
Focus Article

The use of decision trees for
cost-sensitive classification: an
empirical study in software quality
prediction
Naeem Seliya1 and Taghi M. Khoshgoftaar2∗

This empirical study investigates two commonly used decision tree classification
algorithms in the context of cost-sensitive learning. A review of the literature
shows that the cost-based performance of a software quality prediction model
is usually determined after the model-training process has been completed. In
contrast, we incorporate cost-sensitive learning during the model-training pro-
cess. The C4.5 and Random Forest decision tree algorithms are used to build
defect predictors either with, or without, any cost-sensitive learning technique.
The paper investigates six different cost-sensitive learning techniques: AdaCost,
Adc2, Csb2, MetaCost, Weighting, and Random Undersampling (RUS). The data
come from case study include 15 software measurement datasets obtained from
several high-assurance systems. In addition, to a unique insight into the cost-
based performance of defection prediction models, this study is one of the first to
use misclassification cost as a parameter during the model-training process. The
practical appeal of this research is that it provides a software quality practitioner
with a clear process for how to consider (during model training) and analyze (dur-
ing model evaluation) the cost-based performance of a defect prediction model.
RUS is ranked as the best cost-sensitive technique among those considered in
this study. C© 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 448–459 DOI:
10.1002/widm.38

INTRODUCTION

S oftware quality prediction models are part of the
tool box of techniques for improving the quality

and reliability of software-based systems. The basic
aim of such models is to assist the software qual-
ity assurance and/or testing team to pursue a targeted
and cost-effective evaluation of program modules that
are likely to be error-prone. The typical process in
building a software quality prediction model begins
by collecting specific software measurements and de-
fect data for the different program modules of a pre-
viously developed similar system or earlier system re-
lease. The software metrics and defect data are then
used to train a defect prediction model, which subse-

∗Correspondence to: taghi@cse.fau.edu
1Computer and Information Science, University of Michigan—
Dearborn, Dearborn, MI, USA
2Computer and Electrical Engineering and Computer Science,
Florida Atlantic University, Boca Raton, FL, USA

DOI: 10.1002/widm.38

quently can predict the quality of program modules
that are currently under development.

The quantitative software engineering nature of
defect prediction requires the application of data min-
ing and machine learning techniques, such as classifi-
cation and quantitative prediction. In the context of
software quality prediction during the practice of soft-
ware engineering, classification models are commonly
used to predict modules as either fault-prone (fp) or
not-fault-prone (nfp). Some practitioners prefer to
predict a quality-based ranking of program modules,
e.g., ranking the program modules with respect to the
predicted number of defects they are likely to have.1

Various data mining and statistical techniques have
been used for building defect prediction models.2,3

Software defect prediction models have been
a frequent subject of research in recent years, with
various models and approaches proposed in the
literature.4 Among the various learners used for de-
fect prediction, decision tree algorithms are partic-
ularly attractive to practitioners. This is because of
their white-box structure which allows the formation

448 Volume 1, September /October 2011c© 2011 John Wi ley & Sons , Inc .

WIREs Data Mining and Knowledge Discovery Decision trees for cost-sensitive classification

of rules that can be used to predict the quality of pro-
gram modules. Such rules are well suited for knowl-
edge extraction from software project repositories.
This study focuses on using decision trees for defect
prediction, especially in the context of cost-sensitive
learning.

A binary classification problem (such as fp or
nfp) has a confusion matrix consisting of four compo-
nents, i.e., true positive, true negative, false positive,
and false negative, in which the positive class repre-
sents fp modules and the negative class represents nfp
modules. A false positive indicates an error in which
an nfp program module is misclassified as fp, whereas
a false negative indicates an error in which an fp pro-
gram module is misclassified as nfp. In contrast, a true
positive and a true negative respectively indicate the
correct prediction of an fp and an nfp program mod-
ule. From the point of view of software practitioners,
it is clear that a false negative error is a more serious
problem because it could lead to a lost opportunity to
detect an actual fp module. On the other hand, a false
positive error could imply spending valuable project
resources to inspect and evaluate a program module
that is already of high quality.

In the literature,4 we find various strategies for
evaluating the goodness or lack thereof of a given
software quality prediction model. For example, mis-
classification error rates, overall accuracy, F-measure,
Recall, Precision, etc. have been used to evaluate the
performance of defect prediction models. However,
as indicated previously, the consequences of misclas-
sifying an fp program module is more severe than
the cost of misclassifying an nfp program module.
Consequently, a software practitioner is interested in
the problem of incorporating the cost-based perfor-
mance of software quality prediction models into the
processes of model building and model evaluation.
Assuming the availability of the respective costs of
misclassifying fp and nfp modules, the total cost of
misclassification (TC) [or expected cost of misclassifi-
cation (ECM)] can, and has been, used as cost-based
performance metric for defect predictors.5 However,
to the best of our knowledge, this has only been done
post model training, i.e., total cost or expected cost
is only computed during the model-evaluation phase.
We emphasize in this paper that cost of misclassifica-
tion should be used as one of the model parameters
during the model-training process.

The primary objective of this study is to investi-
gate several cost-sensitive learning techniques during
the actual process of training a software quality pre-
diction model. As far as we know, this study is one
of the first to associate cost-sensitive learning with
a given classification algorithm during the training

process of building a defect predictor. Although we
appreciate the usefulness of other performance met-
rics, such as error rate, receiver operating character-
istic (ROC) curve, F-measure, Precision, Recall, etc.,
a software practitioner is very much interested in the
cost associated with a given software quality estima-
tion model. This study provides a clear solution to the
practitioner with regards to training a defect predictor
at a specific misclassification cost value.

