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SUMMARY. In epidemiologic studies of time to an event, mean lifetime is often of direct interest. We propose methods to
estimate group- (e.g., treatment-) specific differences in restricted mean lifetime for studies where treatment is not randomized
and lifetimes are subject to both dependent and independent censoring. The proposed methods may be viewed as a hybrid
of two general approaches to accounting for confounders. Specifically, treatment-specific proportional hazards models are
employed to account for baseline covariates, while inverse probability of censoring weighting is used to accommodate time-
dependent predictors of censoring. The average causal effect is then obtained by averaging over differences in fitted values
based on the proportional hazards models. Large-sample properties of the proposed estimators are derived and simulation
studies are conducted to assess their finite-sample applicability. We apply the proposed methods to liver wait list mortality

data from the Scientific Registry of Transplant Recipients.
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1. Introduction

Often in clinical and epidemiologic studies, groups of subjects
are compared with respect to their survival times. Since any
study is of finite duration, the time until the event of interest
may be censored. Typically in observational studies, the fac-
tor of interest is not randomized (e.g., method of treatment)
and may not even be assigned (e.g., race, gender, diagnosis),
necessitating some form of covariate adjustment, such as that
obtained through regression modeling. Since its development,
the proportional hazards model (Cox, 1972) has dominated
the biomedical literature as the method of choice for the re-
gression modeling of censored data.

The popularity of the Cox model among practitioners and,
by now, clinical investigators makes it an attractive means of
comparing groups in observational studies. In Cox regression,
the impact of each covariate is usually summarized by its ef-
fect on the hazard function. However, when comparing groups
of subjects, investigators are often more interested in differ-
ences in mean lifetime than ratios of hazard functions. The
survival time distribution may be heavily right skewed. More-
over, for semi- or nonparametric modeling, the mean is not
well estimated; for example, the estimated survival function
need not drop to 0. Therefore, a frequently employed alter-
native is the restricted mean lifetime; that is, for fixed L > 0,
if T denotes survival time, then the restricted mean lifetime
is defined as E{min(T, L)}. Restricted mean lifetime can also
be expressed as fUL P(T > t)dt, the area under the survival
curve over (0, L], a quantity easily understood by clinical in-
vestigators. For example, if L =5 years, one could interpret
E{min(T, L)} as the average number of years lived out of the
next 5. Restricted mean lifetime is typically of greater interest
to clinicians than the usual Cox metric, the hazard ratio. In
fact, in certain settings E{min(7, L)} may be of more interest
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than E(T) itself. For example, in the context of pediatric liver
transplantation, it is almost always that case that a child re-
ceiving a liver transplant will need a second liver transplant
in the next 10 years. Hence, using T to represent posttrans-
plant survival time, survival after the first 10 years of post-
transplant follow-up could not be realistically assumed to be
due to the initial liver transplant; making E{min(7,10)} of
greater relevance than E(T).

This article is motivated by the desire to compare wait list
survival among end-stage liver disease (ESLD) patients listed
for liver transplantation. A frequent cause of chronic liver dis-
ease is Hepatitis C virus (HCV), the primary diagnosis for
approximately 40% of ESLD cases. Liver transplantation is
the preferred treatment for ESLD, but there are far more pa-
tients awaiting transplantation than there are available donor
organs. The principle underlying the current system for allo-
cating deceased-donor livers in the United States is that pri-
ority for transplantation should be based on a patients’ death
rate in the absence of liver transplantation. Specifically, the
patients most likely to die on the wait list should get top
priority for transplantation. Currently, patients on the liver
transplant wait list are sequenced in a decreasing order of
Model of End Stage Liver Disease (MELD) score (Weisner et
al., 2001). The MELD score is a function of three laboratory
measures indicative of liver function, but does not consider
underlying liver disease. It is suspected that HCV+ patients
have lower wait list survival than HCV— patients. However,
few studies have directly compared mean wait list survival
time by diagnosis group. To our knowledge, no published
analysis has compared mean wait list survival times (i.e., sur-
vival, in the absence of liver transplantation) between HCV+
and HCV— patients. Therefore, our objective is to estimate
the difference between wait list lifetime between HCV+ and
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HCV— patients, adjusting for baseline (i.e., time 0) charac-
teristics (e.g., age, gender, race, MELD score).

