Assembly of Near-Infrared Luminescent Lanthanide Host(HostGuest) Complexes With a Metallacrown Sandwich Motif**

Joseph Jankolovits, Christopher M. Andolina, Jeff W. Kampf, Kenneth N. Raymond, * and Vincent L. Pecoraro*

Optical devices and biomedical imaging probes increasingly utilize the long lifetimes and narrow linewidths of luminescent lanthanide ($\operatorname{Ln}^{\text {III }}$) ions. ${ }^{[1]}$ Near-infrared (NIR) emitting $\mathrm{Ln}^{\text {III }}$ ions draw particular interest because of the transparency of biological tissue in this spectral range and applications in telecommunications. ${ }^{[2]} \mathrm{Ln}^{\text {III }}$ ions are typically sensitized through ligand absorptions by the antenna effect because the low extinction coefficients of the Laporte-forbidden f-f transitions preclude direct excitation. The major hindrance in realizing efficient $\mathrm{Ln}^{\text {III }}$ ion luminescence in the NIR region is non-radiative quenching by high energy $\mathrm{X}-\mathrm{H}(\mathrm{X}=\mathrm{C}, \mathrm{N}, \mathrm{O})$ vibrations in the ligand. ${ }^{[3]}$ Vibrational quenching has limited luminescence lifetimes to less than 6μ s in protic solvents. ${ }^{[4]}$ While careful ligand design can exclude $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ oscillators, $\mathrm{C}-\mathrm{H}$ bonds are difficult to eliminate from organic substrates without relying on synthetically cumbersome deuterated or fluorinated ligands. ${ }^{[5]}$ Herein we present a self-assembly approach to realizing long-lived $\mathrm{Ln}^{\text {III }}$ luminescence in the NIR region by utilizing the unique metallacrown (MC) topology to eliminate high energy $\mathrm{X}-\mathrm{H}$ oscillators from within $6.7 \AA$ of the lanthanide ion. We report the synthesis, solution stability, and remarkable luminescence properties of a unique host(host-guest) complex in which a $\mathrm{Ln}^{\mathrm{II}}[12-\mathrm{MC}-$ $4]_{2}^{3+}$ sandwich complex is a guest encapsulated by a [24-MC8] host (Ln-1, Figure 1).

MCs ${ }^{[6]}$ are inorganic analogues of crown ethers. ${ }^{[7]}$ Much of the interest in MCs has focused on the exceptional solid-state architectures, ${ }^{[8]}$ magnetic properties, ${ }^{[9]}$ and molecular recognition capabilities ${ }^{[10]}$ that arise from their metal-rich topologies. $\mathrm{Ln}^{\mathrm{III}} \mathrm{MCs}^{[11]}$ have been prepared that display single-

[^0]

Figure 1. X-ray crystal structure of $\mathrm{Tb}-1$ shown a) perpendicular to the C_{4} axis, b) down the C_{4} axis, and c) highlighting the MC macrocycle. Color scheme: bronze $=[12-\mathrm{MC}-4]$, purple $=[24-\mathrm{MC}-8]$, green $=\mathrm{Tb}^{\prime \prime \prime}$. Pyridine ligands are displayed as thin purple lines.
molecule magnetism ${ }^{[12]}$ and selectively encapsulate anions in monomeric cavitands or dimeric compartments. ${ }^{[13]}$ Chiral $\mathrm{Ln}^{\text {III }}[15-\mathrm{MC}-5$] complexes can serve as building blocks for mesoporous solids, ${ }^{[14]}$ resolved helices, ${ }^{[15]}$ and noncentrosymmetric solids that display second-harmonic generation. ${ }^{[16]}$ To date, $\mathrm{Ln}^{\text {III }} \mathrm{MCs}$ have been prepared only with ring metals that contain partially filled d orbitals, which could provide a quenching pathway for luminescence. For this work, the $\mathrm{Zn}^{\mathrm{II}}$ ion was judiciously chosen as the ring metal because its d^{10} electronic configuration precludes quenching through a d-d transition. To the best of our knowledge, no $\mathrm{Ln}^{\mathrm{III}} \mathrm{MCs}$ with $\mathrm{Zn}^{\mathrm{II}}$ ring metals have been reported. Picoline hydroxamic acid (picHA) was selected as the ligand because it contains no $\mathrm{N}-\mathrm{H}$ or $\mathrm{O}-\mathrm{H}$ oscillators when bound in a $\mathrm{Ln}^{\mathrm{III}} \mathrm{MC} .{ }^{[17]}$