The software quality prediction models were
developed by using two commonly used decision
tree algorithms, C4.56 and Random Forest,7 either
with, or without, one of the six cost-sensitive learn-
ing techniques. Software metrics and defect data
from several software projects are used as case study
data (15 software measurement datasets, in total)
to conduct a large comparative study on six dif-
ferent cost-sensitive learning techniques, including
AdaCost,8 Csb2 ,9 Adc2,10 MetaCost,11 Random Un-
dersampling (RUS),12 and Weighting.6 The latter two
are considered unconventional cost-sensitive learn-
ing techniques, thus adding to the uniqueness of this
study. Several of the cost-sensitive techniques consid-
ered can be applied to any error-based classifier with-
out the need to modify the classification algorithm
itself. Although some of the cost-sensitive techniques
were available in the data mining tool Weka,6 the
other techniques were implemented especially for this
research. A cost-based-performance ranking of the
cost-sensitive techniques from best to worst was ob-
served as follows: RUS, MetaCost, Weighting, Csb2,
Adc2, and AdaCost.

The remainder of this paper is structured as fol-
lows: section Related Work discusses some of the
most relevant related works in the context of this
work; section Cost-Sensitive Learning Techniques de-
tails the different cost-sensitive learning techniques
used in our comparative evaluation; section Soft-
ware Measurement Data provides a summary of the
various software measurement datasets used as case
studies; section Performance Metrics describes the dif-
ferent performance metrics used for evaluating the
defect predictors; section Empirical Case Study pro-
vides details on the empirical work, including ex-
perimental settings and the presentation and analy-
sis of the results; and section Conclusion concludes
this study with a summary of our empirical investiga-
tion and results, and provides suggestions for future
work.

RELATED WORK

In the literature, one can find several studies on soft-
ware measurements-based quality estimation models;

Volume 1, September /October 2011 449c© 2011 John Wi ley & Sons , Inc .

Focus Article wires.wiley.com/widm

hence, we refer the reader to the relevant cited ref-
erences in this paper for a more in-depth coverage
of software quality prediction models. However, in
this section, we present an overview of literature that
explore incorporating misclassification costs during
software quality modeling and analysis. We note that
research on incorporating misclassification costs dur-
ing the training process of building a software quality
prediction model is almost nonexistent. This study is
unique in incorporating cost-sensitive learning dur-
ing the training process of building a software quality
model.

The ECM has been commonly used to evalu-
ate the cost-based performance of a given software
quality prediction (i.e., classifying program modules
as fp or nfp) model.3,13,14 In some cases that utilize
ECM for a cost-based performance evaluation, the
TC is normalized with respect to the number of in-
stances (i.e., program modules) in the dataset. Much
of the prior research in software quality modeling
and analysis has focused on using ECM as a metric
for evaluating software quality prediction models.3,14

Although ECM offers an intuitive approach to eval-
uating the costs associated with using a defect pre-
diction model, it is not incorporated or computed
during the model-training process. It is important to
note that this strategy is followed by most existing
studies.

In our prior studies, we have investigated evo-
lutionary techniques to train models that are opti-
mized for multiple objectives, including model com-
plexity and ECM.15 The black-box, nontraditional,
and computational complexity aspects of evolution-
ary techniques tend to limit their appeal to software
quality practitioners. In addition, with ECM as the
performance evaluation metric, one would have to
evolve software quality models for different misclassi-
fication costs. Furthermore, the problem of relatively
slow training times and the tedious task of optimizing
evolutionary parameters makes genetic programming
and genetic algorithms less attractive to analysts.

Drummond and Holte16 recently introduced
cost curves as a visual representation of the perfor-
mance of two-group classifiers across all class distri-
butions and misclassification costs. They state that
ROC curves and cost curves are highly correlated,
i.e., there is a bidirectional point/line duality between
them. This implies that a point in ROC space is repre-
sented by a line in cost space and a line in ROC space
is represented by a point in cost space, and vice versa.
An inherent problem with using cost curves is that
they are computed only during the model-evaluation
(i.e., testing) phase and not during the model-training
process of building the classifier.

Researchers, such as Jiang et al.,13 have at-
tempted to apply cost curves to the problem of build-
ing defect prediction models. Based on a study of mul-
tiple software measurement datasets, it was recom-
mended that cost curves should be adopted as one
of the standard methods for evaluating fault pre-
diction models. However, as stated previously, cost
curves are not incorporated into the actual training
process of building a classifier. More specifically, cost
curves are used as a performance metric during model
evaluation.

In contrast to using cost curves for performance
evaluation, we investigate using cost-sensitive learn-
ing techniques during the model-training process of
building a software quality model. It is intuitive to
realize that the software quality analyst is more in-
terested in what specific factors are considered during
the model-training process in addition to the model-
evaluation process. As cost curves are highly cor-
related to ROC curves,16 they tend to suffer from
the same limitations that ROC curves suffer, i.e.,
poor practical appeal to the software quality analyst
largely due to insufficient input on the application of
the model-evaluation knowledge toward making vital
quality improvement decisions.

A previous work by our team17 investigated
the cost-sensitive learning technique MetaCost for
improving software defect prediction models. The
present work expands and elaborates on this by ex-
ploring a wider range of cost-sensitive learning tech-
niques and a more diverse collection of software met-
ric datasets, as well as considering the Random Forest
learner.

COST-SENSITIVE LEARNING
TECHNIQUES

The theoretical foundations for cost-sensitive learn-
ing are introduced by Elkan.12 We consider six dif-
ferent cost-sensitive learning techniques in the con-
text of software quality modeling. These include
three boosting-based techniques (AdaCost, Adc2, and
Csb2), MetaCost, Weighting, and RUS. Some of these
techniques were part of the Weka6 data mining tool,
whereas others were implemented specifically for our
study. Most of these techniques can be applied to
any error-based classifier without the need to modify
the classification algorithm itself. We present a brief
overview of each cost-sensitive technique in the re-
mainder of this section.

