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Abstract

Nitrogen availability in terrestrial ecosystems strongly influences plant productivity and nutrient cycling in response

to increasing atmospheric carbon dioxide (CO2). Elevated CO2 has consistently stimulated forest productivity at the

Duke Forest free-air CO2 enrichment experiment throughout the decade-long experiment. It remains unclear how the

N cycle has changed with elevated CO2 to support this increased productivity. Using natural-abundance measures of

N isotopes together with an ecosystem-scale 15N tracer experiment, we quantified the cycling of 15N in plant and soil

pools under ambient and elevated CO2 over three growing seasons to determine how elevated CO2 changed N

cycling between plants, soil, and microorganisms. After measuring natural-abundance 15N differences in ambient

and CO2-fumigated plots, we applied inorganic 15N tracers and quantified the redistribution of 15N for three subse-

quent growing seasons. The natural abundance of leaf litter was enriched under elevated compared to ambient CO2,

consistent with deeper rooting and enhanced N mineralization. After tracer application, 15N was initially retained in

the organic and mineral soil horizons. Recovery of 15N in plant biomass was 3.5 ± 0.5% in the canopy, 1.7 ± 0.2%

in roots and 1.7 ± 0.2% in branches. After two growing seasons, 15N recoveries in biomass and soil pools were

not significantly different between CO2 treatments, despite greater total N uptake under elevated CO2. After the

third growing season, 15N recovery in trees was significantly higher in elevated compared to ambient CO2. Natural-

abundance 15N and tracer results, taken together, suggest that trees growing under elevated CO2 acquired additional

soil N resources to support increased plant growth. Our study provides an integrated understanding of elevated CO2

effects on N cycling in the Duke Forest and provides a basis for inferring how C and N cycling in this forest may

respond to elevated CO2 beyond the decadal time scale.
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Introduction

A major source of uncertainty in calculating the poten-

tial for long-term biological carbon sequestration is the

demand and availability of soil nitrogen (N; Field, 1999;

Hungate et al., 2003; Matthews, 2007). For example, it

has been theorized that an initial increase in plant N

uptake and subsequent decrease in soil N availability

under elevated CO2 could reduce the enhanced plant

growth response over the longer term, thereby decreas-

ing net primary productivity (NPP) and the potential

for C sequestration in terrestrial ecosystems (Luo &

Reynolds, 1999; Thornton et al., 2007; Zaehle et al.,

2010). Immobilization of N in plant biomass and soil

organic matter (SOM) can feedback to affect negatively

plant growth, and may ultimately lead to progressive

N limitation (PNL) of CO2-mediated growth enhance-

ment (Mcguire et al., 1995; Luo & Reynolds, 1999).

However, several free-air CO2 enrichment (FACE)

experiments in North America have shown a continual

stimulation in forest productivity under elevated CO2

over time scales nearly reaching a decade (Finzi

et al., 2006a; Norby & Iversen, 2006; Zak et al., 2007;

McCarthy et al., 2010); although reduced CO2-mediated

growth enhancement has recently been documented at

the Oak Ridge, TN experiment (Norby et al., 2010). It is

unclear if, and under what conditions, this stimulation

will persist for decades to centuries, including whether

N cycling in the plant–soil system will be able to sup-

port continued high rates of NPP (Norby et al., 2010). If

PNL were occurring at the Duke FACE experiment, we
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would expect the CO2-mediated growth enhancement

to diminish. By contrast, after more than a decade of

CO2 treatment, there is little evidence that PNL is

occurring in the replicated Duke experiment based on

evidence from aboveground or total NPP (Finzi et al.,

2007).

A recent synthesis of studies of N uptake and N-

use efficiency at four forest FACE sites highlighted

the discrepancy between plant N accumulation with-

out observable changes in soil N and concluded that

although the specific mechanism remained unidenti-

fied, increased C allocation belowground (root bio-

mass, exudates, mycorrhizae) resulted in greater soil

N uptake (Finzi et al., 2007). In a separate synthesis

of soil N cycling responses in the Duke FACE experi-

ment, no statistically significant change in gross rates

of mineralization or immobilization were detected in

response to elevated CO2 treatment (Finzi & Schle-

singer, 2003). Similarly, studies from Rhinelander

FACE demonstrated that the gross rates of minerali-

zation and immobilization were stimulated to a similar

extent, resulting in no significant CO2 treatment effect

on net rates of soil N cycling (Holmes et al., 2006). In

addition, no significant stimulation of dissolved organic

N uptake has been detected in trees grown in elevated

relative to ambient CO2 at the Duke FACE experiment

(Hofmockel et al., 2007). The discrepancy between the

observation of increasing N uptake but no detectable

change in N pools of surface and mineral horizons

under elevated CO2 raises the question of what sources

of N support higher rates forest productivity under ele-

vated CO2.

Measuring increases in N cycling rates in forest soils

requires detecting small changes in heterogeneous

pools with variable fluxes, which is notoriously diffi-

cult, especially in long-term experiments in which alter-

ations in N cycling may be subtle. It is therefore not

surprising that short-term analyses of soil N transfor-

mations fail to identify the small, but critically impor-

tant, increases in the rate of soil N cycling that may be

occurring under elevated CO2, especially when those

measurements include significant soil disturbance (e.g.,

gross or net rates of N mineralization). Another

approach to studying soil N cycling processes is the

application of tracer quantities of 15N to entire forest

plots, followed by an analysis of the redistribution of

the 15N tracer throughout the plant–microbe–soil
system (e.g., Buchmann et al., 1996; Nadelhoffer et al.,

1999). An advantage to this approach is that the isoto-

pic label can be applied to the surface of the soil

without disturbing plant–fungal–bacterial interactions

that are known to affect SOM decomposition and N

cycling (Kuzyakov et al., 2000; Read & Perez-Moreno,

2003).

The use of ecosystem-scale 15N tracer experiments in

conjunction with natural-abundance measures offers

opportunities to assess how elevated CO2 has influ-

enced N cycling. Specifically, we can first identify

altered patterns of N cycling with elevated CO2 using

natural-abundance measures, and then measure two

different N pools: the quantity of 15N recovered in each

ecosystem N pool (percent recovery of the tracer) and

the level of 15N incorporation above the measured natu-

ral-abundance value of each plant and soil pool (atom

percent excess or APE). When these quantities are used

together in a time series of field samples, this allows the

cycling of both the 15N tracer (through its absolute mass)

and unlabeled N (through tracer dilution) to be com-

pared. We hypothesized that elevated CO2 will be asso-

ciated with higher APE and percent recovery of 15N in

tree biomass, as an indication of greater N uptake from

surface soils. By contrast, lower APE and 15N recovery

of biomass under elevated CO2 compared to ambient

CO2 would be indicative of greater N uptake from unla-

beled sources, including older SON or soil below 15 cm,

where little of the applied 15N tracer resides.