The reaction between picHA, sodium hydroxide, zinc(II) triflate, and terbium(III) nitrate in methanol provided the complex formulated as $\mathrm{Tb}^{\text {III }}\left[12-\mathrm{MC}_{\mathrm{Zn}^{\mathrm{H}}, \mathrm{N}, \text { picHA }}-4\right]_{2} \subset[24-$ $\left.\mathrm{MC}_{\mathrm{Zn}^{\mathrm{I}}, \mathrm{N}, \text { pichA }}-8\right] \cdot(\text { pyridine })_{8} \cdot(\text { (triflate })_{3}$ (Tb-1, Figure 1) upon crystallization from the reaction solution with added pyridine. Single crystal X-ray crystallographic analysis shows two concave $\left[12-\mathrm{MC}_{\mathrm{Zn}^{\mathrm{N}}, \mathrm{N}, \text { pichA }}-4\right]$ units that sandwich an eightcoordinate $\mathrm{Tb}^{\text {III }}$ central metal. This sandwich complex (Figure $2 \mathrm{~A}, \mathrm{~B}$) is encapsulated in the cavity of a $\left[24-\mathrm{MC}_{\mathrm{Zn}^{\mathrm{H}}, \mathrm{N}, \text { pichA }}{ }^{-}\right.$ 8] unit (Figure 2C). The $\mathrm{Tb}^{\text {III }}[12-\mathrm{MC}-4]_{2} \subset[24-\mathrm{MC}-8]^{3+}$ com-

d)

Λ
Δ

Figure 2. a) $\mathrm{Tb}-1$ crystal structure displaying the $\mathrm{Tb}{ }^{\text {"II }}[12-\mathrm{MC}-4]_{2}$ motif, b) structural formula of $\left.\mathrm{Tb}^{\text {III }}[12-\mathrm{MC}-4]_{2}, \mathrm{c}\right) \mathrm{Tb}-1$ crystal structure displaying the $[24-\mathrm{MC}-8]$ ring (central atoms are part of the [12-MC-4]), d) structural formula of the Λ and $\Delta \mathrm{Zn}^{\prime \prime}$ ions in [24-MC-8] (py = pyridine, $\mathrm{O}=$ ketone oxygen of [12-MC-4] picHA). Metal ions are depicted as spheres in (a) and (c).
plex (Tb-1) has overall S_{8} symmetry. Charge balance is achieved with three unbound triflate counterions. The [24-$\mathrm{MC}-8]$ ring is assembled with octahedral $\mathrm{Zn}^{\mathrm{II}}$ ions that possess alternating Λ and Δ absolute stereochemical configuration (Figure 2D), which is consistent with the coordination seen in other large MC rings. ${ }^{[18]}$ An unbound, isostructural $\mathrm{La}^{\text {III }}[12-$ $\mathrm{MC}-4]_{2}{ }^{3+}$ sandwich complex has been isolated and structurally characterized, demonstrating that this MC sandwich motif is stable independently. Thus, we may consider the $\mathrm{Tb}^{\text {III }}[12-\mathrm{MC}$ $4]_{2}{ }^{3+}$ subunit as a host-guest complex and describe $\mathrm{Tb}-\mathbf{1}$ as a host(host-guest) complex.

In the $\mathrm{Tb}^{\mathrm{III}}[12-\mathrm{MC}-4]_{2}$ subunit of $\mathrm{Tb}-\mathbf{1}$, each $\mathrm{Zn}^{\mathrm{II}}$ ion has a square pyramidal geometry, with the $\mathrm{Zn}^{\mathrm{II}}$ ion extending out of the picHA equatorial plane by 0.63 or $0.70 \AA$. Based on the MC structural paradigm, ${ }^{[19]}$ the fused five-membered chelate rings on picHA are expected to promote a [15-MC-5] motif, as has been observed with $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Ni}^{\text {II }}$ ring metals. However, the distorted square-pyramidal geometry of $\mathrm{Zn}^{\mathrm{II}}$ generates the concave [12-MC-4]. Strain in the [12-MC-4] structure is apparent in the long $\mathrm{Zn}^{\mathrm{II}}-\mathrm{N}_{\text {pyridyl }}$ bond lengths ($\mathrm{av}=2.17 \AA$). The $\mathrm{Zn}^{\mathrm{II}}-\mathrm{O}_{\text {hydroximate }}$ and $\mathrm{Zn}^{\mathrm{II}}-\mathrm{N}_{\text {hydroximate }}$ distances fall within the expected range ($2.00-2.07 \AA$). The $\mathrm{Zn}^{\mathrm{II}}-\mathrm{O}_{\text {carbonyl }}$ distances are long ($\mathrm{av}=2.14 \AA$), because the oxygen atom also coordinates to a $[24-\mathrm{MC}-8] \mathrm{Zn}^{\mathrm{II}}$ ion. Interestingly, $\mathrm{Cu}^{\mathrm{II}}[12-$ $\mathrm{MC}-4]$ and $\mathrm{Ni}^{\mathrm{I}}[12-\mathrm{MC}-4]$ complexes are known intermediates in the assembly of $\mathrm{Ln}^{\text {III }}[15-\mathrm{MC}-5]$ complexes. ${ }^{[20]} \mathrm{A}$ crystal structure of these complexes has not been reported. Based on DFT calculations, Tegoni et al. predicted the $\mathrm{Cu}^{\mathrm{II}}[12-\mathrm{MC}-4]$ possessed a concave structure. ${ }^{[21]}$ The [12-MC-4] motif in $\mathrm{Tb}-1$ strongly supports this prediction.