Cost-Sensitive Boosting
Boosting is a metalearning technique that improves
the performance of classifiers by iteratively building

450 Volume 1, September /October 2011c© 2011 John Wi ley & Sons , Inc .

WIREs Data Mining and Knowledge Discovery Decision trees for cost-sensitive classification

an ensemble of classifiers with the goal of correctly
classifying those examples (instances in the dataset)
that were incorrectly classified during the previous
iteration. AdaBoost18 is the most popular boosting
algorithm, and has been shown to improve the per-
formance of any weak learner. However, AdaBoost
is not designed for cost-sensitive learning, so various
modifications to AdaBoost have been proposed for
that purpose.

Sun et al.10 present an in-depth examination
of cost-sensitive boosting. The authors compare the
performance of several cost-sensitive boosting tech-
niques, and demonstrate that Adc2 (a variation of
AdaBoost) results in better performance using most
of their experimental datasets. In this study, we evalu-
ate (among other cost-sensitive techniques) AdaCost,8

Csb2,9 and Adc210 in the context of software mea-
surement datasets. Algorithmic details of AdaCost,
Csb2, and Adc2 are omitted here for simplicity but
can be found in the respective references.

AdaCost8 (abbreviated as Adac) provides a cost-
sensitive alternative to AdaBoost [9]. Although Ada-
Boost adjusts example costs without concern for the
class of the example, AdaCost adjusts the example
weights differently for different classes by introduc-
ing a ‘misclassification cost adjustment function’. The
degree of adjustment is controlled by a user supplied
cost ratio.

The Csb29 approach is a cost-sensitive varia-
tion of AdaBoost,18 and uses modified formulas for
reweighting examples in order to minimize the num-
ber of expensive errors, and therefore the total cost.

The Adc210 technique also modifies the
reweighting formula of AdaBoost,18 and was pre-
sented as a cost-sensitive boosting algorithm for
datasets suffering from class imbalance. Each of these
cost-sensitive boosting algorithms takes the cost ratio
into account when modifying an example’s weight.

MetaCost
Proposed by Domingos11 for making any error-based
classifier cost sensitive, MetaCost is based on Bayes
optimal prediction. If for a given example (instance)
x, we know the probability of each class j, i.e., P(j|x),
the Bayes optimal prediction for x is the class i that
minimizes the conditional risk, R(i|x) [see Eq. (1)],
which is the expected cost of predicting that x belongs
to class i. The Bayes optimal prediction is certain to
achieve the lowest possible overall cost over all possi-
ble examples x, weighted by their probabilities P(x).
C(i, j) and P(j|x) together with Eq. (1) imply a parti-
tion of the instance space X into j regions, such that
class j is the optimal (i.e., lowest cost) prediction in

region j11:

R(i |x) =
∑

j

P(j |x)C(i, j). (1)

MetaCost modifies the labels of training data in-
stances so that their labels represents their ‘optimal
classes’. This is achieved by learning multiple classi-
fiers, and using the result of each classifier as a vote in
determining the probability that an instance belongs
to a specific class. Bagging19 is used to build an ensem-
ble of learners. Samples (program modules) are taken,
with replacement, from the training dataset. This is re-
peated m times (we use m = 10) with m models being
trained using the resampled datasets. The probability
that an instance (program module) belongs to a class
is based on the fraction of votes it received, or an un-
weighted average of the probability estimates of the
m models. Based on the estimated probability and the
cost ratio, new class labels are assigned. The newly la-
beled training dataset is then used by the given classifi-
cation algorithm to produce a cost-sensitive software
quality prediction model. We differ further algorith-
mic details to the work of Domingos.11

Weighting
Weka6 provides a metaclassifier called ‘CostSensitive-
Classifier’ which can be used to adjust the weights
of examples of each class based on a supplied cost
matrix. This cost-sensitive technique is referred to as
Whtg throughout this paper. Weights (Wi) are as-
signed to each example (instance) of class i using the
formula,

Wi = Bi
C
D

, (2)

in which C is the number of examples in the training
dataset (if another metaclassifier, such as boosting,
is used this is actually the sum of the weights of all
examples in the training data), Bi = C(j, i), and D
is the sum of all costs of all examples in the training
data based on the given cost matrix.

Example weighting does result in different mod-
els for different cost ratios; hence, new models must
be built whenever the cost matrix is changed. Every
example gets the exact same increased (or decreased)
weight using Weighting, and no data points are lost
during this process. However, the value of every ex-
ample of the less expensive class is diminished, and the
value of every example of the more expensive class is
increased identically. This technique does require that
the base classifier be implemented in such a way that
example weights can be taken into account.

Volume 1, September /October 2011 451c© 2011 John Wi ley & Sons , Inc .

Focus Article wires.wiley.com/widm

Random Undersampling
Elkan12 provides a method for making optimal deci-
sions by rebalancing the training data. The strategy
behind data sampling is to decrease (undersampling)
or increase (oversampling) the number of instances in
the training data based on the cost ratio, i.e., CR =
C(0, 1)/C(1, 0), where C(0, 1) is the cost of misclas-
sifying an fp module as nfp, and C(1, 0) is the cost of
misclassifying an nfp module as fp. Considering the
default decision threshold of 0.5, undersampling de-
creases the number of majority class instances (i.e., fp
modules) by a factor of 1/CR, whereas oversampling
increases the number of minority class instances (i.e.,
nfp modules) by a factor of CR.