Materials and methods

Site description

The Duke Forest FACE site is located in a 25-year-old loblolly

pine (Pinus taeda) forest in Orange County, North Carolina. In

1983, the site was planted with 3-year-old pine seedlings

in 2.4 9 2.4 m spacing. Although initiated as a plantation,

there has been no subsequent management of the forest. A

diverse assemblage of understory, hardwood tree species

has self-recruited from hardwood forest adjacent to the pine

plantation.

The experimental design consists of six circular plots, each

30 m in diameter, widely spaced within the homogeneous,

now closed-canopy pine stand. Each plot is subdivided into

eight alternating sectors that are designated for either below-

ground or aboveground sampling. Three plots receive ambient

air (386 lL L�1) and three receive elevated concentrations of

atmospheric CO2 (ambient +200 lL L�1). Fumigation with ele-

vated CO2 began on August 27, 1996. As in all FACE experi-

ments, the experimental plots are open to ambient sunlight,

rainfall, winds, deposition, and other environmental variables.

Additional details on the FACE technology can be found in

Hendrey et al. (1999). The soils of the site are clay loams of igne-

ous origin, classified as Ultic Hapludalfs of the Enon series, and

are relatively homogeneous across the experimental area. The

soil is highly weathered andmoderately acidic (pH = 5.75).

Isotope experiment

As a baseline for the tracer experiment, the natural abundance

of 15N was measured in pine foliage samples collected from

the bottom, middle, and top of the pine canopy in 2002 (see
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15N methods below). Natural abundance in wood was

measured in the last wood increment in April 2003, before the

tracer application. In pine branches, natural abundance of 15N

was estimated in branches taken outside the plots in Septem-

ber 2005. Natural abundance of 15N was measured in O hori-

zon and mineral soil samples collected in March 2003

(Table 1).

Over three consecutive days in May 2003, trace amounts of
15N were applied to one ambient and one CO2-fumigated plot

per day. Enough water was added to the 15N to simulate a

0.2 mm rain event, using backpack sprayers. Paralleling the

proportions of NH4
+ and NO3

� in the soil (Finzi & Schlesing-

er, 2003), the tracer (98 atom% 15N) was added as 75%
15NH4Cl and 25% K15NO3 at a rate of 0.015 g 15N m�2 in 0.25

L H2O m�2, which represents ca. 3% of the inorganic N pool

(0–15 cm depth). To quantify the extent of initial labeling and

to test whether the tracers were evenly applied, we sampled

the forest floor of all six plots 2 weeks after the tracers were

applied. In the forest litter, d15N values averaged 484 (±29)‰,

representing 44 (±3)% 15N recovery, with no significant differ-

ences between CO2 treatments.

The redistribution of the 15N label was followed for three

growing seasons, corresponding to the seventh–ninth growing

seasons after the initiation of CO2 fumigation. In September of

2003, 2004, and 2005, when the canopy reaches its seasonal

maximum N content (Zhang & Allen, 1996; Finzi et al., 2004),

we sampled all components of the ecosystem from the canopy

through 30 cm depth in the mineral soil horizon.

Aboveground sampling

The mean longevity of loblolly pine foliage in the Piedmont of

NC is 18 months (Zhang & Allen, 1996). As a result, during

the growing season, there are two cohorts of needles in the

canopy, one produced in the current year and the other in the

previous year. In each experimental plot, 10–15 fascicles from

each cohort of needles were sampled from eight trees in 2003

and 2004 and from four trees in 2005. Previous research with

this tree species had shown that the concentration of N in nee-

dles varies from the bottom to the top of the crown (Zhang &

Allen, 1996; Finzi et al., 2004). Consequently, needles from the

bottom 25%, middle 50%, and top 25% of the crown were col-

lected from an upright lift and analyzed separately. In 2003

(natural abundance and postlabel) and 2004 (postlabel), we

collected and analyzed the concentration of N and 15N in a

total of 144 foliage samples (e.g., 2 CO2 treatments 9 3 repli-

cate plots 9 8 trees per plot 9 3 canopy positions per tree). In

2005, we collected and analyzed samples from 4 trees per plot

generating 72 foliage samples.

Table 1 Natural 15N abundances in the ecosystem pools under ambient and elevated CO2

Ecosystem pool

Ambient CO2 Elevated CO2

P-valued15N (‰) d15N (‰)

Pine needles �3.3 (0.1) �2.3 (0.7) 0.20

Bottom �3.6 (0.1) �2.5 (0.4) 0.07

Middle �3.4 (0.1) �2.5 (0.8) 0.31

Top �2.9 (0.2) �2.0 (1.0) 0.87

Hardwood foliage �1.9 (0.3) �2.5 (0.6) 0.39

Wood

Pine stem �4.4 (0.3) �2.9 (0.2) 0.01

Pine branches �4.9 (–) �4.9 (–) –

Hardwood stem and branches 4.1 (0.6) 3.9 (1.1) 0.84

Roots

Oea �5.6 (0.2) �5.7 (0.3) 0.86

0–15 cm mineral �1.0 (0.1) �0.6 (0.3) 0.21

15–30 cm mineral �2.1 (0.5) �0.9 (0.5) 0.13

Forest litter �5.0 (0.3) �4.2 (0.2) 0.00

SOM

Oea �4.7 (0.2) �4.7 (0.1) 0.90

0–15 cm mineral 1.8 (0.1) 1.1 (0.2) 0.00

15–30 cm mineral 4.5 (0.1) 3.5 (0.2) 0.00

NH4
+–N

Oea �4.2 (0.6) �5.0 (1.4) 0.59

0–15 cm mineral 3.9 (1.6) �1.0 (0.8) 0.02

15–30 cm mineral 21.6 (2.4) 23.7 (4.1) 0.66

TDN

Oea �6.0 (0.4) �7.8 (0.2) 0.00

0–15 cm mineral �1.5 (1.2) �2.1 (0.3) 0.68

15–30 cm mineral �0.1 (0.8) �1.3 (0.3) 0.15

Each value is the mean of the three ambient or elevated plots (±SEM), except for pine branches (natural abundance measured out-

side the plots in 2005)
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The concentration of N and 15N in wood was determined

separately for bolewood and branches. For bolewood, five

randomly selected pine trees in each plot were cored ca. 1.3 m

above the soil surface using a 5 mm diameter increment borer.

