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TDP-43 pathology occurs infrequently in multiple system atrophy

Aims and Methods: The a-synucleinopathy multiple
system atrophy (MSA) and diseases defined by pathologi-
cal 43-kDa transactive response DNA-binding protein
(TDP-43) or fused in sarcoma (FUS) aggregates such as
amyotrophic lateral sclerosis and frontotemporal lobar
degeneration show overlapping clinico-pathological fea-
tures. Consequently, we examined MSA for evidence of
TDP-43 or FUS pathology utilizing immunohistochemical
studies in autopsy material from 29 MSA patients.
Results: TDP-43 pathology was generally rare, and there
were no FUS lesions. The TDP-43 lesions were located pre-
dominantly in medio-temporal lobe and subcortical brain

areas and were comprised mainly of dystrophic processes
and perivascular (and subpial) lesions. Conclusions: The
multisystem clinical symptoms and signs of MSA, and in
particular the neurobehavioural/cognitive and pyramidal
features, appear not to result from concomitant TDP-43
or FUS pathology, but rather from widespread white
matter a-synuclein positive glial cytoplasmic inclusions
and neurodegeneration in keeping with a primary a-
synuclein-mediated oligodendrogliopathy. The gliode-
generative disease MSA evidently results from different
pathogenetic mechanisms than neurodegenerative dis-
eases linked to pathological TDP-43.

Keywords: 43-kDa transactive response DNA-binding protein, multiple system atrophy

Introduction

Multiple system atrophy (MSA) is a sporadic rapidly pro-
gressive multisystem neurodegenerative disorder of adult
onset and unknown aetiology. The four classic clinical fea-
tures of MSA include autonomic failure, parkinsonism,

cerebellar ataxia and pyramidal or upper motor neurone
signs in various combinations [1,2]. Dysautonomia,
reflecting pathology in subcortical structures such as the
brainstem, has a strong impact on the quality of life in
MSA [3,4] and it continues to progress over time [5].
Parkinsonian or cerebellar signs are also hallmark
features of MSA, and motor neurone disease occurs less
frequently [2,6–8]. Although severe cognitive dysfunc-
tion or dementia is rare in MSA, some impairments in
attention or memory occur in up to about two-thirds
of MSA patients [3,9]. Other neuropsychiatric features
such as depression appear to be even more frequent, while
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pseudobulbar features occur in up to 30% of cases [3,10],
and sleep disturbances also are common [3,9–11].

Neuropathologically, MSA is characterized by wide-
spread involvement of the central nervous system (CNS)
as evidenced mainly by a-synuclein positive oligodendro-
glial cytoplasmic inclusions (GCIs), but Lewy body-like
a-synuclein positive inclusions also occur, albeit less
frequently [4,12–14]. Although neurodegeneration has
been reported in the pyramidal system and spinal cord as
well as in various cortical and subcortical brain structures
of MSA [15–20], it is not clear whether this reflects
pathology specific to or independent of one of the better
characterized forms of MND such as amyotrophic lateral
sclerosis (ALS), with or without frontotemporal lobar
degeneration (FTLD).

Recently, pathological 43-kDa transactive response
DNA-binding protein (TDP-43) has been shown to be the
major disease protein in ALS, FTLD with MND (FTLD-
MND) and FTLD with ubiquitin positive, tau and
a-synuclein negative inclusions (FTLD-U) [21–22]. Fur-
thermore, fused in sarcoma (FUS)/translocated in liposar-
coma was originally identified as a gene and protein
associated with ALS, but FUS lesions have now defined
FTLD-FUS as a separate subtype of FTLD that accounts
for approximately 5–10% of all FTLD cases [23–25].
These advances have prompted extensive revisions in our
current understanding of the relationship between ALS
and FTLD, including the nosology and diagnostic neuro-
pathology terminology for these disorders [26].

While the extent to which FUS pathology occurs in
other disorders is not known, TDP-43 pathology in addi-
tion to disease defining pathological lesions has been
found in virtually all neurodegenerative diseases that are
characterized by tau or a-synuclein positive inclusions
such as Alzheimer’s disease, Lewy body diseases, cortico-
basal degeneration, Pick’s disease and the ALS-Parkinson
Dementia Complex of Guam [27–32]. Moreover, age-
dependent significant TDP-43 changes in limbic brain
areas have been reported in almost 30% of elderly sub-
jects [33].

Anecdotal reports suggest that TDP-43 pathology is
absent in MSA [34,35]. These results together with the
dramatic recent advances in understanding the neuropa-
thology of MND and frontotemporal dementia, as well as
the overlapping clinico-pathological features of MSA with
ALS and FTLD [6,36,37], prompted us to examine MSA
patients immunohistochemically for evidence of patho-
logical TDP-43 and FUS deposits.