In our study, we consider RUS as the under-
sampling cost-sensitive technique. RUS modifies the
training data distribution by randomly removing in-
stances of the majority class. With regards to cost-
sensitive learning, this reduces the importance the
learner will place on majority class instances; hence,
increasing the importance placed on the minority class
instances. Despite the running the risk of removing
important information from the training data, RUS
has been shown to perform very well when train-
ing data is imbalanced.20 Thus, RUS achieves cost-
sensitive learning by modifying two key parameters,
i.e., the cost ratio and the size of the majority class.

SOFTWARE MEASUREMENT DATA

Our empirical case study was conducted with 15 soft-
ware measurement datasets, consisting of software
metrics and defect data obtained from various real-
world software systems. The basic statistics for the
different software measurement datasets are shown
in Table 1. For a given dataset, the table lists the
number of software metrics, number of fault-prone
program modules, number of not-fault-prone mod-
ules, total number of modules, and the proportion of
fp modules in the dataset. We selected a wide range
of dataset sizes, with 282 modules being the smallest
(CCCS) and 8850 modules being the largest (JM1). In
addition, the datasets show a wide range for the rela-
tive proportion of fp modules, with the smallest being
1.30% (SP3) and the largest being 29.43% (CCCS-
2). The use of the specific software metrics in our
study does not advocate their effectiveness—a differ-
ent project may consider a different set of software
measurements for analysis.4,21

The following list summarizes the different high-
assurance software systems and their software mea-
surement datasets used in our case studies:

TABLE 1 Software Measurement Datasets

metrics # fp # nfp # total % fp

SP1 42 230 3419 3649 6.30
SP2 42 189 3972 3981 4.75
SP3 42 46 3495 3541 1.30
SP4 42 92 3886 3978 2.31
CCCS-2 8 83 199 282 29.43
CCCS-4 8 55 227 282 19.50
CCCS-8 8 27 255 282 9.57
CCCS-12 8 16 266 282 5.67
CM1 13 48 457 505 9.50
JM1 13 1687 7163 8850 19.06
KC1 13 325 1782 2107 15.42
KC2 13 106 414 520 20.38
KC3 13 43 415 458 9.39
MW1 13 31 372 403 7.69
PC1 13 76 1031 1107 6.87

1. The SP1, SP2, SP3, and SP4 datasets rep-
resent four successive releases of a large
legacy telecommunications system, and the
case study data was based on 42 soft-
ware metrics which included 24 product
metrics, 14 process metrics, and four ex-
ecution metrics.3 The software system is
an embedded-computer application that in-
cluded finite-state machines. Using the pro-
cedural development paradigm, the software
was written in PROTEL (a high-level pro-
gramming language) and was maintained by
professional programmers in a large orga-
nization. Fault data was collected at the
module-level by the problem reporting sys-
tem. A module was considered as nfp if it
had no postrelease faults, and fp otherwise.
The number of program modules in the four
datasets are: 3649 for SP1, 3981 for SP2,
3541 for SP2, and 3978 for SP4. The rela-
tive distribution of the fp and nfp modules
for SP1, SP2, SP3, and SP4 are shown in
Table 1.

2. The JM1 project, written in C, is a large
project for a real-time ground system that
uses simulations to generate predictions for
missions. The JM1 dataset consisted of
10,883 program modules, of which 2105
modules had software defects (ranging from
1 to 26) whereas the remaining 8778 mod-
ules were defect-free. The dataset contained
some inconsistent modules, i.e., those with
identical software measurements but with

452 Volume 1, September /October 2011c© 2011 John Wi ley & Sons , Inc .

WIREs Data Mining and Knowledge Discovery Decision trees for cost-sensitive classification

different class labels.22 Upon removing such
modules, the dataset was reduced to 8850
modules, consisting of 1687 fp modules (i.e.,
with one or more defects) and 7163 nfp mod-
ules (i.e., with no defects). This number-of-
defects-based definition of fp and nfp pro-
gram modules also applies to the CM1, KC1,
KC2, KC3, MW1, and PC1 datasets.

Each program module in the JM1 datasets
was characterized by 13 basic software prod-
uct metrics.23 These same metrics were also
used for the CM1, KC1, KC2, KC3, MW1,
and PC1 datasets, and they were primarily
governed by their availability, internal work-
ings of the projects, and the data collection
tools used. The type and numbers of metrics
made available were solely determined by the
NASA Metrics Data Program. Other met-
rics, including software process and object-
oriented metrics, were not available at the
time of modeling and analysis.

3. The KC1 project is a single CSCI (Computer
Software Configuration Item) within a large
ground system and consists of 43 KLOC
(thousand lines of code) of C++ code. A
given CSCI comprises of logical groups of
computer software components (CSCs). The
dataset contains 2107 modules, of which 325
are fp and 1782 are nfp. The maximum num-
ber of faults in a program module is 7.

4. The KC2 project, written in C++, is the sci-
ence data processing unit of a storage man-
agement system used for receiving and pro-
cessing ground data for missions. The dataset
includes only those modules that were devel-
oped by NASA software developers and not
COTS (Commercial-Of-The-Shelf) software.
The dataset contains 520 modules, of which
106 are fp and 414 are nfp. The maximum
number of faults in a software module is 13.

5. The KC3 project, written in 18 KLOC of
Java, is a software application that collects,
processes, and delivers satellite metadata.
The dataset contains 458 modules, of which
43 are fp and 415 are nfp. The maximum
number of faults in a module is 6.

6. The CM1 software measurement dataset is
that of a science instrument application writ-
ten in C Code with approximately 20 KLOC.
The dataset contains 505 modules, of which
48 are fp and 457 are nfp. The maximum
number of faults in a module is 5.