Bark and each yearly growth increment in each core were sep-

arated by year using a razor blade. In 2003, we measured the

concentration of N and 15N in the bark and in the current year

of growth. To account for lateral redistribution of the 15N tra-

cer to growth rings from earlier years, in 2004 and 2005 we

analyzed growth increments dating back to the 2000 growing

season in each core.

Analysis of N and 15N in foliated pine branches was con-

ducted in September 2004 and 2005. Three foliated secondary

branches from the bottom, middle, and top of the canopy were

harvested from each plot. Primary branches were not sampled

to avoid leader damage. The branches were stripped of their

foliage, dried and subsequently ground in a Wiley mill to cre-

ate a single homogenous sample for analysis.

Ten to 15 samples of foliage of the four dominant hardwood

species were collected from each plot sector in which each

species was present. The four hardwood species were: red

maple (Acer rubrum L.), sweet gum (Liquidambar styraciflua L.),

winged elm (Ulmus alataMichx.), and red bud (Cercis canadensis

L.). Because the understory trees were too small to core, we

clipped a lateral branch from four individuals within each

FACE plot and assumed that the concentration of N and 15N

concentration in the branch was the same as that of the stem.

Belowground sampling

Soil fractions and fine root biomass were sampled from a ran-

domly selected position within each soil sector of each plot. At

each sampling location, a square section 100 cm2 in area was

cut from both the undecomposed litter (Oi) and the underly-

ing partially decomposed organic material (Oea). Mineral hori-

zons (0–15, 15–30 cm) were collected directly under the

organic horizon sample, using a 5 cm diameter slide hammer

bulk-density soil corer. Four vertical sets of organic and min-

eral-horizon samples per plot were collected and kept separate

for chemical, physical, and microbiological analysis.

Immediately after sampling, the soils were brought back to

the laboratory where visible roots and rocks were removed

from each sample, and a 30 g subsample of the root-free

organic and mineral soil horizons was made available for

sequential extraction (see below). The remaining mineral soil

samples were first sieved through a 2 mm mesh and then

quantitatively root picked. The roots from each horizon were

separated into live fine roots (<2 mm) and live coarse roots

(>2 mm). Because root species were not identified, our results

represent a community level measurement. Live fine roots

were identified by tensile strength and white or yellow color

of the vascular tissue, rinsed three times in 0.5 mM CaCl2 to

remove any adsorbed tracer, rinsed in deionized water and

placed in an oven at 60 °C for 3 days. The dried fine roots

were then ground to a powder and analyzed for N and 15N.

To separate the different fractions of N within the soil, we

used the sequential extraction procedure described in Holmes

et al. (2003). In brief, a 30 g subsample of root-free, field-moist

soil was placed in a 125 mL plastic bottle, extracted with

90 mL of 0.5 M K2SO4, shaken for 1 h, centrifuged, and filtered

through a 0.5 lm glass fiber filter. The filtrate was collected

for NH4
+, NO3

�, and DON measurements (see below). Next,

the filter was removed from the filtration apparatus and

placed in the sample bottle containing the extracted soil, and

fumigated with chloroform (CHCl3) for 10 days in the dark.

After incubation, the CHCl3 was removed and the sample was

extracted with 90 mL of 0.5 M K2SO4, shaken for 1 h, centri-

fuged, and filtered through a 0.5 lm glass fiber filter. The

flush of N after fumigation corresponded to microbial biomass

N (Joergensen, 1996). The remaining soil pellet, representing

SON in the soil, was oven-dried at 60 °C, ground with a ball

mill, and prepared for mass spectrometry.

The concentration of NH4
+ and NO3

� in each sample was

measured on an autoanalyzer (Lachat QuickChem FIA+ 8000

Series; Zellweger Analytics, Milwaukee, WI, USA). Ammo-

nium concentrations were measured with the phenolate

method and NO3
� concentrations by the cadium-reduction

method. The quantity of N in DON and microbial biomass

pools was measured in the 0.5 M K2SO4 extracts following per-

sulfate digestion (Cabrera & Beare, 1993). The quantity of N in

DON was measured as the difference in the concentration of

N released after persulfate digestion and the concentrations of

NH4
+–N plus NO3

�–N initially present in the sample (Currie

et al., 1996). Similarly, the concentration of N in microbial bio-

mass was calculated as the difference in the N concentration of

the CHCl3-fumigated sample and the DON sample. We used a

diffusion procedure to determine the 15N content of the NH4
+,

DON, and microbial biomass pools (Stark & Hart, 1996). Con-

centrations of NO3
�–N were below the detection limit (12 ppb

NO3
�–N) and were therefore not diffused. Soil NH4

+, DON,

and microbial biomass extracts were diffused onto acidified

disks and analyzed for %N and d15N at the University of Cali-

fornia, Davis on an Europa Integra mass spectrometer.

Calculations and statistical analysis

The production of woody biomass, branches, and coarse roots

was estimated from measurements of tree heights and diame-

ters and allometric equations (Clark et al., 1986; Naidu et al.,

1998; Fang et al., 2000) as presented in McCarthy et al. (2010).

Because foliar biomass deviated from that predicted by the

allometric equations under elevated CO2, the canopy biomass

for each experimental plot was estimated according to

McCarthy et al. (2007), based on the mass of foliage collected

in litter baskets. Fine root biomass was estimated directly from

the quantitative root picking.

Each year, for each sample we used the N concentration and
15N contents of tree tissues, organic horizon and mineral soil

fractions to calculate the distribution the 15N tracer in the three

plots under ambient and elevated CO2. We first calculated the

atom% excess 15N (APE 15N) of each sample as the difference

in atom% 15N of the component collected after labeling of plots

with enriched 15N tracers minus the atom% 15N in natural

abundance of the component, measured prior to the applica-

tion of 15N tracers. Because the tracer was 98% 15N enriched,

APE approximates 15N derived from the applied tracer

© 2011 Blackwell Publishing Ltd, Global Change Biology, 17, 3338–3350
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(NDFT), a stock independent measure of tracer recovery. The

total quantity of 15N in each pool (g 15N m�2) was then

estimated as the atom% 15N excess of that pool multiplied by

the N content, or pool size (g N m�2) of that pool divided by

100. Finally, the recovery of the added label in each ecosystem

pool was calculated as the 15N mass in that pool (g 15N m�2)

divided by the mass of 15N label added at the time of

tracer application (i.e., 0.015 g 15N m�2; Currie et al., 1999).