Materials and methods

Study subjects

Individuals who underwent autopsy in the Center for Neu-
rodegenerative Disease Research at the University of
Pennsylvania (UPenn) from 1995 to 2007 were enrolled.
These included patients with a movement disorder found
to be MSA at post mortem examination. The patients scru-
tinized here were longitudinally followed by UPenn inves-
tigators or as part of a consortium of MSA investigators
at other institutions. Informed consent for autopsy was
obtained in all cases from the patient’s family or legal rep-
resentative in accordance with the Commonwealth of
Pennsylvania law as well as protocols approved by the
UPenn Institutional Review Boards.

To screen for TDP-43 and FUS pathology, we examined
multiple CNS areas (including spinal cord, rhombence-
pahlon, deep brain nuclei, corticoid areas, allo-, meso- and
neocortex) by immunohistochemistry (IHC) with antibod-
ies to TDP-43. The brain regions scrutinized included
the hippocampus/transentorhinal cortex and amygdala/
periamygdaloid, as these areas are among the CNS regions
most consistently affected by accumulations of TDP-43
in FTLD-TDP [22,33]. In addition, the spinal cord
and amygdala have been evaluated for evidence of FUS
pathology.

IHC

All cases were fully examined by diagnostic techniques to
establish a diagnosis of MSA as described [21,22,29,38] in
accordance with the recently revised neuropathology cri-
teria for MSA [12]. Briefly, small blocks of freshly dissected
tissues from multiple CNS areas were fixed in 10% neutral
buffered formalin or 70% ethanol with 150 mM NaCl,
paraffin-embedded, and cut into 6 mm sections. Sections
were subjected to IHC using the avidin–biotin complex
detection method (Vectastatin ABC kit, Vector Laborato-
ries, Burlingame, CA, USA) and, in a proportion of the
material, the BioGenex Super Sensitive Detection System
Kit (BioGenex Laboratories, San Ramon, CA, USA), with
3,3-diaminobenzidine as the chromogen. The following
primary antibodies were used: mouse anti-paired helical
filament monoclonal antibody (mAb; a gift of Peter Davies;
1:1000), mouse anti-ubiquitin mAb (1510, Chemicon,
Temecula, CA, USA; 1:100 000), rabbit polyclonal anti-
TDP-43 (Protein-Tech Group, Chicago, IL, USA; 1:4500),
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rat anti-phosphorylated TDP-43 mAb (S409/410 [38],
1:1000), mouse anti-a-synuclein mAb (Syn303, gener-
ated in the Center for Neurodegenerative Disease Research,
Philadelphia, PA, USA; 1:4000), rabbit polyclonal anti-FUS
antibody (Sigma-Aldrich, Saint Louis, MO, USA; 1:400).
Sections stained for ubiquitin, TDP-43 and FUS were pre-
treated by boiling in citrate antigen unmasking solution
(Vector Laboratories, Burlingame, CA, USA; 1:100) using a
microwave, and those stained for a-synuclein were pre-
treated with 80% formic acid (as was a subset of sections
stained for TDP-43). Double-labelling immunofluores-
cence IHC using Alexa Fluor 488 and 594 conjugated
secondary antibodies (Molecular Probes, Eugene, OR,
USA) was performed as previously described [21,29]. Posi-
tive controls were human disease CNS tissue sections with
known pathological reactivity to the antibody in question,
and they were included in every IHC staining procedure
as described previously [21,22,29,38]. Further, normal
nuclear TDP-43 staining in unaffected regions of CNS sec-
tions served as internal controls for each slide. Images of
IHC were obtained using an Olympus BX 51 (Tokyo, Japan)
microscope using a digital camera-DP71 (Olympus,
Orangeburg, NY, USA), and DP manager (Olympus,
Orangeburg, NY, USA). Digital images of immunofluores-
cence were obtained using a Nikon TE2000 microscope
and were captured with a CoolSNAP Monochrome
camera (Photometrics, Tucson, AZ, USA) and Metamorph
(Molecular Devices, Downingtown, PA, USA) software.

Evaluation of pathology

TDP-43 inclusions were assessed based on morphologies and
distribution in a given brain area as described elsewhere
[22,39]. We rated FUS and TDP-43 pathology by means of a
5-point ordinal scale (0, none; 1, rare/minor; 2, mild; 3,
moderate; 4, severe/numerous). We adopted the assessment
of pathology using an ordinal scale rather than by applying
numeric image analysis-based quantification tools, as the
former acknowledges the sequential nature of stages of
increasing severity, ultimately corresponding to a spread of
pathology throughout the brain as described previously [33].
In fact, ordinal data provide information about severity
stages rather than serving as a measurement acknowledging
that one stage follows continuously into the other.