7. The MW1 project is a software application
from a zero gravity combustion experiment
that has been completed. The MW1 dataset
consists of 8000 lines of C code. The dataset
contains 403 modules, of which 31 are fp
and 372 are nfp. The maximum number of
faults in a module is 4.

8. The PC1 project is a flight software from an
earth orbiting satellite that is no longer op-
erational. It consists of 40 KLOC of C code.
The software measurement dataset contains
1107 modules, of which 76 are fp and 1031
are nfp. The maximum number of faults in a
module is 9.

9. The CCCS-2, CCCS-4, CCCS-8, and CCCS-
12 datasets represent software metrics and
defect data for a large military com-
mand, control, and communications system
(CCCS).24 The CCCS datasets are based on
software product metrics. The numerical suf-
fix for the CCCS project represents the num-
ber of defects threshold used for determining
whether a program module is considered fp
or nfp.

PERFORMANCE METRICS

In this study, the performance of the two classifiers
(software quality prediction models) is evaluated pri-
marily by comparing their per-example-cost (PEC),
which is the TC divided by the number of instances
in the dataset. TC is given by

TC = # f pos × C(1, 0) + # f neg × C(0, 1), (3)

in which # f pos is the number of nfp modules pre-
dicted as fp and # f neg is the number of fp modules
predicted as nfp. As the exact costs of misclassifi-
cations are unknown during modeling and analysis,
different values for the cost ratio, i.e., C(0, 1)/C(1, 0),
are used to provide the analyst with a broad range of
the performance space.

We also present some commonly used metrics
for classifier evaluation. For a two-group classifica-
tion problem such as fp (i.e., positive) or nfp (i.e.,
negative), there can be four possible outcomes of clas-
sifier prediction: true positive (TP), false positive (FP),
true negative (TN), and false negative (FN). A TP out-
come involves the correct prediction of an fp module,
whereas a TN outcome involves the correct predic-
tion of an nfp module. An FP prediction occurs when
an nfp module is incorrectly predicted as fp, whereas

Volume 1, September /October 2011 453c© 2011 John Wi ley & Sons , Inc .

Focus Article wires.wiley.com/widm

TABLE 2 Average Performance of Techniques at CR = 10

Adac2 Adac Csb2 Meta RUS Whtg None

TPR 0.6027 0.4751 0.4609 0.5595 0.7369 0.4860 0.3121
TNR 0.6870 0.8914 0.8616 0.8689 0.7235 0.8849 0.9616
FPR 0.3130 0.1086 0.1384 0.1311 0.2765 0.1151 0.0384
FNR 0.3973 0.5249 0.5391 0.4405 0.2631 0.5140 0.6879
ACR 0.7036 0.8707 0.8410 0.8562 0.7442 0.8652 0.9047
FM 0.3237 0.3958 0.3635 0.4239 0.3705 0.3934 0.3364
GM 47.43 55.98 52.27 63.78 69.48 57.22 43.78
TC 134.26 110.21 128.11 102.97 92.38 112.29 158.47
PEC 0.0568 0.0486 0.0553 0.0445 0.0419 0.0488 0.0669

an FN prediction occurs when an fp module is incor-
rectly predicted as nfp.

A two-by-two confusion matrix depicts the
numbers of instances predicted by each of the four
possible outcomes: number of true positives (#TP),
number of true negatives (#TN), number of false pos-
itives (#FP), and number of false negatives (#FN).
Based on these four values, different performance
metrics can be computed. If, for a given dataset, N
is the total number of program modules, Nfp is the
number of fp instances, and Nnfp is the number of nfp
instances, then

TP R = #TP
Nfp

, (4)

TNR = #TN
Nnfp

, (5)

F P R = #F P
Nnfp

, (6)

F NR = #F N
Nnfp

, (7)

ACR = #TP + #TN
N

, (8)

F M = 2 × #TP
#TP + #F P + #F N

, (9)

GM = √
TP R × TNR, (10)

where TPR is the true positive rate, TNR is the true
negative rate, FPR is the false positive rate, FNR is
the false negative rate, ACR is the overall accuracy
rate, FM is the F-measure, and GM is the geomet-
ric mean. The latter two metrics are commonly used
performance metrics in the data mining and machine
learning community.6

EMPIRICAL CASE STUDY

Experimental Settings
The defect prediction models are built using two
commonly used decision tree algorithms: C4.5 and
Random Forest. In the case of C4.5, we used the
default parameter settings in Weka.6 In the case of
random forest, we change the number of subtrees
to 100 from 10 (default) trees, as that improves the
classifier performance. We refer to this variant as
RF100.

The cost ratios used include 10, 15, 20, 25, 30,
40, and 50. Generally speaking, for high-assurance
systems such as those of our case study, a cost ratio of
25 is considered appropriate. In order to provide the
analyst with a better insight into cost-sensitive soft-
ware quality modeling, we consider a wide range of
cost ratio values. One may consider a different set of
cost ratio values depending on their appropriateness
to the software project under consideration.

A classifier is built using 10 fold cross-
validation, and this process is repeated 10 times
(i.e., 10 runs). The empirical results (shown in the
next section) represent the classifier performance av-
erages across the 10 runs. Thus, with 15 datasets,
two learners, seven cost-sensitive learning techniques
(six techniques and None), seven cost ratios, 10 cross-
validation folds, and 10 runs, a total of 147,000 com-
binations of models/cost ratio were constructed and
evaluated. This signifies the magnitude of the scale
of our empirical study on cost-sensitive defect predic-
tion.