Comparison of liver wait list survival times is complicated
by the potential for dependent censoring. Specifically, death
on the liver wait list is censored by the receipt of a liver trans-
plant, and such censoring is not independent of the survival
time that would have been observed on the wait list, even
conditional on the baseline adjustment covariates. A given
patient’s MELD score typically changes over time. The up-
dating of MELD scores is mandatory, meaning that a longitu-
dinal sequence of MELD scores is observed for each patient.
As discussed by several previous authors in the context of
causal inference (e.g., Robins, 2000; Hernan, Brumback, and
Robins, 2000, 2001), a comparison of survival time by HCV
status should not adjust for internal time-dependent covari-
ates, as defined by Kalbfleisch and Prentice (2002). The fact
that time-dependent MELD strongly affects both wait list
mortality and censoring (liver transplantation) means that
lack of its adjustment (i.e., by adjusting for baseline values
only) will result in the dependent censoring of wait list death
time via liver transplantation.

Various authors have proposed methods for comparing re-
stricted mean survival time in the context of Cox regression
(e.g., Karrison, 1987; Zucker, 1998; Chen and Tsiatis, 2001).
For example, the method of Chen and Tsiatis (2001) proposes
fitting separate group-specific Cox models, then averaging
over the fitted restricted mean lifetimes, with the averaging
being with respect to the covariate distribution of the entire
study sample. These approaches have several nice properties.
First, it is not required that treatment-specific hazards be
proportional. Second, an ‘‘overall” treatment effect estimator
is obtained, without assuming that treatment-specific adjust-
ment covariate effects are equal. Third, the target treatment
effect is interpretable as an average over a well-defined covari-
ate distribution. However, each of the afore-listed methods
assumes that censoring is independent of the survival time,
conditional on baseline adjustment covariates.

We propose methods for estimating group-specific differ-
ences in restricted mean lifetime for the setting in which
survival time is dependently censored. The structure of the
hazard model we assume is very flexible, allowing for group-
specific baseline hazards and regression coefficients. In its
most general form, this amounts to fitting separate models for
each treatment group. The dependent censoring is overcome
through the well-established inverse probability of censoring
weighting (IPCW); see Robins and Rotnitzky (1992); Robins
(1993); Robins and Finkelstein (2000).

The remainder of this article is organized as follows. In
Section 2, we set up the notation and formalize the prob-
lem of interest. The proposed methods are described in Sec-
tion 3. Asymptotic properties are listed in Section 4, with
corresponding proofs given in the Web Appendix. In Section
5, a simulation study is presented. The proposed methods are
applied to national liver wait list data in Section 6. The article
concludes with a discussion in Section 7.

2. Notation and Data Structure

Suppose we are interested in comparing two groups (A = 0,1),
which are not randomized, in terms of restricted mean lifetime
up to time L. We denote the survival time by 7. As in almost