Although not statistically so (P = 0.16), total ecosystem recov-

ery in 2004 (74.8 ± 6.1%) was lower than recovery in 2003

(96.9 ± 4.3%) and 2005 (88.2 ± 6.3%), likely due to low 15N

recovery in SOM from the 0–15 mineral soil in 2004 (5.3

± 0.7%) compared to 2003 (19.6 ± 1.0%) and 2005 (21.5

± 2.5%). We suspect that low recovery in the upper mineral

horizon in 2004 was due to variation in the delineation

between the Oea and mineral horizons among years. We there-

fore used the 2003 and 2005 data to interpolate linearly APE

values for each 0–15 cm mineral soil sample (n = 6). The aver-

age measured APE was 0.36759 (±0.00017) in 2004. The average

interpolated value was 0.36920 (±0.00024). For each sample,

the interpolated APE value was used in subsequent calcula-

tions of SO15N recovery and ecosystem 15N recovery (Table 2).

For statistical analysis, each 30 m diameter FACE plot is

a replicate experimental unit (n = 3 for the ambient and

elevated CO2 treatments). All samples collected within a plot

were averaged prior to statistical analysis. Forest floor and tree

components represent the sum of hardwood and pine trees,

unless otherwise stated. We used repeated measures analysis

of variance (ANOVA) to test for the effects of CO2 treatment (386

and 586 lL L�1) and time (2003, 2004, and 2005) on the bio-

mass (g dry matter m�2), N concentration (%), N content or

pool size (g N m�2), atom% 15N excess and percent recovery

of the isotope. Because initial measurements in 1996 demon-

strated significant between-plot variation in plant biomass,

NPP and pools of N, the effect of elevated CO2 on N content

and biomass were tested using repeated measures analysis

(Kenward & Roger, 1997; Littell, 2002) with the 1996 pretreat-

ment data as covariates, using Proc Mixed in SAS (Schlesinger

& Lichter, 2001; Finzi et al., 2002). Treatment and interaction

means were compared using Tukey’s HSD test, using a signifi-

cance definition of a = 0.05.

Results

Prior to tracer application, elevated CO2 caused a sig-

nificant enrichment of the natural abundance of the

forest litter (Oi; P = 0.0006), which provides an

Table 2 The percent recovery (±1 SE) of the 15N tracer in plant (hardwood + pine) biomass and whole soil under ambient and ele-

vated CO2 in September of 2003, 2004, and 2005, corresponding to the seventh–ninth growing seasons following the initiation of

CO2 fumigation. Within a row, significant differences (P < 0.05) in percent recovery are indicated by different superscript letters

Ecosystem component

Year

2003 2004 2005

Ambient Elevated Ambient Elevated Ambient Elevated

Tree biomass 3.8a (0.8) 3.5a (0.8) 8.5b (0.8) 9.5b (1.3) 10.6b (0.3) 13.3c (0.5)

Total roots 1.1a (0.2) 0.8a (0.2) 1.6ab (0.4) 1.6ab (0.3) 2.4b (0.2) 2.7b (0.3)

Total canopy 1.2a (0.3) 1.1a (0.3) 3.8b (0.3) 3.7b (0.4) 4.9bc (0.2) 6.3c (0.6)

Bark 0.9a (0.3) 0.9a (0.2) 0.6a (0.1) 0.7a (0.2) 0.3a (0.1) 0.4a (0.1)

Bole 0.1a (0.0) 0.1a (0.0) 0.9b (0.2) 1.2b (0.2) 1.0b (0.0) 1.2b (0.0)

Branches 0.5a (0.1) 0.6a (0.2) 1.7b (0.3) 2.3b (0.4) 2.0b (0.2) 2.7b (0.3)

Forest litter 40.2a (2.5) 42.4a (7.5) 6.7bc (2.2) 7.1b (2.2) 1.5bc (0.4) 0.9c (0.1)

Oea horizon

SOM 22.0ab (0.3) 16.5a (2.5) 44.1ab (5.8) 42.2ab (5.8) 45.1ab (11.7) 49.2b (11.3)

MB 2.8a (0.2) 2.1a (0.3) 3.0a (0.4) 3.0a (0.3) 5.3a (2.5) 1.3a (0.3)

DON 0.3a (0.1) 0.2a (0.0) 0.8b (0.1) 0.7ab (0.1) 0.8ab (0.1) 0.6ab (0.3)b

NH4
+ 0.1a (0.0) 0.0a (0.0) 0.0a (0.0) 0.0a (0.0) 0.1a (0.1) 0.0a (0.0)

Mineral soil 0–15 cm

SOM 18.0a (1.5) 21.2a (1.1) 16.4a (1.7) 15.2a (0.3) 22.2a (5.1) 20.8a (2.4)

MB 1.5a (0.2) 1.8a (0.4) 0.5b (0.1) 0.4b (0.0) 1.4ab (0.6) 1.0ab (0.2)

DON 0.2a (0.1) 0.3a (0.1) 0.7a (0.1) 0.5a (0.0) 0.5a (0.3) 0.5a (0.1)

NH4
+ 0.2ab (0.1) 0.2a (0.1) 0.0b (0.0) 0.0b (0.0) 0.0ab (0.0) 0.1ab (0.0)

Mineral soil 15–30 cm

SOM 8.4a (1.7) 6.5a (0.9) 0.0b (0.0) 0.0b (0.0) 0.0b (0.0) 0.0b (0.0)

MB 0.6a (0.2) 0.4a (0.2) 2.7b (0.1) 1.8ab (0.9) 0.3a (0.1) 0.3a (0.2)

DON 0.2a (0.1) 0.3a (0.1) 0.2a (0.0) 0.4a (0.1) 0.2a (0.0) 0.3a (0.1)

NH4
+ 0.0a (0.0) 0.0a (0.0) 0.0a (0.0) 0.0a (0.0) 0.0a (0.0) 0.0a (0.0)

Total recovery 98.3a (12.0) 95.5a (11.1) 83.8a (6.4) 80.8a (8.0) 88.0a (9.2) 88.3a (10.5)
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integrated measure of the entire canopy. Pinewood in

the elevated CO2 plots was also more enriched in 15N

(P < 0.01; Table 1). SON showed the opposite with

lower natural 15N abundance under elevated compared

to ambient CO2 for mineral soil at 0–15 cm (P < 0.0001)

and 15–30 cm depth (P < 0.0001; Table 1).