The [12-MC-4] units in $\mathrm{Tb}-1$ bind an eight-coordinate $\mathrm{Tb}^{\text {III }}$ ion with average $\mathrm{Tb}-\mathrm{O}$ bond lengths of $2.35 \AA$. The coordination geometry of the central metal is best described as a square antiprism based on shape analysis ${ }^{[22]}\left(S\left(D_{4 d}\right)=3.34^{\circ}\right)$.

The [12-MC-4] units have a $0.73 \AA$ cavity radius. The eightcoordinate $\mathrm{Tb}^{\text {III }}$ ion has an ionic radius of $1.04 \AA$, making it too large for the [12-MC-4] cavity. Thus the metal ions lay 1.06 or $1.16 \AA$ above the [12-MC-4] oxygen mean planes. The sandwich complex is the first of this type reported for $\mathrm{Ln}^{\text {III }} \mathrm{MCs}$, and complements a select number of other MC sandwich complexes. ${ }^{[23]}$ The analogous $\mathrm{Ln}^{\text {III }}[12-$ crown 4$]$ sandwich complexes are also known. ${ }^{[24]}$

The $[24-\mathrm{MC}-8]$ binds the $\mathrm{Tb}^{\text {III }}[12-\mathrm{MC}-4]_{2}$ sandwich through coordination of its hydroximate oxygen atom to the axial position of each $\mathrm{Zn}^{\mathrm{II}}$ ion on the [12-MC-4] units (av bond length $=1.98 \AA$). Additionally, each $\mathrm{Zn}^{\text {II }}$ ion on the [24-MC8] coordinates to a picHA carbonyl oxygen atom on the [12-MC-4] unit (av bond length $=2.27 \AA$). The octahedral $\mathrm{Zn}^{\mathrm{II}}$ ions on the $[24-\mathrm{MC}-8]$ also coordinate an O, O-picHA, N, N picHA, and a pyridine molecule (Figure 2D). The [24-MC-8] and $\mathrm{Tb}^{\text {III }}[12-\mathrm{MC}-4]_{2}$ further associate through π-stacking interactions between the picHA rings.

Impressively, $\mathrm{Ln}-\mathbf{1}$ is stable in solution. ESI-MS spectra of Ln-1-triflate $\left(\mathrm{Ln}=\mathrm{Y}^{\text {III }}, \mathrm{La}^{\text {III }}, \mathrm{Sm}^{\text {III }}, \mathrm{Eu}^{\text {III }}, \mathrm{Gd}^{\text {III }}, \mathrm{Dy}^{\text {III }}, \mathrm{Tb}^{\text {III }}\right.$, $\mathrm{Yb}^{\text {III }}$) dissolved in methanol primarily show an $\operatorname{Ln}-\mathbf{1}^{3+}$ peak, thus suggesting that $\mathrm{Ln} \mathbf{- 1}$ is the predominant species in solution (Figure 3). Based on ESI-MS, Eu- $\mathbf{1}$ is also stable in acetonitrile, dimethylformamide, dimethylsulfoxide, and in methanol/pyridine mixtures. Additional evidence for solution stability is found in the ${ }^{1} \mathrm{H}$ NMR spectrum of the diamagnetic Y-1-triflate grown with $\left[\mathrm{D}_{5}\right]$ pyridine (Figure 4); six peaks are observed in the aromatic region of this spectrum. Based on the relative integrals, these peaks consist of five single proton

Figure 3. ESI-MS spectrum of Tb-1 in methanol. The peak at 1127.2 $(3+)$ corresponds to $\mathrm{Tb}-\mathbf{1}^{3+}$. Inset: Experimental (top) and calculated (bottom) isotope distribution for the $\mathrm{Tb}-\mathbf{1}^{3+}$ peak.