Statistical analyses

The data were analysed using spss 16.0 for Windows
(SPSS, Inc., Chicago, IL, USA). The ‘average’ (and ‘spread’)

of data on patient characteristics was estimated by calcu-
lating the median (and 25th to 75th percentiles).

Results

The examined cohort included 29 patients with pathologi-
cally confirmed MSA (9 female and 22 male patients) with
a median age of death of 67 years (interquartile range:
60–74 years). The post mortem interval was 16 h (10.5–
19.5 h). All cases showed changes consistent with a
diagnosis of MSA including a-synuclein positive oligoden-
droglial inclusions associated with neuronal loss and
gliosis as defined by the recently revised neuropathology
criteria for MSA [14]. The brain areas examined for
pathological TDP-43 include the following: spinal cord
(n = 26), medulla (n = 24), midbrain (n = 27), pons
(n = 26), cerebellum grey matter, white matter and dentate
gyrus (n = 23), lentiform nucleus/striatum (n = 27),
motor gyrus grey and white matter (n = 28), amygdala
(n = 27), hippocampus dentate gyrus and CA1-CA4/
subiculum (n = 29), (trans-)entorhinal grey and white
matter (n = 29), periamygdaloid grey matter (n = 27),
periamygdaloid white matter (n = 26), superior temporal
gyrus grey and white matter (n = 26), frontal gyrus
grey and white matter (n = 28). Further, the amygdala/
periamygdaloid region and spinal cord were examined for
evidence of FUS pathology in 25 cases. TDP-43 pathology
was found generally to a low degree (Figure 1), and Table 1
shows the cases with at least a mild level of TDP-43 pathol-
ogy. The disease duration of these cases did not differ as
compared with the remaining patients, that is 7.8 (4.6–
12.8) vs. 7.0 (5–9.2) years, P = 0.973. Further, the preva-
lence of additional ‘ageing-related’ pathologies such as tau
or amyloid-b lesions assessed in the diagnostic work up did
not show an apparent difference between these groups.
Several additional cases showed rare or minor pathology,
that is single events such as dystrophic cellular process, or
even more equivocal TDP-43 immunoreactivity. No cases
showed FUS pathology. The TDP-43 inclusions were
located predominantly in subcortical brain areas such as
the amygdala, midbrain or medulla oblongata. There was
almost no neocortical (that is frontotemporal) TDP-43
pathology detected. TDP-43 pathology comprised mainly
dystrophic cellular processes – either in the form of thin
dystrophic neurites or thicker axonal spheroid-like struc-
tures, or grain-like structures. Cytoplasmic TDP-43 immu-
noreactivity was encountered only rarely. There was no
unequivocal evidence of TDP-43 immunoreactivity of
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GCIs in 3,3-diaminobenzidine IHC. Double-labelling
immunofluorescence studies showed that GCIs are a-
synuclein positive and TDP-43 negative (Figure 2). None
of the cases showed severe neuronal loss and gliosis in the
CA-1/subiculum formation of the hippocampus that
would suggest hippocampal sclerosis.

Discussion

Based on the overlap of clinico-pathological features
between ALS and FTLD-TDP on the one hand and MSA on
the other, we examined a cohort of pathologically proven
MSA cases for evidence of TDP-43 and FUS pathology. We
show here that overall there is rare TDP-43 pathology,
found predominantly in mediotemporal lobe and sub-
cortical brain areas. The extent to which this TDP-43

pathology contributes to the clinical phenotype of MSA, in
particular the neuropsychiatric or extrapyramidal motor
features, is uncertain; however, a major role seems
unlikely. For example, in comparison with this study,
varying degrees of pathology of all the major diagnostic
proteins including tau, amyloid-b and a-synuclein related
pathological aggregates have been found in the CNS of an
elderly, neurological and cognitive normal or only mildly
impaired population [40,41], and these types of patholo-
gies are rare in MSA [42,43]. Moreover, we recently
showed significant TDP-43 pathology in 30% of elderly
patients with severe mental illness with/without superim-
posed dementia and control or cognitively mildly impaired
subjects in an age-dependent manner; additionally, mild
or rare TDP-43 pathology was present in about 10% or
20% of study subjects [33]. The same study also demon-

Figure 1. Spectrum of 43-kDa transactive response DNA-binding protein (TDP-43) pathology in multiple system atrophy. Small focus of
TDP-43 positive dystrophic cellular processes (arrows) in the midbrain (a) (bar = 50 mm), perivascular TDP-43 pathology (arrows) (b)
(bar = 50 mm) and neuronal cytoplasmic inclusion (arrow) in the periamygdaloid cortex (c) (bar = 20 mm). Note the absence of normal
nuclear TDP-43 immunoreactivity (‘nuclear clearing’, asterisk) in b and c.