After 3 years of tracer addition, tree biomass (hard-

wood + pine) accounted for 10.6% of the 15N tracer

added to forest plots under ambient CO2 and 13.3%

under elevated CO2 (P = 0.007; Table 2, Fig. 1l). Fol-

lowing application of enriched 15N tracers, APE 15N in

the canopies of both treatments increased significantly

through time (P < 0.0001; Fig. 1b). Although over the

course of this experiment the APE 15N in the canopy

was lower under elevated CO2 compared to ambient

CO2, the larger canopy mass and N content under ele-

vated CO2 resulted in a progressive increase in 15N

recovery in the canopy through time (P < 0.0001;

Fig. 1a, c). Fine root APE 15N was significantly lower

under elevated compared to ambient CO2 (P = 0.02),

but there were no significant main effects of CO2 on N

content (P = 0.48) or 15N percent recovery of fine roots

(P = 0.92). By the end of the third growing season fol-

lowing tracer application, percent recovery of the 15N

tracer in the canopy (P = 0.10) and woody biomass

(P = 0.06) was greater under elevated CO2 compared to

ambient CO2 (Fig. 1c, f, Table 2).

Despite elevated CO2 effects on 15N recovery in tree

biomass, we detected no significant CO2main or interac-

tion effects on the percent 15N recovery in the forest

floor, SOM, DON, NH4
+, or microbial pools (Table 2).

Over the course of the experiment, 15N recovery in the

forest litter (Oi) significantly decreased over time

(P < 0.00001; Table 2) and SO15N recovery in the Oea

Fig. 1 Effects of atmospheric CO2 (ambient in white, elevated in black) on the N content (g m�2), atom% 15N excess and %15N recovery

of plant pools (hardwood and pine) measured in this experiment. Error bars represent SEM using treatment plots as experimental units

(n = 3 ambient CO2 plots and n = 3 elevated CO2 plots). Asterisks represent significant CO2 effects within year (P � 0.05).
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horizon increased over time (P = 0.01). In the 0–15 cm

mineral soil, 15N recovery did not differ significantly

among years and averaged 19.0 ± 1.1% recovery. Only

small quantities of 15N were recovered from the 15–
30 cm mineral soil in the first year; tracer recovery rap-

idly declined in subsequent years (P < 0.0001; Table 2).

Recovery of SO15N significantly decreased with depth,

and average recovery for the 3 years was 37.5% ± 4.1 in

the Oea, 15.4% ± 2.0 in the 0–15 cm soil and 2.5% ± 0.9

in the 15–30 cm soil. DO15N recovery increased over

time in the O horizon (P = 0.01) and the 0–15 cmmineral

soil (P = 0.03; Table 2). Recovery of 15N in microbial bio-

mass was variable over time with lower recovery in 2004

compared to 2003 and 2005 for both mineral soil hori-

zons (P < 0.01; Table 2). Over the 3 years of the experi-

ment, the total recovery of the applied 15N isotope

ranged from 80% to 98%. Percent recovery in the entire

ecosystem was not significantly different between CO2

treatments (P = 0.74) or among years (P = 0.31; Table 2).

Biomass and N concentration

Elevated atmospheric CO2 significantly increased plant

biomass (g m�2) but had no effect on the concentration

of N in foliage, wood or fine roots. Loblolly pine can-

opy mass was higher (ca. 29%) under elevated com-

pared to ambient CO2 (P = 0.10), and increased in mass

through time (P = 0.0001). A similar pattern was

observed in the understory hardwoods with greater

canopy mass under elevated compared to ambient CO2

(P = 0.08). The content or ecosystem pool size of N in

the plant canopy (loblolly pine + hardwoods) was sig-

nificantly greater under elevated CO2 only in 2005

(P = 0.007; Fig. 1a). Similarly, the ecosystem pool size

of N in woody biomass was significantly higher under

elevated CO2 (P = 0.01; Fig. 1d).

Elevated atmospheric CO2 consistently increased the

standing crop of fine root biomass in the Oea (58% on

average). Contrary to more detailed studies of root bio-

mass (Pritchard et al., 2008; Jackson et al., 2009), we

detected no significant CO2 effects on fine root biomass

in the mineral soil. The pool of live fine roots in the

0–15 cm horizon (234.1 g ± 12.8) was four times that of

the biomass in the 15–30 cm (50.9 ± 5.5 g) and Oea (37

± 5.2) horizons (P < 0.0001). We did not detect a CO2

treatment effect on the N concentration of fine roots or

the total quantity of N in fine root biomass (P = 0.48;

Fig. 1g).

We failed to detect an effect of elevated CO2 on the

mass of the surface organic (O) horizon or on its N con-

centration or content (ecosystem N pool size), but Lichter

et al. (2008) report that N accumulated faster under ele-

vated compared to ambient CO2 during the first 6 years

of the experiment, then leveled off between Years 6 and

9 (2003–2005). Similarly, elevated CO2 had no effect on

the content or pool size of N in the top 30 cm of mineral

soil or on the concentration of N in DON, NH4
+, or

microbial biomass (Table 2).

Discussion

After 9 years of CO2 fumigation, elevated CO2 contin-

ued to stimulate forest productivity above levels

observed under ambient CO2 at the Duke FACE site

(McCarthy et al., 2010). In the final year of this study,

the additional N in biomass was 15.7 g N m�2 higher

in elevated relative to ambient CO2 treatments, or about

a 4% average annual increase in N uptake in each of the

9 years of CO2 fumigation (Fig. 1j). This means that an

additional ca. 1.6 g N m�2 yr�1, was acquired by trees

under elevated CO2. The significantly greater 15N

recovery in plant biomass 3 years following tracer

application (i.e., the 2005 calendar year; Fig. 1l) sug-

gests that some of the additional N taken up under ele-

vated CO2 was acquired from labeled forest floor and

0–15 cm soil horizons, where the majority of 15N tracers

were initially retained. At the same time, the consis-

tently lower atom% 15N excess in plant N pools under

elevated CO2 (Fig. 1k) indicates that nonlabeled pools

of N in the ecosystem also supplied the additional N

taken up under elevated compared to ambient CO2.

Below, we discuss processes likely controlling four

factors: changes in natural-abundance d15N under

elevated CO2, temporal variations in isotope recovery,
15N cycling in the Duke Forest compared to other

FACE sites, and additional uptake of unlabeled N

sources.