Figure 4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Y}-1 \cdot\left(\left[\mathrm{D}_{5}\right] \text { pyridine }\right)_{8}$ in $\left[\mathrm{D}_{4}\right]$ methanol at room temperature. Signal assignment (500 MHz , tetramethylsilane): a: $\delta=8.14 \mathrm{ppm}\left(\mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5 \mathrm{~Hz}, 1 \mathrm{H}\right), \mathrm{b}: \delta=7.96 \mathrm{ppm}\left(\mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $8 \mathrm{~Hz}, 1 \mathrm{H}), \mathrm{c}: \delta=7.77 \mathrm{ppm}(\mathrm{m}, 3 \mathrm{H}), \mathrm{d}: \delta=7.50 \mathrm{ppm}\left(\mathrm{d},{ }^{3} \mathrm{~J}-\right.$ $(\mathrm{H}, \mathrm{H})=8 \mathrm{~Hz}, 1 \mathrm{H})$, e: $\delta=7.32 \mathrm{ppm}\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, f: $\delta=6.80 \mathrm{ppm}\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=6 \mathrm{~Hz}, 1 \mathrm{H}\right)$.
resonances (peaks a,b,d,e,f) and a peak with three overlapping proton resonances (peak c). This pattern is consistent with the expected spectrum for $\mathrm{Y}-\mathbf{1}$, which should contain eight proton resonances from the two chemically distinct picHA rings. The coupling in the spectrum matches the expected four doublets and four triplets. Two-dimensional ${ }^{1} \mathrm{H}$ COSY NMR (see the Supporting Information) demonstrates that two chemically distinct picHA ligands are present. Furthermore, ${ }^{1} \mathrm{H}$ stimulated pulsed gradient spin echo NMR was used to determine that the diffusion coefficient was $(3.48 \pm 0.01) \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. By using the Stokes-Einstein equation, the hydrodynamic radius of the complex was found to be $(11.6 \pm 0.2) \AA$, which reasonably matches the 10.7 Å radius measured in the crystal structure of $\mathrm{Tb}-\mathbf{1}$.

To address whether $\mathrm{Ln}-\mathbf{1}$ is stable or merely persistent in solution, lanthanide exchange was monitored by adding a tenfold excess of $\mathrm{Ln}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{Ln}=\mathrm{La}^{\text {III }}, \mathrm{Y}^{\text {III }}\right)$ to Eu-1-triflate in methanol. The ESI-MS spectrum of the solutions showed no peaks for La-1 or Y-1 after two weeks at room temperature. Importantly, the absence of La- $\mathbf{1}$ or $\mathrm{Y}-\mathbf{1}$ peaks suggests that the $\mathrm{Ln}^{\mathrm{III}}$ ion in Eu-1 is kinetically stable. Given its composition from 33 separate components and the geometric strain in the [12-MC-4] subunits, the self-assembly and stability of $\mathrm{Ln}-\mathbf{1}$ is impressive. The stability can be rationalized by the strong ionic interactions between the acidic $\operatorname{Ln}^{\text {III }}$ ion and the negatively charged oxygen atoms on the [12-MC-4] units. Moreover, the complex contains 48 five-membered chelate rings. The solution stability of $\mathrm{Ln}-\mathbf{1}$ contrasts other large MCs with 24 -membered rings or greater, which tend to form upon crystallization but persist as lower-order aggregates in solution.

The MC topology effectively excludes $\mathrm{C}-\mathrm{H}$ oscillators from the proximity of the central metal, with the nearest $\mathrm{C}-\mathrm{H}$ bond in $\mathrm{Ln}-1$ located over $6.7 \AA$ from the $\mathrm{Ln}^{\text {III }}$ ion. Also, there is no solvent bound to the central $\mathrm{Ln}^{\mathrm{II}}$ ion. These observations prompted investigations of the NIR luminescence of Ln1. The electronic absorption spectrum of $\mathrm{Yb}-\mathbf{1}$ in methanol (Figure 5 a) shows picHA ligand absorptions between 200400 nm with apparent maxima at 284 and 325 nm . Both $\mathrm{Yb}^{\text {III }}$ and $\mathrm{Nd}^{\mathrm{III}}$ ions are readily sensitized by Ln- $\mathbf{1}$ in methanol and acetonitrile upon excitation of the picHA absorption bands. The characteristic ${ }^{5} \mathrm{~F}_{5 / 2} \rightarrow{ }^{5} \mathrm{~F}_{7 / 2}$ transition is observed in the emission spectrum of $\mathrm{Yb}-\mathbf{1}$ (Figure 5b), while $\mathrm{Nd}-\mathbf{1}$ displays ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2}$ and ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{13 / 2}$ transitions (see the Supporting

Figure 5. a) Absorption and b) emission spectra for $\mathrm{Yb}-1$ in methanol at $25.0^{\circ} \mathrm{C}$. The emission spectrum was collected by excitation at 280 nm (14.5 nm bandpass) in 1 nm increments with a 4.0 nm bandpass.