Results And Analysis
The average performances of the two decision tree al-
gorithms over all case study datasets are presented in
Tables 2–8, where each table corresponds to a given
cost ratio. Although our primary performance metrics

454 Volume 1, September /October 2011c© 2011 John Wi ley & Sons , Inc .

WIREs Data Mining and Knowledge Discovery Decision trees for cost-sensitive classification

TABLE 3 Average Performance of Techniques at CR = 15

Adac2 Adac Csb2 Meta RUS Whtg None

TPR 0.6142 0.5089 0.4953 0.6202 0.7956 0.5159 0.3121
TNR 0.6476 0.8674 0.8298 0.8292 0.6546 0.8618 0.9616
FPR 0.3524 0.1326 0.1702 0.1708 0.3454 0.1382 0.0384
FNR 0.3858 0.4911 0.5047 0.3798 0.2044 0.4841 0.6879
ACR 0.6679 0.8548 0.8180 0.8289 0.6887 0.8496 0.9047
FM 0.3074 0.3964 0.3604 0.4199 0.3459 0.3919 0.3364
GM 43.48 57.60 52.60 66.29 69.00 58.38 43.78
TC 197.17 142.43 174.12 121.94 107.21 143.97 235.40
PEC 0.0757 0.0644 0.0738 0.0547 0.0501 0.0646 0.0988

TABLE 4 Average Performance of Techniques at CR = 20

Adac2 Adac Csb2 Meta RUS Whtg None

TPR 0.6190 0.5331 0.5197 0.6695 0.8346 0.5422 0.3121
TNR 0.6232 0.8454 0.8044 0.7845 0.5990 0.8410 0.9616
FPR 0.3768 0.1546 0.1956 0.2155 0.4010 0.1590 0.0384
FNR 0.3810 0.4669 0.4803 0.3305 0.1654 0.4578 0.6879
ACR 0.6456 0.8384 0.7995 0.7956 0.6433 0.8353 0.9047
FM 0.2984 0.3929 0.3575 0.4106 0.3275 0.3894 0.3364
GM 40.48 58.60 52.23 66.68 67.30 59.19 43.78
TC 254.88 170.18 215.62 132.44 117.78 168.64 312.32
PEC 0.0937 0.0794 0.0899 0.0624 0.0555 0.0775 0.1307

TABLE 5 Average Performance of Techniques at CR = 25

Adac2 Adac Csb2 Meta RUS Whtg None

TPR 0.6172 0.5398 0.5293 0.7074 0.8544 0.5667 0.3121
TNR 0.6117 0.8285 0.7874 0.7369 0.5581 0.8169 0.9616
FPR 0.3883 0.1715 0.2126 0.2631 0.4419 0.1831 0.0384
FNR 0.3828 0.4602 0.4707 0.2926 0.1456 0.4333 0.6879
ACR 0.6337 0.8234 0.7862 0.7580 0.6089 0.8180 0.9047
FM 0.2908 0.3820 0.3503 0.3953 0.3137 0.3867 0.3364
GM 38.86 58.33 51.59 65.49 65.28 59.76 43.78
TC 316.37 234.50 255.50 142.43 125.75 187.83 389.24
PEC 0.1122 0.0992 0.1065 0.0688 0.0608 0.0888 0.1626

of interest are the total cost (TC) and per-example-
cost (PEC), we present other performance metrics for
completeness sake. These include true positive rate
(TPR), true negative rate (TNR), false positive rate
(FPR), false negative rate (FNR), overall accuracy
(ACR), F-measure (FM), and geometric mean (GM).
The tables present the results for each of the six cost-
sensitive learning techniques, and for the models built

without (denoted as None) any cost-sensitive learning
techniques.

The cost of misclassification increases as the
cost ratio increases, as expected. Moreover, the TPR
(correct detection of fp program modules) increases
with the cost ratio, as it should when a cost-sensitive
technique is involved. With respect to the Geomet-
ric Mean performance metric, the defect prediction

Volume 1, September /October 2011 455c© 2011 John Wi ley & Sons , Inc .

Focus Article wires.wiley.com/widm

TABLE 6 Average Performance of Techniques at CR = 30

Adac2 Adac Csb2 Meta RUS Whtg None

TPR 0.6133 0.5393 0.5531 0.7417 0.8728 0.5870 0.3121
TNR 0.6047 0.8227 0.7684 0.6906 0.5200 0.7962 0.9616
FPR 0.3953 0.1773 0.2316 0.3094 0.4800 0.2038 0.0384
FNR 0.3867 0.4607 0.4469 0.2583 0.1272 0.4130 0.6879
ACR 0.6267 0.8162 0.7726 0.7203 0.5772 0.8030 0.9047
FM 0.2882 0.3718 0.3502 0.3817 0.3007 0.3828 0.3364
GM 37.30 58.05 51.80 63.49 63.31 59.96 43.78
TC 375.68 333.01 289.92 151.37 132.17 204.64 466.17
PEC 0.1305 0.1223 0.1183 0.0734 0.0644 0.0984 0.1945

TABLE 7 Average Performance of Techniques at CR = 40

Adac2 Adac Csb2 Meta RUS Whtg None

TPR 0.5911 0.5356 0.5787 0.7866 0.8950 0.6219 0.3121
TNR 0.6208 0.8170 0.7368 0.6221 0.4708 0.7623 0.9616
FPR 0.3792 0.1830 0.2632 0.3779 0.5292 0.2377 0.0384
FNR 0.4089 0.4644 0.4213 0.2134 0.1050 0.3781 0.6879
ACR 0.6389 0.8074 0.7487 0.6641 0.5350 0.7781 0.9047
FM 0.2869 0.3539 0.3454 0.3590 0.2863 0.3756 0.3364
GM 36.09 57.17 50.69 59.38 60.20 60.03 43.78
TC 494.23 468.60 356.84 164.82 142.05 229.09 620.01
PEC 0.1707 0.1707 0.1423 0.0809 0.0701 0.1130 0.2583