Changes in natural-abundance d15N under elevated CO2

Changes in the N cycle were evident prior to 15N tracer

addition (Table 1). Our natural-abundance data are

consistent with increased mineralization of SON and/

or deeper rooting (15–30 cm) supporting increased

NPP under elevated CO2. Although foliar d15N can be

positively correlated with net N mineralization in soil

due to losses of 15N-deplete N species throughout the

N cycle (Garten & Van Miegroet, 1994; BassiriRad et al.,

2003; Kahmen et al., 2008; Garten et al., 2011), several

studies suggest that enhanced rates of SOM mineraliza-

tion have prompted relatively higher vegetation d15N
values with elevated CO2. For example, our findings

are similar to result from the Mojave FACE site, where

d15N increased in the dominant vegetation (Larrea trid-

entate) grown under elevated CO2 (Billings et al., 2002,

2004), as well as open-top chamber research on ponder-

osa pines (Pinus ponderosa Dougl.), which revealed sig-

nificantly enriched d15N with elevated CO2 in both live
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and senesced needles (Johnson et al., 2000). Mining of

N from recalcitrant SOM is the mechanism proposed

for inducing 15N enrichment in these studies (Johnson

et al., 2000; Billings et al., 2004). This is because, with

some exceptions, recalcitrant SOM is typically enriched

in 15N, while N in more labile fractions is relatively
15N-depleted. Although our methods cannot distin-

guish between mineralization of labile and recalcitrant

(15N enriched) SOM, other studies suggest that

enhanced mineralization of relatively slow-turnover

SOM can occur with elevated CO2 (Billings & Ziegler,

2008; Langley et al., 2009; Hofmockel et al., 2011). Val-

ues of d15N for ammonium are consistent with

increased mineralization, but minimal N loss (Garten,

1993; Compton et al., 2007; Kahmen et al., 2008; Craine

et al., 2009) in the Duke FACE experiment elevated

CO2 produced isotopically lighter soil extractable NH4
+

(0–15 cm soil; Table 1).

The natural-abundance d15N signature of leaf litter is

also consistent with deeper rooting. Soil d15N values

generally increase with depth (Nadelhoffer & Fry,

1988a; Högberg, 1997), a phenomenon generally attrib-

uted to greater age of SON with depth and the fact that

mineralization favors the lighter 14N, thus leaving

enriched 15N in older SON (Létolle, 1980; Nadelhoffer

& Fry 1988b). Although annual destructive soil sam-

pling (via soil cores) at the Duke FACE experiment did

not reveal a significant CO2 effect on the 15–30 cm fine

root biomass, coarse roots sampled from soil pits dug

to 32 cm depth revealed significantly greater (ca. two-

fold) coarse root biomass under elevated CO2 (Jackson

et al., 2009). Fine root minirhizotron data from 1998 to

2004 are consistent with deeper rooting; elevated CO2

significantly increased fine root production in the

15–30 cm soil increment (+25%; Pritchard et al., 2008).

Studies from the Oak Ridge National Lab (ORNL)

FACE experiment suggest that N may be more avail-

able in deep compared to shallow soil, due to decreased

microbial and root uptake of mineralized N with depth

(Iversen, 2010). In our results, increased fine root pro-

duction at depth (15–30 cm) combined with higher nat-

ural-abundance d15N in plant litter of elevated relative

to ambient CO2 treatments suggests that trees may have

acquired some additional N from deeper soil pools

under elevated CO2.

Temporal variations in isotope recovery

In the first two growing seasons following tracer appli-

cation (i.e., 2003, 2004), significantly more N was taken

up by trees under elevated CO2 (on average 10.2 and

15.9 g N m�2, respectively; Fig. 1j), but not more 15N

(Fig. 1l), suggesting that some of the additional N was

acquired from an unlabeled source. It is important to

remember that the cycling of unlabeled material in this

forest influences temporal trends. For example, the

time-lags of wood and needle production relative to

plant N uptake and OM synthesis could be important,

especially in the first year, when new material is largely

built from carbohydrate produced the previous year (i.

e., prior to the labeling). In addition, the longevity of

loblolly pine foliage in the Piedmont of NC is

18 months (Zhang & Allen, 1996). Therefore during the

first year, old natural-abundance needles fell to the for-

est floor and new needles were generated from unla-

beled carbohydrates. During the second growing

season, the old unlabeled needles began decomposing

on the forest floor, while the first experimental (largely

unlabeled) cohort of needles remained on the tree.

Thus, the cycling of unlabeled N in the system delays

the return of assimilated 15N to the forest floor, and

contributes to the temporal dynamics of 15N recovery

in tree biomass.

A second source of interannual variability in CO2

treatment effects on 15N recovery is probably related to

extreme weather events. In December 2002 (sixth year

of the experiment, the winter prior to tracer applica-

tion), a severe ice storm substantially reduced living

tree biomass and increased detrital inputs to the forest

floor (McCarthy et al., 2006). No CO2 stimulation of

annual litterfall inputs was detected the following

2 years. It was not until the ninth year of the experi-

ment (2005) that a significant increase in net annual C

increment returned (ca. 17%; Lichter et al., 2008). Thus,

it is feasible that the influence of CO2 fertilization on
15N assimilation by trees was strongly diluted by the

natural-abundance inputs of decomposing branches

and leaves as a consequence of the ice storm.

Some of the temporal variation in 15N recovery in

plant biomass may also be the result of the 15N label

being retained in the mineral-bound SOM (De Graaff

et al., 2009; Langley et al., 2009). Previous studies have

shown that the 15N tracer may initially be immobilized

by microorganisms and retained in relatively stable

mineral associated organic pools (Currie et al., 1999;

Hagedorn et al., 2005). Similarly, recent NMR data sug-

gest that microbial residues can account for up to 80%

of SON (Simpson et al., 2007), supporting the idea that

mineral-bound organic matter tends to be dominated

by microbial products (Guggenberger et al., 1994; Rum-

pel et al., 2010). This microbial-derived SO15N can take

several years to be remobilized as plant available 15N,

consistent with an increase in the APE 15N signature

over time (Fig. 1k).