Information). By using $\left[\mathrm{Yb}(\text { dipicolinate })_{3}\right]^{3-}$ as a reference ($\Phi=(0.015 \pm 0.02) \%),{ }^{[25]}$ a quantum yield of $(0.89 \pm 0.18) \%$ was measured in methanol (Table 1), which is quite large for $\mathrm{Yb}^{\text {III }}$ complexes in a protic solvent. ${ }^{[2,4]}$ The time-resolved photoluminescence lifetime of $\mathrm{Yb}-\mathbf{1}$ is $14 \mu \mathrm{~s}$ in methanol at $25.0^{\circ} \mathrm{C}$, and the lifetime is extended to $33 \mu \mathrm{~s}$ in acetonitrile, which is one of the longest lifetimes observed for a NIRemitting complex ${ }^{[26]}$ The photoluminescence lifetime of $\mathrm{Nd}-\mathbf{1}$ is over $1 \mu \mathrm{~s}$ in acetonitrile and compares well with reported complexes. ${ }^{[2,4]}$ The number of methanol molecules bound in the inner-sphere of $\mathrm{Yb}^{\text {III }}$ and $\mathrm{Nd}^{\text {III }}$ ions, q, was estimated by comparing the luminescent lifetimes in methanol and deuterated methanol $\left(\mathrm{CD}_{3} \mathrm{OD}\right){ }^{[27]}$ Values of 0.03 and 0.09 were determined for the $\mathrm{Yb}^{\text {III }}$ and $\mathrm{Nd}^{\text {III }}$ complexes, respectively, thus revealing that no methanol molecules are directly coordinated to the central $\mathrm{Ln}^{\text {III }}$ ions in solution. This observation is consistent with the crystal structure of $\mathrm{Tb}-\mathbf{1}$. The magnitude of the quantum yield of a lanthanide complex and the measured luminescence lifetimes depend on the proximity of the $\mathrm{X}-\mathrm{H}$ oscillator groups that can nonradiatively deactivate the $\mathrm{Ln}^{\text {III }}$ excited state. $\mathrm{Yb}-\mathbf{1}$ and $\mathrm{Nd}-\mathbf{1}$ display strong luminescence, making them the first luminescent $\mathrm{Ln}^{\text {III }} \mathrm{MCs}$ and demonstrating that the MC topology generates bright NIR-emitting $\mathrm{Ln}^{\text {III }}$ complexes by excluding $\mathrm{C}-\mathrm{H}$ oscillators from the proximity of the lanthanide.

Table 1: Photophysical data for $\mathrm{Ln}-1$ at $25.0^{\circ} \mathrm{C}$.

Ln	Solvent	$\Phi_{\text {H }}[\%]^{[a]}$	$\Phi_{\mathrm{D}}[\%]^{[]]}$	$\tau_{\mathrm{H}}[\mu \mathrm{s}]^{[b]}$	$\tau_{\mathrm{D}}[\mu \mathrm{s}]^{[b]}$	$9^{[c]}$
Nd ${ }^{1 \prime \prime[d]}$	$\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CD}_{3} \mathrm{OD}$	-	-	0.60	2.3	0.09
Nd ${ }^{\text {III }}$ [d] $]$	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CD}_{3} \mathrm{CN}$	-	-	1.4	2.6	-
Yb $\left.{ }^{11[1]}\right]$	$\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CD}_{3} \mathrm{OD}$	0.89	2.5	14	122	0.03
Yb ${ }^{11[][]}$	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CD}_{3} \mathrm{CN}$	1.2	2.2	33	59	-

[a] Quantum yield, estimated error is 20%. [b] Observed luminescent lifetimes, estimated error is 10%. [c] Number of methanol molecules bound to $\mathrm{Yb}{ }^{\prime \prime \prime}$. [d] $\lambda_{\text {excitation }}=320 \mathrm{~nm}$. [e] $\lambda_{\text {excitation }}=325 \mathrm{~nm}$.

In summary, a self-assembled $\mathrm{Ln}^{\text {III }} \mathrm{MC}$ has been synthesized that is striking for its structure, solution stability, and luminescence properties. The $\mathrm{Ln}^{\text {III }}[12-\mathrm{MC}-4]_{2}$ sandwich motif complements the versatile sandwich complexes of organic macrocycles, and its inclusion in the [24-MC-8] ring to form a host(host-guest) complex is a remarkable example of selfassembly. Moreover, $\mathrm{Nd}-\mathbf{1}$ and $\mathrm{Yb}-\mathbf{1}$ exhibit excellent luminescence properties for NIR-emitting complexes, thus demonstrating that $\mathrm{Ln}^{\mathrm{II}} \mathrm{MCs}$ are an effective route to realizing bright NIR-emitting chromophores because the unique MC topology excludes high energy oscillators from the proximity of the lanthanide. Further investigations into the assembly, energy transfer mechanism, and luminescence of Ln- $\mathbf{1}$ and other $\mathrm{Ln}^{\text {III }}$ metallamacrocycles are underway.

