45/CD11b combination, and panel B shows
the results of the FS/SS/CD16/CD13/HLA-DR/CD45 combination. See
text for more detail of cytogenetic results.

A separate analysis restricted to cases for which cyto-
genetic data were available is depicted in Figure 4.
Seven of 13 MDS cases with available cytogenetics data
showed clonal cytogenetic abnormalities, as follows:
two cases of deletion 7q (one detected by fluorescence
in situ hybridization only) and one case each of isochro-
mosome X, deletion 20q, translocation t(3;5), trisomy 8,
and a complex karyotype with numerous abnormalities.
There was an area of FINE space concentrated toward
MDS cases with clonal cytogenetic abnormalties, and
this finding was apparent in datasets from each of the
two marker combinations.

A separate analysis comparing cases with and without
morphologic dysgranolopoiesis is depicted in Figure 5.
As noted in the Methods section, 14 total MDS cases
were available for this analysis (13 cases for the CD16/
CD13/HLA-DR/CD45 marker combination). Each of these
analyses revealed that MDS cases with morphologic dys-
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plasia showed greater separation from benign cases than
did MDS cases without morphologic dysgranulopoiesis.

When the analysis was restricted only to blast popula-
tions in all cases, there was no clear separation of MDS
from non-neoplastic cases (data not shown). However,
this analysis was hindered by low event numbers in
many samples that may have influenced the quality of
the probability density functions created from the lim-
ited datasets. Analysis of myeloblasts for cases that
included a minimum of 1,000 captured events in that
region revealed apparent separation of the three remain-
ing nonneoplastic cases from all but one of the remain-
ing MDS cases in the CD16/CD11b/CD56/CD45 analysis;
but, again, this analysis was limited by the low number
of cases meeting this threshold for analysis (Fig. 6). The
CD16/CD13/HLA-DR/CD45 analysis using blasts only
(for cases with a minimum of 1,000 events in the blast
region) showed no clear pattern, but only included nine
cases total including two non-neoplastic cases.
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Fic. 5. FINE plot comparing MDS cases with and without morpho-
logic dysgranulopoiesis in comparison with benign cases. MDS cases
with morphologic dysgranulopoiesis show clearer separation from be-
nign cases than do MDS cases without morphologic dysgranulopoiesis.
Panel A represents the FS/SS/CD16/CD56/CD45/CD11b marker com-
bination. Panel B represents the FS/SS/CD16/CD13/HLA-DR/CD45
combination.
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Fic. 6. FINE plot based on the FS/SS/CD16/CD56/CD45/CD11b
combination for analysis limited to events resembling myeloblasts by
CD45 and side angle light scatter characteristics, for which at least
1,000 event were captured in that region. Two of three nonneoplastic
cases segregate from MDS cases; however, the analysis is hindered by
the low number of cases and by the fact that the marker combinations
were not optimized for blast immunophenotyping.

Myeloblasts as a percentage of CD45 positive events
ranged in the MDS group from 0.3% to 9.2%. The MDS
cases in the outermost portion of the FINE plot had
between 5 and 9% myeloblasts; however, other cases in
the MDS cluster had as few as 0.3% blasts.

DISCUSSION

Documentation of abnormal, imbalanced, or dyssyn-
chronous myeloid maturation patterns has been a key
focus of most studies on the use of flow cytometric
immunophenotyping in the diagnosis of MDS (2-5,13-
15). This type of analysis generally has a substantial sub-
jective component, requiring an individual user to weigh
qualitatively the expression patterns among several
markers, to weigh the importance of maturational shifts
or myeloblast increases, and to render conclusions
regarding the sometimes subtle deviations and between
observed and expected patterns yielded by these marker
combinations on examination of serial 2D histograms.

Previous studies have demonstrated characteristic pat-
terns of marker acquisition and expression in normal
granulocyte maturation. For example, a 2D histogram of
CD11b versus CD16 shows a right-angle pattern of grad-
ual acquisition of CD11b, followed by gradual acquisi-
tion of CD16. CD13 versus CD16 typically shows a
characteristic “sickle” pattern (2-5,16,17). CD45 versus
side angle light scatter shows a characteristic pattern of
progressively increased CD45 intensity and diminishing
side scatter between promyelocyte and neutrophil stages
and so on. Deviations from these patterns (due to asyn-
chronous marker acquisition or abnormal granulation
patterns) can be demonstrated in cases of abnormal
myelopoiesis. However, it is difficult to quantify the
extent to which granulocyte maturation patterns diverge
in benign versus dysplastic granulopoiesis or to set con-

sistent thresholds for interpreting this divergence. As a
result, previous studies vary in the level of detail or pre-
cision of subjective evaluation criteria.

In a typical FCM dataset, thousands of cells are ana-
lyzed, each for a set of several specific characteristics-2
light scatter characteristics and, in the case of 4-color
FCM, the expression characteristics of four specific anti-
gens. The magnitude of each measured characteristic
can be thought of as a spatial coordinate and each ana-
lyzed cell can be thought of as occupying a single point
in high dimensional space (six-dimensional space in the
case of four-color FCM) (18-21). The aggregate of these
points then forms in essence a six-dimensional object. A
typical FCM interpretation involves examining serial
two-dimensional projections (histograms) of each of
these six-dimensional objects. In contrast to this type of
hierarchical two-dimensional analysis, information geom-
etry—a field of information theory based largely on the
work of Amari (22)—allows for the objective compari-
son of differences in information contained within high-
dimensional probability density functions, of the type
formed by routine clinical FCM data. This approach
quantifies the differences in the shape and density of
the high-dimensional “objects” formed by FCM datasets
.