The progressive increase in percent recovery of 15N

in tree biomass under elevated CO2 compared to ambi-

ent CO2 (Fig. 1l) is consistent with uptake from the

0–15 cm soil (O and A horizons), where the majority of
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the tracer was retained (Table 2), and may be due to

increased turnover of SOM. Calculations of SOM turn-

over in the Duke Forest have been made based on C

mineralization rates under elevated CO2 combined

with C : N ratios of the O horizon (45) and the 0–15 cm

mineral soil (20; Lichter et al., 2008). The calculated

additional N mineralized under elevated CO2 is on

average 0.9 g N m�2 yr�1 from the O horizon and

3 g N m�2 yr�1 from the mineral soil (Drake et al.,

2011). These small changes in soil N pools are difficult

to detect even with the added sensitivity of the 15N tra-

cer (Table 2). Nonetheless, it is reasonable to suggest

that increased mineralization of organic and mineral

substrates in the upper 15 cm may be contributing to

CO2 enhanced growth based on evidence of increased

C mineralization (Drake et al., 2011) and widening C : N

ratios (Lichter et al., 2008), combined with higher 15N

recovery in plants under elevated CO2.

Within the CO2 literature, evidence suggests that in

low N environments mineralization can decrease soil C

accumulation under elevated CO2 (Carney et al., 2007;

Hungate et al., 2009; Langley et al., 2009; Hofmockel

et al., 2011). Reduced gains in SOC have been attributed

to priming of slow-turnover SOM (Hoosbeek & Scarascia-

Mugnozza, 2009), which may be driven by changes in

the microbial community, including increased fungal :

bacterial ratio (Carney et al., 2007), or increased extra-

cellular enzyme activity of microbes adept at accessing

recalcitrant SOM (Billings & Ziegler, 2008; Billings

et al., 2010). At the Duke FACE experiment, increases

in NPP under elevated CO2 have increased the quantity

of C entering the belowground system through fine

root production, exudation, and C allocation to ectomy-

corrhizal fungi (Matamala & Schlesinger, 2000; Prit-

chard et al., 2001; Norby et al., 2004; Garcia et al., 2008).

These processes, alone or in combination, can increase

the metabolism of organic substrates by soil microbial

communities and the release of N from SOM (Clar-

holm, 1985; Asmar et al., 1994; Trueman & Gonzalez-

Meler, 2005). This is consistent with the elevated CO2

canopy initially showing greater 14N assimilation

(depleted APE signature under elevated CO2; Fig. 1k),

but progressively increased 15N uptake (Fig. 1l) as 15N

was slowly remineralized into the available pool

(Hagedorn et al., 2005). Our data are also consistent

with the idea that enhanced plant N uptake under ele-

vated CO2 may be supported by the decomposition of

SOM. It is possible, therefore, that under elevated CO2

soil microbial communities in the Duke Forest are

responding to increased plant N demand by increasing

the mineralization of SOM, resulting in significantly

greater 15N recovery in biomass at elevated compared

to ambient CO2 3 years following tracer application

(Fig. 1l).

Increased root and fungal biomass in the 0–15 cm

mineral soil is possibly contributing to the transition

from an unlabeled to a labeled N source over the dura-

tion of this experiment. Root exploration has been the

dominant hypothesis for enhanced N uptake at other

forest FACE sites (Norby & Iversen, 2006; Zak et al.,

2007). Results from our annual sampling indicate that

fine root biomass is greater under elevated CO2 only in

the organic horizon, but not the mineral soil. Previous

studies that focused explicitly on fine root dynamics

indicate that fine root production and biomass are

greater under elevated CO2 at the Duke FACE site

(average across years, 25–30%, O and 0–15 cm mineral

horizons; Pritchard et al., 2001, 2008; Jackson et al.,

2009), although not stimulated to the same degree as

observed at the Rhinelander (+57%) and ORNL FACE

sites (+92%; Finzi et al., 2007). Increases in fine root pro-

duction augment the volume of soil explored by roots

for available N. Furthermore, in the surface mineral soil

(O and 0–10 cm mineral horizons) ectomycorrhizal

colonization of loblolly pine roots has increased 14%

under elevated CO2 (Garcia et al., 2008). Field and labo-

ratory studies show that carbon allocation to ectomy-

corrhizal fungi increases as the concentration of

available N in the soil decreases (Wallander & Nylund,

1991), so the ability of trees to take up additional N

from the soil under elevated CO2 may be enhanced by

increases in C allocation to mycorrhizal fungi. If this is

true, however, depletion in d15N of foliage compared to

soil would be greater under elevated CO2, because the

discrimination against the heavy isotope during the

transfer of N compounds by mycorrhizal fungi causes a

decrease in the d15N of plants and increases the d15N of

fungi (Emmerton et al., 2001; Hobbie et al., 2005;

Hobbie, 2006). The opposite was observed in our natu-

ral-abundance data, in which the difference in 15N

between litter and mineral soil is greater under ambient

conditions, and soil d15N is significantly more depleted

under elevated relative to ambient CO2 (Table 1). This

suggests that increased mycorrhizal assimilation of N is

not the source of greater N uptake. Given the integra-

tive nature of natural-abundance values, it is alterna-

tively possible that the natural-abundance data reflect

the net result of increased rates of microbial SOM turn-

over and the mitigative effect of foliar d15N of mycor-

rhizal N acquisition (Garcia et al., 2008).

Comparison with other FACE studies

The results of this 15N tracer experiment are consistent

with those of Zak et al. (2007) who found significantly

higher 15N recovery in aspen and aspen-birch commu-

nities growing under elevated CO2 (10.0 ± 2.1%) at the

Rhinelander FACE site compared to those growing
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under ambient CO2 (7.4 ± 1.3%). An interesting differ-

ence between experiments, however, is that greater 15N

recovery under elevated CO2 was observed within

12 months (approximately one growing season) of tra-

cer application at the Rhinelander FACE site, whereas

at the Duke FACE site it took 28 months (approxi-

mately three growing seasons) for significantly higher
15N recovery in biomass under elevated CO2.

Differences in plant community composition between

the Rhinelander and Duke FACE sites may have con-

tributed to the difference in time elapsed until signifi-

cantly greater 15N recovery was observed under

elevated CO2. The longevity of loblolly pine foliage in

the Duke Forest delays the return of assimilated 15N to

the forest floor relative to the deciduous forests of the

Rhinelander FACE experiment. Unlike the deciduous

forest, where the 15N returns to the forest floor in the

first fall, the pine forest has a pulse of 14N entering the

soil system when the unlabeled needles fall to the forest

floor. Furthermore, the northern hardwood species

produce leaf litter that typically decomposes faster

than pine needles when compared in similar climate

and soil; the warmer climate in NC should have

mitigated this difference to some extent. As a result,

after 12 months, the O horizon at the Rhinelander

FACE experiment retained on average 39% of the

applied 15N (Zak et al., 2007), compared to 79% reten-

tion in the O horizon at Duke FACE following

16 months of tracer application. Because the bulk of the
15N label was retained in the forest litter during the

current study (Table 2), root biomass in the surface

mineral soil had limited access to 15N during the first

year of our experiment.

