EDITORIAL

Turning Skin Into Brain: Using Patient-
Derived Cells to Model X-Linked
Adrenoleukodystrophy

Until recently, investigators have been largely unable
to explore the pathophysiology of neurological dis-
eases by direct manipulation of live neural tissues derived
from patients. With the advent of the induced pluripotent
stem cell (iPSC) technique, however, patient-specific dis-
ease models have become a reality. The iPSC method
involves the reprogramming of embryonic or adult somatic
cells into pluripotent stem cells that behave very much like
embryonic stem cells (ESCs; reviewed in Chamberlain and
Colleaguesl). The reprogrammed stem cells are then differ-
entiated into the tissue of choice, including neurons and
glia, for further study. The iPSC technique, first developed
by Shinyu Yamanaka in mouse, involves transient, retrovir-
ally-mediated expression of 4 key developmental transcrip-
tion factors, sex determining region Y (SRY)-box 2 (Sox2),
POU class 5 homeobox 1 (Pou5f1/Oct4), Kruppel-like
factor 4 (KlIf4), and c-Myc, to successfully reprogram so-
matic cells into pluripotent stem cells.” This approach was
subsequently applied to newborn or adult human somatic
cells using dermal fibroblasts or bone marrow—derived
mesenchymal cells.”~

Characterization of iPSCs from mouse and human
show that they are similar to ESCs in nearly every aspect
examined, including the expression of pluripotency genes,
methylation state, differentiation into all 3 germ layers,
and formation of embryoid bodies in vitro and teratomas
in vivo (reviewed in Juopperi and colleaguesG), although
some differences likely exist.”'® More recently, different
combinations of transcription factors and delivery via
nonintegrating viral vectors, messenger RNA (mRNA) or
protein have been used in place of retroviruses for
reprogramming.' ™7 These methods are better suited for
regenerative therapy as they reduce the oncogenic risks of
c-Myc and viral integration. With further advances, the
iPSC method should allow for autologous cell-based re-
storative treatments for a wide range of disorders. In
addition, this approach will be useful for drug screening,
studying early human developmental mechanisms, and
exploring disease pathophysiology.

Several problems hamper the iPSC technique.
These difficulties include the variability of iPSC colonies
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within and between subjects due to partial reprogram-
ming, and the risk of teratoma formation with grafting.
Some of these concerns may be obviated by the develop-
ment of direct transdifferentiation, for example from
fibroblasts to neurons or neural progenitors,"®"
although these methods have their own limitations.

To date, patient-derived iPSCs have been used to
model a variety of neurological and psychiatric disorders,
including amyotrophic lateral sclerosis,”® Parkinson’s dis-
case,”! familial dysautonomia,? schizophrenia,”>** spi-
nal muscular atrophy,” Rett syndrome,”® and others.
Disease modeling with patient-specific iPSCs should be
extremely useful particularly in genetic disorders and
those with limited animal models. X-linked adrenoleuko-
dystrophy (X-ALD) fits both of these criteria, leading to
the elegant work by Jang and colleagues™ reported in
the current issue of Annals of Neurology, in which they
used patient-derived iPSCs to study X-ALD disease
pathophysiology.

X-ALD is an inherited demyelinating disorder that
is progressive in nature. The 2 main forms include the
more severe early onset childhood cerebral ALD
(CCALD), and the later onset adrenomyeloneuropathy
(AMN). The latter mainly affects the spinal cord and
peripheral nerves (see Ferrer and colleagues®® for
review). Both disorders are caused by mutations in the
adenosine triphosphate (ATP)-binding cassette trans-
porter superfamily D1 member (ABCDI) gene located
on chromosome Xq28,”> whose protein product is nec-
essary for beta-oxidation of very long chain fatty acids
(VLCFA) in the peroxisome. The buildup of VLCFA
in various tissues, especially plasma, has been useful for
diagnosing X-ALD. However, the mechanism by which
peroxisomal accumulation of VLCFA leads to demyelin-
ation and subsequent white matter inflammation, the
pathological hallmarks of X-ALD,?® remains unknown.
Also unclear is why the identical mutation may cause
either CCALD or the milder AMN within the same
family.”°

To study disease mechanisms and to compare
CCALD and AMN using patient-specific neural cells,
Jang and colleagues® generated iPSCs from the fibro-
blasts of subjects with CCALD and AMN. Subsequent



neural differentiated led to the generation of neurons and
oligodendrocytes that were indistinguishable between
patients and controls, indicating that X-ALD does not
adversely impact differentiation. In contrast, abnormal
accumulation of VLFCA, the hallmark of X-ALD, was
observed only in patient-derived cells differentiated into
oligodendrocytes (and not in patient iPSCs or control
oligodendrocytes). This VLFCA increase was greater in
CCALD oligodendrocytes than in those derived from
AMN subjects. Moreover, the excess in X-ALD oligoden-
drocyte VLFCA was partially ameliorated by chemical
treatment to upregulate expression of the closely related
ABCD1 family member, ABCD2, that may have com-
pensated for the mutant gene defect.

These findings suggest that the iPSC technique
provides a very useful source of patient-specific neurons
and oligodendrocytes to model X-ALD. This in vitro
model selectively recapitulates the biochemical abnormal-
ities associated with the disease and should prove useful
not only for studying disease mechanisms, but also for in
vitro screening of novel therapies. Moreover, iPSCs may
offer earlier and more accurate diagnosis of disease sub-
types than currently available methods (eg, assaying
plasma VLFCA levels or examining cultured fibroblasts),
although these questions were not directly addressed in
the present study.

Several issues complicate the use of iPSC-derived
neural cells in this study and for disecase modeling in
general. For example, age-related cell phenotypes were
not examined and are a limiting factor for in vitro
studies. Some disease phenotypes may not be apparent
until cells are sufficiently aged, and such aging might
not be possible in culture. Moreover, the regional speci-
ficity of the neurons and oligodendrocytes was not
determined, and the susceptibility of neural cells is
likely to differ based upon whether the cells are central
vs peripheral in phenotype, and between regions of the
neuraxis. The iPSC model is also not ideal for studying
the development of inflammation in X-ALD. Nonethe-
less, the finding that patient-specific cells replicate key
biochemical features of X-ALD is very exciting. The
iPSC approach, perhaps considered “science fiction” less
than a decade ago, should provide important patho-
physiologic, diagnostic, and potentially therapeutic
insight into X-ALD and many other neurological
disorders.
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