Experimental Section

Picoline hydroxamic acid synthesis, additional experimental details, complex characterization, and crystallographic data are provided in the Supporting Information.

Synthesis of Ln-1: A general strategy for the synthesis of Ln-1 complexes is described here for $\mathrm{Tb}-\mathbf{1}$. An alternate procedure was employed for $\mathrm{Yb}-\mathbf{1}$ (see the Supporting Information). PicHA $(150 \mathrm{mg}, 1.09 \mathrm{mmol})$ and sodium hydroxide $(86.9 \mathrm{mg}, 2.17 \mathrm{mmol})$ were stirred in methanol (20 mL). Once a homogeneous solution had formed, zinc trifluoromethanesulfonate ($395 \mathrm{mg}, 1.09 \mathrm{mmol}$) was added, and the solution turned cloudy. Terbium nitrate (29.5 mg , 0.068 mmol) was then added and the solution gradually clarified. After 20 min , pyridine (5 mL) was added. After stirring overnight, the solution was filtered by gravity and left to slowly evaporate. Yellow crystals were produced within two weeks. Occasionally a second filtration was required after about two days to remove a white precipitate. Yield $=115.2 \mathrm{mg}, 36 \%$. ESI-MS (methanol): 1127.2^{3+} (1127.4 4^{3+} calcd for $\left.\left[\mathrm{TbZn}_{16}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{16}\right]^{3+}\right)$; elemental analysis calcd (\%) for $\mathrm{TbZn}_{16}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{16}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{8}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{12}\left(\mathrm{CH}_{4} \mathrm{O}\right): \mathrm{C} 35.69, \mathrm{H}$ 2.82, N 11.89; found: C 35.22, H $2.38, \mathrm{~N}$: 11.57 .

Crystal data for 1: A yellow needle of dimensions $0.23 \times 0.20 \times$ 0.13 mm was mounted on a Rigaku AFC10K Saturn $944+$ CCDbased X-ray diffractometer with a Micromax-007HF Cu-target microfocus rotating anode $(\lambda=1.54187 \AA)$ operated at 0.20 kW power $(20 \mathrm{kV}, 10 \mathrm{~mA}), \mu=4.510 \mathrm{~mm}^{-1}$. A total of 1956 images were collected at $85(2) \mathrm{K}$ with an oscillation width of 1.0° in ω. The exposure time was 10 s for the low angle images, 30 s for the high angle. The integration of the data yielded a total of 281538 reflections to a maximum 2θ value of 136.52° of which 9625 were independent and 9181 were greater than $2 \theta(I)$. Tetragonal cell constants of $a, b=$ 27.3594(4), $c=28.025(2), \alpha, \beta, \gamma=90^{\circ}, V=20977.6(16) \AA^{3}$ were based on the $x y z$ centroids of 229034 reflections above $10 \sigma(I)$. The data showed negligible decay during collection; the data were processed with CrystalClear $2.0^{[28]}$ and corrected for absorption. The structure was solved and refined with the SHELXTL (version 2008/4) software package ${ }^{[29]}$ using the space group $P 4 / n n c$ with $Z=4$ for the formula $\mathrm{TbZn}_{16}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{16}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{8}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}(\mathrm{OH})(\mathrm{H} 2 \mathrm{O})_{23}, \quad \rho_{\text {calcd }}=$ $1.502 \mathrm{mg} \mathrm{m}^{-13}$. Triflate and numerous water molecules are disordered, and the third triflate counterion was assigned based on elemental analysis data and the presence of large voids. Full matrix least-squares refinement based on F^{2} converged at $R_{1}=0.0535$ and $w R^{2}=0.1729$ [based on $I>2 \sigma(I)$], $R_{1}=0.0550$ and $w R^{2}=0.1744$ for all data. CCDC 816508 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