all studies involving time to an event, the event time 7 may
be censored due to various reasons. Two types of censoring
are considered in the following development. We let C; de-
note censoring which is independent conditional on baseline
covariates, Z, and group indicator, A; for example, censoring
due to the end of study. We let C; denote dependent censoring;
that is, censoring that is not independent of T given (Z, A).
For example, in the context of the data that motivated our
work, a patient’s waitlist mortality is censored if and when
the patient receives a liver transplant and the transplant haz-
ard and wait list mortality hazards may be correlated, even
conditional on (Z, A), through mutual dependence on time-
dependent covariates (e.g., MELD score). In notation, we as-
sume that C; 1LT|Z, A, where 1l denotes “independent of”;
while C5 is not assumed to satisfy this condition. In prac-
tice, one observes the minimum of the survival time and time
to censoring. We therefore let U =T A Cy A C represent the
observation time and define indicators for observing the fail-
ure time and dependent censoring times: Ay, = I(T < C; A Cy)
and A, = I(Cy < T A C)), respectively. We let X (¢) represent
the time-dependent covariate at time . Note that X (0) would
include the elements of Z and potentially other factors predic-
tive of Cy. We let X (t) = {XT(u);u € [0,t)} denote the history
of all baseline and time-dependent covariates up to just be-
fore time t. The observed data may be summarized as O; =
{4;,U;, Ay, Ao, Z;, X; (U;) }, with the O; assumed to be in-
dependent and identically distributed (i.i.d.) acrossi =1,...,
n. Note that the set of observed variates is redundant, in the
sense that X (¢) includes all baseline covariates Z; however,
this representation is convenient for presentation purposes.

To define the parameter of interest, we follow the poten-
tial outcome framework studied by Rubin (1974, 1978) and
adopted by Chen and Tsiatis (2001). Let T° denote the po-
tential (or counterfactual) lifetime for a randomly selected
subject from the population if, possibly contrary to fact, s/he
were in group 0, and similarly 7" the potential random vari-
able corresponding to group 1. In reality, 7° and 7' are
never observed simultaneously for a subject and the (possi-
bly) observed survival time 7 relates the two-dimensional po-
tential outcomes (T°,T!) through T = I(A=0)T°+ I(A =
1)T'. The group-specific difference in restricted mean lifetime
is defined as

§ = E{min(T", L)} — E{min(T°, L)}
= /L {P(T" > t) — P(T" > t)} dt. (1)

Under the assumption that (T° T')1LA|Z, it follows
that P(T > t|A=j,2) = P(T7 > t|A=j,Z) for j = 0,1. Al-
though defined through potential outcomes, the parameter of
interest, §, can then be expressed in terms of observable vari-
ates as

L
0= / E;{P(T>t|lA=1,2)— P(T >t|A=0,2)}dt,

’ (2)
where the expectation E is taken in respect to the marginal
distribution of Z. When A is an indicator of treatment,
has the interpretation of average causal treatment effect. We
set S;(t|1Z) = P(T > t|A=j4,Z) and S;(t) = Ez{S;(t|Z)} for
j=0,1.
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Estimators for § are proposed by Chen and Tsiatis (2001)
under the assumption of independent censoring. That is, in
our notation, it was assumed that censoring C, does not exist.
Using sample averages to estimate expectations, if one can
obtain estimators for Sy(t|Z) and Si(t|Z), say, So(t|Z) and
§1(t|Z)7 respectively, then a natural estimator for § is given by

5= / S Gz - Bz ()

3. Methods

As argued in the previous section, we wish to model the con-
ditional survival function of T given baseline covariates and
group indicator, S;(t|Z),j = 0, 1. Because of its flexibility and
popularity in practice, we adopt Cox’s proportional hazards
model (Cox, 1972, 1975) and, in the following development,
we work with the more general model where both baseline
hazards functions and regression coefficients of Z are allowed
to vary by group. Specifically, it is assumed that

Xij (1) = Mt Zi, A = ) = Xoj (D exp(B] Z,), 5=0,1, (4)

where \(t|Z;, A; = j) denotes the conditional hazard function
given baseline covariates Z; and membership in group 4; = j,
while Ag;(t) is the unspecified baseline hazard function for
group A = j.