TABLE 8 Average Performance of Techniques at CR = 50

Adac2 Adac Csb2 Meta RUS Whtg None

TPR 0.5803 0.5533 0.5967 0.8178 0.9142 0.6479 0.3121
TNR 0.6265 0.8021 0.7177 0.5743 0.4263 0.7397 0.9616
FPR 0.3735 0.1979 0.2823 0.4257 0.5737 0.2603 0.0384
FNR 0.4197 0.4467 0.4033 0.1822 0.0858 0.3521 0.6879
ACR 0.6426 0.7951 0.7334 0.6245 0.4967 0.7613 0.9047
FM 0.2850 0.3457 0.3419 0.3425 0.2757 0.3724 0.3364
GM 35.50 57.38 50.25 56.82 56.71 60.17 43.78
TC 620.92 567.56 423.84 172.75 148.56 254.65 773.86
PEC 0.2106 0.2059 0.1674 0.0866 0.0738 0.1257 0.3221

models built in association with either MetaCost or
RUS perform generally better than the other models.
However, with respect to the F-measure performance
metric, only models built with MetaCost perform
better than the other models. The six cost-sensitive
techniques are effective at reducing the total cost of
misclassification compared to modeling without cost-
sensitive learning. Among the different cost-sensitive

techniques, RUS followed by MetaCost provide the
most reduction in total cost of misclassification.

To further validate our observation on the better
cost-based performances of RUS and MetaCost, we
performed a one-way ANOVA (Analysis of variance)
statistical test.25 The goal of the test is to observe
if the cost-based performances of the different cost-
sensitive techniques are significantly different from

456 Volume 1, September /October 2011c© 2011 John Wi ley & Sons , Inc .

WIREs Data Mining and Knowledge Discovery Decision trees for cost-sensitive classification

TABLE 9 ANOVA Test Results

Source Sum Sq. d.f. Mean Sq. F P-value

A 193.15 6 32.19 2870.24 0
Error 1648.65 146993 0.01
Total 1841.81 146999

each other. Hence, the PEC is used as the response
variable for the ANOVA test. The test is performed
across all datasets, across all cost ratios, and across
both classification algorithms. The ANOVA test re-
sults are summarized in Table 9, where the P-value
shows that the different cost-sensitive techniques, in-
cluding None, are significantly different than each
other. The assumptions of the ANOVA model were
validated.

Subsequent to the positive findings of the
ANOVA test, we conducted a multiple comparison
using Tukey’s Honestly Significant Difference (HSD)
test.25 The multiple comparisons were performed at a
significance level of α = 0.05. The ranking obtained
by Tukey’s HSD test is shown in Figure 1. The fig-
ure clearly shows that RUS outperforms the other six
techniques (which includes None). A complete rank-
ing of the seven techniques from best to worst is as
follows: RUS, Meta, Whtg, Csb2, Adc2, Adac, and
None.

In the interest of noting which of two decision
tree algorithms generally performed better and other
trends, we performed a four-way ANOVA test. The
four factors are Factor A, the 15 case study datasets;
Factor B, the two decision tree classification algo-
rithms; Factor C, the seven cost ratios; and Factor D,
the seven cost-sensitive techniques (including None).
Once again the PEC values of the models is used as
the response variable for the ANOVA test. It was
found that the two decision tree algorithms were sig-
nificantly different at a significance level of α = 0.05.
A subsequent multiple comparison based on Tukey’s
HSD test at α = 0.05 found that the C4.5 learner
yielded better (i.e., lower) PEC values than the RF100
learner. We note that the four-way ANOVA results
and subsequent multiple comparison results are not
shown due to paper-size considerations.

CONCLUSION

Commonly used decision tree algorithms, C4.5 and
Random Forest, are used in a large comparative study
in which the cost-based evaluation of software quality
models is performed during the model-training pro-
cess, instead of the commonly used approach of ana-
lyzing their cost-based performance during the model-
evaluation phase. Six different cost-sensitive learning
techniques were examined, and defect predictors were
built with, and without, cost-sensitive learning. The
case study data was obtained from 15 software

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

None

RUS

Weighting

MetaCost

Csb2Rewht

Adac2Rewht

AdaCostRewht

FIGURE 1 | Tukey’s Honestly Significant Difference multiple comparisons.

Vo lume 1, September /October 2011 457c© 2011 John Wi ley & Sons , Inc .

Focus Article wires.wiley.com/widm

measurement datasets that were collected from sev-
eral software projects. To our knowledge, such
an investigative study on the cost-based perfor-
mance of software quality prediction models is quite
unique.

The key results/conclusions are summarized as
follows:

• The models built by including a cost-sensitive
technique during the training process pro-
vided lower total costs of misclassification
as compared to corresponding models built
without any cost-sensitive learning—an intu-
itively expected empirical result.

• Among the six different cost-sensitive learn-
ing techniques investigated, RUS significantly
outperformed the other techniques. A cost-
based performance ranking of the cost-
sensitive techniques from best to worst is
as follows: RUS, Meta, Whtg, Csb2, Adc2,
Adac, and None.

• In association with a cost-sensitive learning
technique, the C4.5 decision tree algorithm
is shown to perform significantly better than
the Random Forest decision tree algorithm.
However, it is known from the literature that

the performance of a classification algorithm
is affected by the various characteristics of
the training data as well as the application
domain.