Support for PNL was garnered by the 15N experi-

ment in the Florida scrub oak ecosystem, where initial

CO2 enhancements in aboveground mass of N and 15N

declined over time (Hungate et al., 2006). After 4 years,

the accumulation of N in oak tissues and the O horizon

exceeded the CO2 stimulation of N uptake during the

first year of the tracer experiment. Reduced soil N

availability diminished aboveground NPP as evidenced

by the declining aboveground litter production in Years

2–4 of the Florida scrub oak experiment (Hungate et al.,

2006). The results from this study differ from the Duke

Forest for several reasons, including well-drained

sandy soils, deciduous plant community composition,

and the much greater CO2 response, which elicited

nearly 80% stimulation of aboveground biomass (Dijk-

stra et al., 2002). Although other studies have demon-

strated the need for additional N to elicit a CO2

response (Reich et al., 2006), including prototype results

from the Duke Forest (Oren et al. 2001), our long-term

experiment has not yet revealed evidence for reduced

N cycling or PNL (Drake et al., 2011).

Additional uptake of unlabelled N sources

In addition to the 15N tracer, unlabeled sources of N

may be supporting increased NPP as suggested by

lower APE 15N of plant biomass under elevated CO2.

Sources of unlabeled N include N2 fixation, atmo-

spheric deposition, and soil >15 cm below the soil sur-

face. Of these sources, N below 15 cm is the most likely

source of unlabelled N that may have been taken up by

trees under elevated CO2. The natural-abundance d15N
values of SOM normally increase with depth (Högberg,

1997; Billings & Richter, 2006). After the 15N tracer was

added, d15N in the surface soil horizons was artificially

elevated well-above natural-abundance levels, resulting

in a decline in d15N with depth. By extending fine roots

deeper into the mineral soil, loblolly pine trees may

have acquired additional, unlabeled N. Although the

Duke FACE CO2 stimulation of fine root production is

small, relative to the doubling of fine root production

that occurred at the ORNL FACE experiment (Norby

et al., 2004), deeper soil N probably contributes to the

additional N uptake by trees grown under elevated

CO2 at the Duke FACE site.

Previous studies at the Duke FACE experiment indi-

cated that heterotrophic N2 fixation provided an addi-

tional source of exogenous N, but elevated CO2 did not

enhance N2 fixation in the forest floor or mineral soil

(0–10 cm; Hofmockel & Schlesinger, 2007). Although

acetylene reduction assays (Hardy et al., 1968) did not

reveal a CO2 stimulation of diazotrophs during the

2000 growing season, N2 fixation may have been stimu-

lated in subsequent years of the experiment, as sug-

gested by the natural-abundance results. N2 fixation

may be contributing to the natural 15N abundance in

the mineral soil (N2 is 0‰ by definition; Table 1) as well

as a fraction of the additional 14N assimilated by plants

under elevated CO2. Previous analyses suggest, how-

ever, that the effect of increased N2 fixation by elevated

CO2 is too small to account for the additional N

demand (Van Groenigen et al., 2006).

Foliar N uptake can be an important component of N

inputs in forests, especially under conditions of N defi-

ciency (Brumme et al., 1992; Eilers et al., 1992; Sievering

et al., 2007). Although N concentration in throughfall is

not different between CO2 treatments (Lichter et al.,

2000; Oh et al., 2007), greater canopy biomass under ele-

vated CO2 could increase foliar uptake of atmospheric

N deposition, even if leaf-specific rates of uptake are

the same under ambient and elevated CO2. Total

atmospheric N deposition at the Duke FACE site

is 1.37 g N m�2 yr�1 (Sparks et al., 2008). Previous

studies indicate that 0.12 g N m�2 yr�1 of NH4
+ was

absorbed by the canopy, with no significant CO2

treatment effects (Lichter et al., 2000). Similarly NO3
�
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concentration in throughfall is not significantly differ-

ent between CO2 treatments (Lichter et al., 2000; Oh

et al., 2007). In some seasons, NO3
�–N concentrations

in throughfall exceed precipitation due to foliar leach-

ing (Lichter et al., 2000) or additional inputs of dry

deposition, resulting in average throughfall inorganic

N fluxes of 2.53 ± 1.6 g N m�2 yr�1 (1998–2001 from

Oh et al., 2007). Therefore, foliar uptake of atmospheric

N deposition is minimal and cannot explain the differ-

ence in unlabeled N uptake between the ambient and

elevated CO2 plots. An alternative explanation for

lower APE in the elevated CO2 trees could be dilution

of the 15N labeling by a larger initial N pool (prior to
15N labeling) in trees grown under elevated CO2. APE

depletion was greatest in the canopy (Fig. 1); yet, we

detected no CO2 main effect on the canopy N pool prior

to labeling (P = 0.45), or over the course of the experi-

ment (P = 0.27). Only in 2005 did we detect a signifi-

cant CO2 effect on the canopy N pool.

Conclusions

There has been much speculation about the sustainabil-

ity of high NPP in response to elevated CO2 in N lim-

ited ecosystems (Field, 1999; Luo et al., 2004; Finzi et al.,

2006b; Hungate et al., 2006; Norby & Iversen, 2006; Zak

et al., 2007). Labeling forests with 15N has provided

information about the short- and long-term fate of N

and has led to insights regarding global C cycling. At

the Duke FACE site, the rate at which N is being

sequestered in plant biomass is greater than the rate of

atmospheric deposition and heterotrophic N fixation

(Finzi et al., 2002; Hofmockel & Schlesinger, 2007;

Sparks et al., 2008), suggesting that SOM decomposition

supplies a significant fraction of plant N in both ambi-

ent and elevated-CO2 conditions, but that this is greater

under elevated CO2 (Fig. 1j). The results from natural-

abundance data and this 15N tracer experiment suggest

that in pine forests of the southeastern United States,

rising CO2 may elicit shifts in the mechanisms by which

plants acquire N, allowing a sustained increase in NPP

for decades. Our study suggests that increased mineral-

ization of N in the organic and 0–15 cm mineral hori-

zon and deeper rooting are likely sustaining the

elevated CO2 enhancement of NPP.
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