Received: June 7, 2011
Published online: September 12, 2011

Keywords: lanthanides • luminescence • metallacrowns • self-assembly • zinc
[1] a) J.-C. G. Bünzli, C. Piguet, Chem. Soc. Rev. 2005, 34, 1048; b) E. G. Moore, A. P. S. Samuel, K. N. Raymond, Acc. Chem. Res. 2009, 42, 542.
[2] S. V. Eliseeva, J.-C. G. Bünzli, Chem. Soc. Rev. 2010, 39, 189.
[3] a) C. Bischof, J. Wahsner, J. Scholten, S. Trosien, M. Seitz, J. Am. Chem. Soc. 2010, 132, 14334; b) A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. G. Williams, M. Woods, J. Chem. Soc. Perkin Trans. 2 1999, 493.
[4] a) E. G. Moore, J. Xu, S. C. Dodani, C. J. Jocher, A. D'Aleo, M. Seitz, K. N. Raymond, Inorg. Chem. 2010, 49, 4156; b) S. Comby, D. Imbert, A. S. Chauvin, J.-C. G. Bünzli, Inorg. Chem. 2006, 45, 732.
[5] P. B. Glover, A. P. Bassett, P. Nockemann, B. M. Kariuki, R. V. Deun, Z. Pikramenou, Chem. Eur. J. 2007, 13, 6308.
[6] a) V. L. Pecoraro, A. J. Stemmler, B. R. Gibney, J. J. Bodwin, H. Wang, J. W. Kampf, A. Barwinski in Prog. Inorg. Chem., Vol. 45
(Ed.: K. D. Karlin), Wiley, New York, 1997, p. 83; b) G. Mezei, C. M. Zaleski, V. L. Pecoraro, Chem. Rev. 2007, 107, 4933.
[7] C. J. Pedersen, Science 1988, 241, 536.
[8] a) M. Moon, I. Kim, M. S. Lah, Inorg. Chem. 2000, 39, 2710; b) J. J. Bodwin, V. L. Pecoraro, Inorg. Chem. 2000, 39, 3434; c) A. V. Pavlishchuk, S. V. Kolotilov, M. Zeller, L. K. Thompson, I. O. Fritsky, A. W. Addison, A. D. Hunter, Eur. J. Inorg. Chem. 2010, 4851; d) G. Psomas, A. J. Stemmler, C. Dendrinou-Samara, J. J. Bodwin, M. Scheider, M. Alexiou, J. W. Kampf, D. P. Kessissoglou, V. L. Pecoraro, Inorg. Chem. 2001, 40, 1562; e) A. J. Stemmler, J. W. Kampf, V. L. Pecoraro, Inorg. Chem. 1995, 34, 2271; f) B. R. Gibney, H. Wang, J. W. Kampf, V. L. Pecoraro, Inorg. Chem. 1996, 35, 6184.
[9] C. M. Zaleski, E. C. Depperman, C. Dendrinou-Samara, M. Alexiou, J. W. Kampf, D. P. Kessissoglou, M. L. Kirk, V. L. Pecoraro, J. Am. Chem. Soc. 2005, 127, 12862.
[10] a) L. F. Jones, S. A. Barrett, C. A. Kilner, M. A. Halcrow, Chem. Eur. J. 2008, 14, 223; b) L. F. Jones, C. A. Kilner, M. A. Halcrow, Chem. Eur. J. 2009, 15, 4667.
[11] a) A. J. Blake, R. O. Gould, P. E. Y. Milne, R. E. P. Winpenny, J. Chem. Soc. Chem. Commun. 1991, 1453; b) A. J. Stemmler, A. Barwinski, M. J. Baldwin, V. Young, V. L. Pecoraro, J. Am. Chem. Soc. 1996, 118, 11962.
[12] a) C. M. Zaleski, E. C. Depperman, J. W. Kampf, M. L. Kirk, V. L. Pecoraro, Angew. Chem. 2004, 116, 4002; Angew. Chem. Int. Ed. 2004, 43, 3912; b) C. M. Zaleski, E. C. Depperman, J. W. Kampf, M. L. Kirk, V. L. Pecoraro, Inorg. Chem. 2006, 45, 10022; c) T. T. Boron, J. W. Kampf, V. L. Pecoraro, Inorg. Chem. 2010, 49, 9104; d) C. M. Zaleski, J. W. Kampf, T. Mallah, M. L. Kirk, V. L. Pecoraro, Inorg. Chem. 2007, 46, 1954.
[13] a) A. D. Cutland, J. A. Halfen, J. W. Kampf, V. L. Pecoraro, J. Am. Chem. Soc. 2001, 123, 6211; b) J. Jankolovits, J. W. Kampf, S. Maldonado, V. L. Pecoraro, Chem. Eur. J. 2010, 16, 6786; c) C.-S. Lim, J. Jankolovits, P. Zhao, J. W. Kampf, V. L. Pecoraro, Inorg. Chem. 2011, 50, 4832-4841.
[14] C.-S. Lim, J. Jankolovits, J. W. Kampf, V. L. Pecoraro, Chem. Asian J. 2010, 5, 46.
[15] A. C. Cutland-Van Noord, J. W. Kampf, V. L. Pecoraro, Angew. Chem. 2002, 114, 4861; Angew. Chem. Int. Ed. 2002, 41, 4667.
[16] G. Mezei, J. W. Kampf, S. Pan, K. R. Poeppelmeier, B. Watkins, V. L. Pecoraro, Chem. Commun. 2007, 1148.
[17] A. J. Stemmler, J. W. Kampf, M. L. Kirk, B. H. Atasi, V. L. Pecoraro, Inorg. Chem. 1999, 38, 2807.
[18] a) B. Kwak, H. Rhee, S. Park, M. S. Lah, Inorg. Chem. 1998, 37, 3599 ; b) S.-X. Liu, S. Lin, B.-Z. Lin, C.-C. Lin, J.-Q. Huang, Angew. Chem. 2001, 113, 1118; Angew. Chem. Int. Ed. 2001, 40, 1084.
[19] A. J. Stemmler, J. W. Kampf, V. L. Pecoraro, Angew. Chem. 1996, 108, 3011; Angew. Chem. Int. Ed. Engl. 1996, 35, 2841.
[20] a) F. Dallavalle, M. Tegoni, Polyhedron 2001, 20, 2697; b) A. Pacco, T. N. Parac-Vogt, E. V. Besien, K. Pierloot, C. GorlerWalrand, K. Binnemans, Eur. J. Inorg. Chem. 2005, 3305; c) F. Dallavalle, M. Remelli, F. Sansone, D. Bacco, M. Tegoni, Inorg. Chem. 2010, 49, 1761; d) D. Bacco, V. Bertolasi, F. Dallavalle, L. Galliera, N. Marchetti, L. Marchio, M. Remelli, M. Tegoni, Dalton Trans. 2011, 40, 2491; e) M. Tegoni, M. Remelli, Coord. Chem. Rev. 2011, DOI: 10.1016/j.ccr.2011.06.007.
[21] M. Tegoni, M. Remelli, D. Bacco, L. Marchio, F. Dallavalle, Dalton Trans. 2008, 2693.
[22] J. Xu, E. Radkov, M. Ziegler, K. N. Raymond, Inorg. Chem. 2000, 39, 4156.
[23] a) M. S. Lah, B. R. Gibney, D. L. Tierney, J. E. Penner-Hahn, V. L. Pecoraro, J. Am. Chem. Soc. 1993, 115, 5857; b) M. Y. Han, K. S. Min, M. P. Suh, Inorg. Chem. 1999, 38, 4374; c) R. W. Saalfrank, N. Low, F. Hampel, H. Stachel, Angew. Chem. 1996, 108, 2353; Angew. Chem. Int. Ed. Engl. 1996, 35, 2209; d) R. W. Saalfrank, N. Low, S. Kareth, V. Seitz, F. Hampel, D. Stalke, M.