We now describe how to estimate parameters for model
(4). To begin, suppose that Cy was not dependent censoring,
but was instead another form of censoring that was condi-
tionally independent of T given (Z, A). In this case, 3; could
be consistently estimated by the maximum partial likelihood
estimator, 37, which could be computed as the root of the
estimating equation,

Z Zy exp(ﬂjT Zﬁ)ch (t)

YRR
— Jo

> exp (8] Z0) Y (1)
=1

where 7 satisfies P(U > 7) > 0 and, in practice, can be set to
the maximum observation time in the study; N;; (t) = I(4; =
tionally, Ag; (t) = fUt Xoj (u)du could be consistently estimated
by the Breslow estimator,

Ryy() = / t

From a different perspective, ZA\f‘,] (t) and E’]* are the solutions

to the following estimating equations;

3 / dMy(ui B,A) = 0 (7)

Z AN (t)
I : (6)
> exp(B) Z:) Vi ()

i=1

> / 'z dM;;(t;5,A) = 0, (8)
i=1 70
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respectively, where dM;;(t; 3, A)=dN,;(t)=Y;; (t)e’" Zi dA(t)
and dM;;(t) = dM;;(t; 5;,Ao;). Under the assumption that
(O]i, 027) JJ,:E |(14,7 Z,)7 we have E{d]\/[” (U) ‘Z” A,} =0 and
E{Z;dM;;(u)|Z;, A;} = 0 such that (7) and (8) have mean
zero at the true parameter values.

However, as stated previously, although Cy; 11L.T;|(A;, Z;), it
is not the case that Cy; ILT;|(A;, Z;). As a result, neither (7)
nor (8) have mean zero at the truth, meaning that consistent
estimators of 3; and Ay;(t) cannot be obtained from (5) and
(6) respectively. We assume that the dependence of Cy; and T;
occurs through (and only through) the time-dependent pro-
cess, )?i(U,-); that is, observed data. That is, we assume that
Cy; is conditionally independent of T; given {Z;, A;, )?l(Ul)},
a condition we can express formally as follows:

limh 'P{t <U; < t+h, Ay =1|U; >t A, X; (), T;}

h—0
= lmpTP{t U <t h Ay = 1|U; > t A, X (1))

Assumption (9) is the critical “no unmeasured confounders”
(Rubin, 1977; Robins, 1993) for censoring assumption. In our
setting, the assumption essentially states that the hazard of
being censored by (5 at time ¢ depends only on observed data
up to time t and not additionally on future possibly unob-
served data. We define the hazard function for the dependent
censoring time, Cy; for a subject in group j as

then set Af (t) = fol AG (u)du.

We return now to the issue of estimating the pa-
rameters in (4). Reconsidering (7) and (8), although
E{dM;;(t)|Z;, A;} # 0, under (9), it can be shown that
Elexp{AS ()}dM;;(t)]  Zi;, A, X,()] =0  (Robins  and
Finkelstein, 2000) and, after iterating the expectation,
that  Elexp{A{ (t)}dM;;(t)|Z;, A;] = 0. More generally,
it can be shown that E{W;;(t)dM;;()|Z;,A;} =0,
where Wi, (t) = exp{A{; (t)}k(t; Zi, A;), where the func-
tion k(t; Z;, A;) acts as a stabilization factor. Similarly, it can
be shown that E{W;;(t)Z; dM;;(t)|Z;,A;} = 0. Combining
these zero-mean properties suggests the following set of
IPCW estimating equations,

Z/ﬂ Wi; (w)dM;; (u; 3, A) = 0 (10)

Z/T Wi (t)Z; dM; (t; 8, A) = 0. (11)
i=1 70

Substituting the solution to (10) into (11) then reorganizing
algebraically suggests that 3; be estimated by the solution to

n

> Wi ()Y (6)Ze exp (8] Z¢)

i=1 0 D Wi 6V, (@) exp (] Z0)

(=1
X W,j]' (t)dN,] (t) = 07

(12)
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and that the weighted Breslow estimator,

t 2
Roy (1) = / ,

Z Wiy (u

be used to estimate A, (¢) for j =0, 1.