Table 1. Low level subcortical TDP-43 pathology in multiple system atrophy

Case Nr.

Med

Pon

Mid Tra-ent Hip

Amy

Per

Dor Inf Oth Sub Oth CAS Den Gre Whi

1 D D, G, P
2 S, C, D, P* D D†,G,P,S,C
3 D, S, P D,P,S* P, D*
4 D, P, C

*Mild or †moderate subpial dystrophic cellular processes in the in area of high density of corpora amylacea.
Only cases with a minimum degree of mild pathology are shown here; several additional cases showed rare pathology in brain areas such as the
brainstem, amygdala and hippocampus.
Merged boxes denote transition between these brain areas.
Cellular localization of TDP-43 pathology: G, TDP-43 positive grain; D, dystrophic cellular process; C, cytoplasmic TDP-43 pathology.
Pattern of TDP-43 pathology (if applicable)33: P, perivascular TDP-43 pathology; S, superficial TDP-43 pathology.

none; rare; mild; moderate; severe; not done.
Med, medulla; Dor, dorsal motor plate; Inf, inferior olive; Oth, other; Pon, pons; Mid, midbrain; Sub, substantia nigra; Tra-ent, (Trans-)entorhinal
cortex; Hip, hippocampus; CAS, CA4-CA1-subiculum; Den, dentate gyrus; Amy, amygdala; Per, periamygdaloid region; Gre, grey matter; Whi,
white matter.
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strated that TDP-43 pathology can be grouped into four
morphological patterns, that is: (i) subpial and subependy-
mal; (ii) focal or (iii) diffuse lesions in deep brain paren-
chyma; and (iv) perivascular pathology. The evidence of
infrequent pathologic TDP-43 in our MSA cohort includ-
ing mainly dystrophic cellular processes and the perivas-
cular lesions corroborate our previous study on patients
with severe mental illness and elderly controls [33] and
implies that these changes are among the earliest in the
time course of the TDP-43 proteinopathy and/or are ‘age-
related’. The finding of a lower degree of TDP-43 pathol-
ogy in the MSA as compared with the elderly cohort might
be due to the younger age at death in the MSA group with
the difference being about 10 years. TDP-43 pathology
in addition to the disease defining pathology has been
reported in almost all of the major neurodegenera-
tive disease groups including tauopathies and a-
synucleinopathies (for review see [32]). Indeed, it was
previously suggested that in advanced Alzheimer’s
disease, medial temporal lobe limbic structures are vulner-
able to TDP-43 pathology and the amygdala is the most
susceptible region. This implies a progression of TDP-43
pathology, with higher-order association cortices affected
only later in the disease process (or in a subset of cases)
and other limbic brain areas occupying an intermediate
position [32,44]; the likewise topographical distribution
might apply to early FTLD cases or subclinical patients as
shown by our recent study [33]. The almost complete
absence of neocortical (such as frontotemporal) TDP-43
pathology in our MSA cohort supports this concept, and
the finding of overall rare TDP-43 pathology in several
different brain areas corroborates the multisystem idea of
TDP-43 proteinopathies [22]. The absence of TDP-43
pathology in the motor cortex and spinal cord suggests

that MND in MSA results from causes other than patho-
logical TDP-43. There are various reports in the
literature on degeneration of the motor cortex and spinal
cord and/or of other cortical and subcortical structures
in MSA [15–20,36,37,45–48]. The absence of TDP-43
pathology in previous studies on MSA could be due to the
small number of cases examined or limited number of
brain areas assessed [34,35].

The term ‘atypical FTLD-U’ was recently coined to
denote sporadic early-onset frontotemporal dementia
with severe progressive behavioural and personality
changes [49,50], and was associated with FUS inclusion
pathology [23]. Despite a few clinical similarities between
MSA and atypical FTLD-U, FUS pathology was not present
in the MSA patients studied here implying different disease
mechanisms between these two disorders.

We conclude that the multisystem clinical symptoms
and signs of MSA, in particular the neurobehavioral/
cognitive and pyramidal features, appear not to be due to
concomitant TDP-43 or FUS pathology, but rather from
widespread white matter a-synuclein positive GCIs, degen-
eration and neurone loss consistent with the concept of
a primary a-synuclein-mediated oligodendrogliopathy.
Thus, MSA is a gliodegenerative a-synucleinopathy that is
distinct from neurodegenerative diseases linked to patho-
logical FUS or TDP-43.
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