Zuschriften

Teichert, Angew. Chem. 1998, 110, 182; Angew. Chem. Int. Ed. 1998, 37, 172; e) G. Mezei, P. Baran, R. G. Raptis, Angew. Chem. 2004, 116, 584; Angew. Chem. Int. Ed. 2004, 43, 574.
[24] J. F. Desreux, G. Duckaerts, Inorg. Chim. Acta 1979, 35, L313.
[25] A. Aebischer, F. Gumy, J. G. Bünzli, Phys. Chem. Chem. Phys. 2009, 11, 1346.
[26] a) A. P. Bassett, R. Van Deun, P. Nockemann, P. B. Glover, B. M. Kariuki, K. Van Hecke, L. Van Meervelt, Z. Pikramenou, Inorg.

Chem. 2005, 44, 6140; b) S. J. A. Pope, B. P. Burton-Pye, R. Berridge, T. Khan, P. J. Skabara, S. Faulkner, Dalton Trans. 2006, 2907; c) A. D’Aléo, A. Picot, A. Beeby, J. A. Gareth Williams, B. Le Guennic, C. Andraud, O. Maury, Inorg. Chem. 2008, 47, 10258.
[27] S. J. A. Pope, Polyhedron 2007, 26, 4818.
[28] Rigaku Corporation, Crystal Clear 2.0, Tokyo, Japan.
[29] G. M. Sheldrick, Acta. Crystallogr. Sect. A 2008, 64, 112.

[^0]: [*] J. Jankolovits, Dr. J. W. Kampf, Prof. V. L. Pecoraro Department of Chemistry, University of Michigan, Ann Arbor 930 N. University Ave, Ann Arbor, MI 48109-1055 (USA) E-mail: vlpec@umich.edu
 Prof. K. N. Raymond
 Department of Chemistry, University of California, Berkeley Berkeley, CA 94720-1460 (USA)
 E-mail: raymond@socrates.berkeley.edu
 Dr. C. M. Andolina, Prof. K. N. Raymond
 Chemical Sciences Division
 Lawrence Berkeley National Laboratories
 Berkeley, CA 94720-1460 (USA)
 [$* *$] J.J., J.W.K, and V.L.P. thank the NSF for support of this research (CHE-1057331 and CHE-0717098) and acknowledge funding from NSF grant CHE-0840456 for X-ray instrumentation. Work at LBNL is supported by the Director, Office of Science, Office of Basic Energy Sciences, DOE under Contract DE-AC02-05CH11231.
 Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie. 201103851.