The estimators in (12) and (13) are IPCW estimators
(Robins and Rotnitzky, 1992; Robins, 1993; Robins and
Finkelstein, 2000). The quantity exp{A{;(¢)} can be thought
of heuristically as the inverse of the probability of not having
been dependently censored as of time ¢. Note that X;(¢) is an
internal time-dependent covariate (Kalbfleisch and Prentice,
2002); that is, a process generated by subject ¢ (as opposed
to an external time-dependent covariate such as tempera-
ture or air quality). Therefore, exp{A{; ()} is not actually a
probability, per se, but a product of conditional probabilities.
Nonetheless, using Robins’ Fundamental Identities (Robins
and Rotnitzky, 1992; Robins and Finkelstein, 2000), it can be
shown that the estimating function in (12) can be expressed
as a (dependent censoring process) Martingale integral and
hence has mean 0; a proof for which is outlined in Section 2 of
the Web Appendix. The function k(¢; A;, Z;) can be any func-
tion of Z; and A; (since these are conditioned upon by model
(4) anyway) and is intended to stabilize the weighted estima-
tors. In particular, exp{A{;(¢)} could be quite large toward
the tail of the observation time distribution, which would re-
sult in weights that are quite large. One choice of x that has
been suggested (e.g., Robins and Finkelstein, 2000; Herndn
et al., 2000) is exp{A{, (¢|Z;, A;)}. While AT () would be based
on a time-to-censoring model that used )?1- (t—) as covariates,
AS (t]Z;, A;) would only use the baseline values. If censoring
was in fact independent, then W;;(¢) would tend toward 1.
Another choice is k(t; 4;, Z;) = 1, which may be appropriate
if censoring is light or moderate, in which case W;;(t) does
not get unduly large. Hereafter, we refer to x(t; A;,7Z;) =1
as the ‘“‘unstabilized” estimator. Stabilized estimators are in-
tended to be more efficient than the unstabilized version, at
the expense of additional modeling effort.

In practice, A{j() in the weight function is unknown to
us and therefore has to be modeled and estimated. To fit
models for the dependent censoring time Cs;, one uses U; as
the censored time variable but uses A,; as the indicator for
observing Cy;. Again, due to its flexibility, the proportional
hazards model is a natural choice for the dependent censoring
time, Cy;, with the model being conditional on the group in-
dicator and both baseline and time-dependent covariates. To
allow for more flexibility in modeling and hence robustness in
estimating the weight, one could fit group-specific Cox mod-
els,

/\fj()ngJ eXp{GX )}

where /\Ocj (t),7 = 0,1, are unspecified group-specific baseline
hazard functions for Cy; and X, (t) is a function of X; (t) deter-
mined empirically (e.g., using standard model selection tech-
mques such as stepwise regression) to satisfy A (t|X () =

AC(t|X;(t)). Based on the fitted model, one can estimate

AS(t) by KS (t), which can then be used to compute the esti-
mated weight function, ﬁ/\,] (t).

Having ebtimated B3; and AQ]‘ (t), one can correspondingly
estimate S;;(t) = S;(t|Z;) b

S;(t1Z:) = 8,;(t) = exp{ Ay, () exp (BT Z,)},  j=0,1.

(14)

Finally, the proposed estimator for difference in restricted
mean lifetime § is then given by

6—/ B

where S =n'y " S,J ) for j =0, 1.

The key step in 1mplement1ng the proposed method is to
solve the weighted estimating equation (12), for which ex-
isting software may be exploited. For example, one can use
proc phreg (SAS Institute; Cary, NC) with the counting
process input format and the weight option. Correspond-

o(t) }dt, (15)

ingly, Koj (t) and gjj (t) can be easily obtained. Estimating
the variance is more involved, requiring additional program-
ming (e.g., SAS’s proc iml). For illustrative purpose, an SAS
macro implementing the proposed methods is available at
http://www.sph.umich.edu/mzhangst/.