• Based on the experience of this empirical
study, the authors conclude that a software
quality practitioner should strongly consider
the cost ratio as a modeling parameter dur-
ing the training process of building a defect
predictor. However, this study does not ad-
vocate, in the context of software defect pre-
dictors, ignoring existing performance metrics
such as accuracy, F-measure, Recall, and Pre-
cision, for example.

Future research directions are as follows: con-
sidering software measurement data from non-high-
assurance systems, investigating other classification
algorithms, evaluating other cost-sensitive learning
techniques within the framework on this study, and
focusing on strategies that make it easier and simpler
for the software quality analyst to select a good de-
fect predictor within practical constraints of a given
project, such as lack of knowledge on misclassifica-
tion costs, insufficient heuristic data, and unfamiliar-
ity with the project’s domain.

REFERENCES

1. Khoshgoftaar TM, Cukic B, Seliya N. An empirical
assessment on program module-order models. Qual
Technol Quant Manag 2007, 4:171–190.

2. Emam KE, Benlarbi S, Goel N, Rai SN. Comparing
case-based reasoning classifiers for predicting high-risk
software componenets. J Syst Softw 2001, 55:301–320.

3. Khoshgoftaar TM, Seliya N. Comparative assessment
of software quality classification techniques: an em-
pirical case study. Empir Softw Eng J 2004, 9:229–
257.

4. Lessmann S, Baesens B, Mues C, Pietsch S. Benchmark-
ing classification models for software defect prediction:
a proposed framework and novel findings. IEEE Trans
Softw Eng 2008, 34:485–496.

5. Liu Y, Khoshgoftaar TM, Seliya N. Evolutionary opti-
mization of software quality modeling with multiple
repositories. IEEE Trans Softw Eng 2010, 36:852–
864.

6. Witten IH, Frank E. Data Mining: Practical Machine
Learning Tools and Techniques. 2nd ed. San Francisco,
CA: Morgan Kaufmann; 2005.

7. Breiman L. Random forests. Mach Learn 2001, 45:5–
32.

8. Fan W, Stolfo SJ, Zhang J, Chan PK. Adacost: mis-
classification cost-sensitive boosting. In: Proceedings of
16th International Conference on Machine Learning.
San Francisco, CA: Morgan Kaufmann; 1999, 97–105.

9. Ting KM. A comparative study of cost-sensitive boost-
ing algorithms. In: Proceedings of 17th International
Conference on Machine Learning. Stanford, CA: Mor-
gan Kaufmann; 2000, 983–990.

10. Sun Y, Kamel MS, Wong AKC, Wang Y. Cost-sensitive
boosting for classification of imbalanced data. Pattern
Recognit 2007, 40:3358–3378.

11. Domingos P. Metacost: a general method for making
classifiers cost-sensitive. In: Proceedings of Knowledge
Discovery and Data Mining. New York: ACM Press;
1999, 155–164.

12. Elkan C. The foundations of cost-sensitive learning.
In: Proceedings of the 17th International Joint Confer-
ence on Artificial Intelligence. Vol. 2. San Francisco,
CA: Morgan Kaufmann Publishers Inc.; 2001, 973–
978.

13. Jiang Y, Cukic B, Menzies T. Cost curve evalua-
tion of fault prediction models. In: Proceedings of the
19th International Symposium on Software Reliability

458 Volume 1, September /October 2011c© 2011 John Wi ley & Sons , Inc .

WIREs Data Mining and Knowledge Discovery Decision trees for cost-sensitive classification

Engineering. Seattle, WA: IEEE Computer Society;
2008, 197–206.

14. Khoshgoftaar TM, Seliya N, Herzberg A. Resource-
oriented software quality classification models. J Syst
Softw 2005, 76:111–126.

15. Khoshgoftaar TM, Liu Y, Seliya N. A multi-objective
module-order model for software quality enhancem-
ent. IEEE Trans Evolution Comput 2004, 8:593–608.

16. Drummond C, Holte RC. Cost curves: an improved
method for visualizing classifier performance. Mach
Learn 2006, 65:95–130.

17. Seliya N, Khoshgoftaar TM. Value-based software
quality modeling. In: SEKE. Skokie, IL: Knowledge
Systems Institute Graduate School; 2009, 116–121.

18. Freund Y, Schapire R. Experiments with a new boost-
ing algorithm. In: Proceedings of 13th International
Conference on Machine Learning. Bari: Morgan Kauf-
mann; 1996, 148–156.

19. Breiman L. Bagging predictors. Mach Learn 1996,
26:123–140.

20. Van Hulse J, Khoshgoftaar TM, Napolitano A. Experi-
mental perspectives on learning from imbalanced data.

In: Proceedings of the 24th International Conference
on Machine Learning. New York: ACM Press; 2007,
935–945.

21. Sayyad Shirabad J, Menzies TJ. The PROMISE repos-
itory of software engineering databases, School of In-
formation Technology and Engineering, University of
Ottawa, Canada; 2005.

22. Khoshgoftaar TM, Zhong S, Joshi V. Noise elimi-
nation with ensemble-classifier filtering for software
quality estimation. Intell Data Anal: An Int J 2005,
9:3–27.

23. Seliya N, Khoshgoftaar TM. Software quality analysis
of unlabeled program modules with semi-supervised
clustering. IEEE Trans Syst Man Cybern 2007,
37:201–211.

24. Khoshgoftaar TM, Allen EB. Logistic regression mod-
eling of software quality. Int J Reliab Qual Saf Eng
1999, 6:303–317.

25. Berenson ML, Levine DM, Goldstein M. Intermedi-
ate Statistical Methods and Applications: A Computer
Package Approach. Englewood Cliffs, NJ: Prentice-
Hall, Inc.; 1989.

Volume 1, September /October 2011 459c© 2011 John Wi ley & Sons , Inc .