By applying the principles of information geometry in
the current study, we corroborated observations that
have been made in previous studies involving subjective
interpretation of myeloid immunophenotypes, including
substantial overlap in the immunophenotypic signatures
between benign granulopoiesis and the granulopoiesis
of low grade MDS and the tendency of higher grade
MDS (RAEB and RCMD) to separate immunophenotypi-
cally from benign cases (5,6,15). This finding was fur-
ther validated by the observation that MDS cases with
morphologic dysgranulopoiesis showed greater separa-
tion from benign cases than did MDS cases without mor-
phologic dysgranulopoiesis. We also noted a greater
separation from normal in cases of MDS that were docu-
mented to harbor clonal cytogenetic abnormalities.

There are two important caveats to these observa-
tions. First, a small subset of the high-grade MDS cases
embedded indistinguishably within the population of be-
nign cases. Second, two cases of left-shifted granulopoie-
sis embedded with the high-grade MDS cases. The latter
observation highlights a pitfall observed in previous
studies, in which “dysplastic” maturation patterns (par-
ticularly abnormalities in the acquisition of CDI11b,
CD13, and CD16) were observed in regenerating or re-
active bone marrow samples (13,15). The relative heter-
ogeneity of the non-neoplastic cluster of samples in this
study is likely due to the expected variability in normal
granulopoiesis among samples. Although the sequence
of marker acquisition in physiologic granulopoiesis is
stable across different individuals, shifts in maturation
along these sequences are common (17). We deliber-
ately avoided excluding potentially “reactive” marrow
samples in the non-neoplastic group in this study for
two reasons. First, given the marked variability in

Cytometry Part B: Clinical Cytometry
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environmental stimuli affecting granulopoiesis, it would
be difficult to confirm that a given sample was truly nor-
mal or that normal cases would not include some degree
of reactive change in granulocyte maturation. Second,
the day-to-day clinical exercise of elucidating dysplastic
myelopoiesis by FCM includes the broad array of non-
neoplastic changes that can affect myeloid precursors.
Differences in immunophenotype detected by our analy-
sis were likely influenced by blast percentage, with the
MDS cases in the outermost regions of the information
distance plot showing blast percentages between 5 and
9%. However, the position on the information distance
plots was not entirely linked to blasts, because cases
with fewer than 1% blasts were also located in regions
near cases with increased blasts. Data restricted only to
blast populations showed a trend toward separating
MDS from non-neoplastic cases, but this analysis was
hindered by the low number of cases with sufficient
blasts for meaningful analysis.

Part of the current study involved using the informa-
tion distances between cases to determine optimized 2D
projections for the display of flow cytometric findings
for each individual case via IPCA. It is interesting that,
when analyzing the CD16/CD56/CD45/CD11b combina-
tion, the derived components that constitute the axes of
each IPCA plot were weighted toward the combined
contribution of CD11b and CD16 on one axis and to
light scatter characteristics on the other axis. CD11b
and CD16 have been used together in several studies to
characterize the spectrum of myeloid maturation in
blood and bone marrow, and abnormalities in light
scatter characteristics have also been used to detect
abnormal patterns of cytoplasmic granulation in myelo-
dysplastic bone marrow (3,4,16). IPCA projections of
the CD16/CD13/HLA-DR/CD45 combination were heav-
ily weighted toward CD45 on one axis and to the com-
bined contribution of CD16 and side angle light scatter
on the other axis.

The observations in the current study are limited by
the fact that previous studies have evaluated not just
granulopoiesis, but also abnormalities in erythropoiesis
and megakaryopoiesis in the flow cytometric analysis of
MDS (4,23). Additional studies applying information ge-
ometry to marker combinations designed to evaluate
maturation patterns in these other cell lineages would
be useful to further test the conclusions of the current
study. The current study is also somewhat limited by the
use of only four colors (six parameters) in each analysis,
reflective of the constraints of archived clinical FCM
data given the relatively recent expansion of polychro-
matic FCM in routine clinical use. An optimal approach
may have included several additional markers relevant to
stages of myeloid maturation, including CD34, CD117,
and others, but, by design, this study focused on
markers expressed to varying degrees throughout mye-
loid maturation that are commonly used in myelodyspla-
sia assessment. As clinical-grade instruments are
expanding to 8- and 10-color analysis routinely, future
studies should also focus on the prospective application
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of information geometry-based cytomic profiling to
higher dimensional FCM datasets to further clarify the
observations noted in this retrospective study (24). In
addition, our analyses are subject to potential variability
in staining or acquisition between analyses in the day-to-
day practice of clinical cytometry; however, this is a li-
mitation that also applies to a substantial majority of
published studies evaluating flow cytometric immuno-
phenotyping in clinical diagnostics.

This study illustrates the application of a novel cytomic
profiling tool to the assessment of granulocyte maturation
patterns by FCM. When FCM datasets are objectively com-
pared as single high-dimensional distributions, there are
differences discernable between benign granulopoiesis
and RAEB/RCMD. These differences are most evident in
cases with overt morphologic dysgranulopoiesis or cases
that harbor clonal cytogenetic abnormalities. However,
some types of MDS overlap considerably with benign
cases with respect to the immunophenotype of granulo-
poietic maturation. Furthermore, there is overlap between
left shifted granulopoiesis and even high grade MDS,
highlighting a potential pitfall noted in previous studies
(3,15).
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