4. Asymptotic Properties

In this section, we derive the asymptotic properties of the
proposed estimators given by (15). To begin, we specify the
regularity conditions, assumed to hold for i =1,...,n and
j=0,1.

(a) {Ai7 Zi7Ui7Ali7A2i7§i (Ul)} are independent and
identically distributed.

(b) P(U; > 1) >0.

(¢) |Zik| < bz and fOT d| X1 (t)| < bx, where by < co and
bx < oo, and k denotes the kth element.

(d) Ag; (1) < 005 Af; (1) < 0.

(e) For d=0,1,2,

supHR tﬂ)fr tﬁ||*>0
tel0, 7
sup HR t@)frc t0||*>0
tel0, 7

where we define

d) _
ROt 8) = n 1ZY77

i=1

RO (t:8) = n "3 Vi, (X7 exp{6” X, (1)}

i=1

i (1) 27" exp{B" Z;}

with 220 = 1, 2! = z and 2®? = 22T
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(f) The matrices €2;(5;) and QF (6;) are assumed to be
positive-definite, where
-zt 5)®2}

xr&) (5 0)AS (¢ )d]

with  Z(t;8) = ri(68)/r\"(t:8)  and  T(t;0) =
r‘cl}(t;f))/rcj-(t,e).
(2) P(A;i =j|Z) € (0,1).

Variations on Condition (a) are possible, although at the
expense of additional technical (e.g., Lindeberg-type) condi-
tions. Condition (b) is a standard identifiability criterion. The
boundedness implied by Condition (c) helps ensure the con-
vergence of the several stochastic integrals used in the proofs;
the same can be said for Condition (d). The second-derivative
matrices in Condition (f) are at least nonnegative definite and
will be positive-definite under any sensible specification of the
covariate vectors. Condition (g) is the well-known positivity
requirement from the causal inference literature. If it fails, §
fails to have a causal interpretation.

We describe the primary asymptotic result for our proposed
unstabilized group effect estimator in the following theorem.

THEOREM 1: Under conditions (a) — (g), as n — oo, 3 con-
verges in probability to 8, and for the unstabilized estimator,
1/2(5 d) converges to a zero-mean Normal with variance

E{(d)“ — Qf)ig)?}, where

L
¢ij =-F |:ZzT/ {Hij (L
0

- / E[ijTAL {1 (L) = piy (8)}] i (t) +

where Hij (L) = u”,uu )= [, Si; (U)duan%{xw (t) —
Ay =n2300, 0,(1)  and n3(B; - B)) =
‘,(@ = -*Zj’ 1U” ﬁj)+0 (1), with ®;;(t) and U;;(B;)
defined in the Web Appendiz.

The variance can be consistently estimated by
nty d)zl gi),o)?, where ¢;; is obtained by replacing
limiting values in ¢;; with their empirical counterparts. How-

) — i (8) }dAi; ()| Q51(8;)Ui; (B;)

(/tij —Mj)7

ever, as shown in the Web Appendix, the computation of ai]‘
is quite complicated owing to the complexity of ﬁ;j (B\;) and
@U (t). As aresult, estimating the variance through qAﬁw is very
inconvenient computationally. AAcomputatlonally attra}gtwe
alternative is to estimate wvar(J) by n Tty qu — o) 02

where d)T is obtained by replacing U”(ﬁ,) and <I>”( ) with
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ﬁfj (B\]) and @L] (t), respectively, where
71 (8) = / {2 =7, (858, W)WV, (1), (1)
0
() = k] ()9(8;) T} (B)
/ W,y ()R (53 3y, ) i (),

The key difference between (b,;]- and

n L
1) :—n’1 [ZLT/ {1i; (L)

Z/ [ 7 7y () - Ty ()]

(/147] - //4])7

— [ (1) YA ()| ©71(5))

><U' ﬁj

_
x dB! (1) +

is that the former accounts for the fact that I//V\” (t) is esti-

mated, while gi)f] is derived with /I/IZ, (t) treated as fixed.

We refer to (¢i1 — ¢i0) in Theorem 1 as the influence func-
tion of 0, which satisfies n¥(§ —6) = n~? St (i — dio) +
O,(1). The asymptotic results stated in Theorem 1 are
for the unstabilized estimator with the stabilization factor
k(t; A;, Z;) = 1. As equations (12) and (13) are unbiased es-
timating equations for general x(t; A;, Z;), by similar argu-
ment, it can be shown that consistency and asymptotic nor-
mality hold for estimators with x(t; 4;, Z;) # 1 but the form
of influence function will be different and even more com-
plicated. Therefore, treating the weights as fixed would be a
practical way to estimate the variance of the proposed esti-
mators. As demonstrated in the Web Appendix, for general

k(t; Ai, Z;),var(5) can still be estimated by n™t Z:L ) ¢
iy)? with ¢,
Chapter 9.1), the influence function of ;5\, if the weight is esti-
mated, is the projection of the influence function when weight
is known and fixed onto the orthogonal complement of the nui-
sance tangent space; for example, the spaces associated with
the nuisance baseline hazard function and nuisance parame-
ter 6; in the model for C;. As the true influence function is
a projection, its variance is smaller than the influence func-
tion if weight is fixed and therefore the proposed variance
estimator will be conservative in estimating the variance of 5
where weight is actually estimated. This point is discussed by
several previous authors (Herndn et al., 2000, 2001; Pan and
Schaubel, 2008). The effect of estimating the weight is slight,
as will be demonstrated empirically in the next section.

specified previously. According to Tsiatis (2006,

5. Simulation Study

We report on simulations to evaluate performance of the pro-
posed methods. Results of two other methods are also re-
ported: a naive method, which estimates § by taking differ-
ence in areas under group-specific Kaplan—Meier curves from
time 0 to L and consequently ignores all possible confound-
ing, and the method proposed by Chen and Tsiatis (2001),
which adjusts for baseline covariates but not time-dependent
confounders for censoring.

Data were generated under three scenarios, correspond-
ing to different confounding mechanisms and, in each sce-
nario, two different percentages of censoring were considered,
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referred to as light censoring or heavy censoring cases. Specifi-
cally, in each scenario, for the light censoring case, about 20%
subjects are censored by Cy and about 5% are censored by
(4, and for the heavy censoring case, about 30% subjects are
censored by Cy and about 10% are censored by C. All re-
ported results are based on 2000 Monte Carlo datasets, and
L is chosen to be 15.

In the first scenario, data were generated such that both
baseline and time-dependent confounders exist. For each
Monte Carlo dataset, a single baseline confounder Z was gen-
erated as a truncated standard normal, truncated at —4 and 4
on each side, and group indicator A as Bernoulli with param-
eter exp(—0.62)/{1 + exp(—0.6Z)}. Survival time T was gen-
erated by transforming €; ~ Uniform (0,1) using the inverse
of the cumulative distribution function (cdf) of a Weibull
distribution with shape parameter 1.25 and scale parame-
ter exp(—0.3Z — 3.3) for group A =1 or exp(—0.4Z — 3) for
A = 0. We then generated dependent censoring C5 such that
it depends both on baseline and time-dependent covariates
as follows. In order for a time-dependent covariate to be
a confounder, it should be correlated both with T and C,
conditioning on (A, Z). To achieve this, we first generated
X, such that X; = —5log{Ae; + (1 — A)(1 — €1)} + €, where
€2 ~ Uniform(0, 1), independent of all other variables, and
then let X (¢) = I(X; > t). Consequently, the time-dependent
covariate X(¢) is correlated with survival time T through their
mutual relationships with ¢; and such correlation exits even
conditioning on (A, Z). Next, we generated dependent censor-
ing time C using a proportional hazards model with hazard
rate exp{y; + 0.2A + 0.2Z + 1 X (t)}. This procedure ensures
that X(¢) is a time-dependent confounder and C, follows a
proportional hazards model with Z and X(¢) as our model as-
sumes. Finally, censoring time C; was generated as Weibull
with shape and scale parameters 3 and exp(y3) respectively.
The coefficients (7, v2,73) are set to (—5.1, 1.5, —11) for light

censoring case and to (—4.45, 1.5, —9.7) for heavy censoring
case.

In the second scenario, data were generated such that, con-
ditioning on (A, Z), time-dependent covariate X(¢) correlates
only with survival time T but not with censoring time C5 and
therefore it is not a confounder if (A, Z) is properly adjusted
for. We compare the proposed methods with the Chen and
Tsiatis (2001) method, which should be consistent and asymp-
totically normal under this scenario. Data are generated sim-
ilarly as before except for that v, was set to 0, ensuring that
X(t) does not affect Cy. Specifically, we chose (v1,72,73) equal
to (—4, 0, —11) for light censoring case and equal to (—3.4, 0,
—9.7) for heavy censoring case.

In the third scenario, we let the time-dependent covari-
ate X(t) be conditionally independent of survival time 7 but
still correlated with censoring time C, and, consequently, is
not a confounder either. Data were generated the same as in
scenario one except for that X, = —5log{Ae; + (1 — A)(1 —
€3)} + €9, where €3 ~ Uniform(0, 1), independent of all other
variables. We evaluate how the proposed methods compare
with those of Chen and Tsiatis (2001), which should be unbi-
ased under this scenario. All coefficients are set equal to those
used in scenario 1.

Tables 1 and 2 list the results of our simulation study. The
proposed estimators (unstabilized or stabilized) are consis-
tent for the true parameter under all scenarios, whereas the
Chen and Tsiatis (2001) method leads to biased estimators
under scenario 1, where a time-dependent confounder exists.
The naive estimator is biased under all three scenarios, where
baseline or/and time-dependent confounders exist. Although
the variance is estimated by treating the estimated weight
as fixed, coverage probabilities of the proposed estimators
achieve the nominal level. On the other hand, due to the non-
ignorable bias, coverage probabilities of the other two estima-
tors are very low, illustrating that the impact of confounders

Table 1
Estimators for difference in restricted mean lifetime under scenarios 1-3, light censoring case (2000 Monte-Carlo datasets;
sample size: 1000; True is the true value of parameter; MC Bias is the Monte Carlo bias; MC SD is the Monte Carlo standard
deviation of estimates; Ave. SE is the Monte Carlo average of estimated standard errors; CP is the coverage probability of
nominal 95% Wald confidence interval.)

Method True MC Bias MC SD Ave. SE CP
Light Censoring, Scenario 1
Unstabilized inverse weighting 1.172 0.021 0.319 0.327 0.950
Stabilized inverse weighting 1.172 0.015 0.317 0.327 0.952
Chen & Tsiatis” method 1.172 0.316 0.321 0.324 0.840
naive 1.172 —0.429 0.325 0.332 0.755
Light Censoring, Scenario 2
Unstabilized inverse weighting 1.172 0.005 0.321 0.330 0.954
Stabilized inverse weighting 1.172 0.002 0.321 0.330 0.953
Chen & Tsiatis’ method 1.172 0.005 0.323 0.329 0.953
Naive 1.172 —0.729 0.326 0.336 0.422
Light Censoring, Scenario 3
Unstabilized inverse weighting 1.172 —0.013 0.337 0.328 0.939
Stabilized inverse weighting 1.172 —0.016 0.337 0.327 0.936
Chen & Tsiatis” method 1.172 —0.017 0.336 0.326 0.934
Naive 1.172 —0.746 0.341 0.332 0.392
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Table 2
Estimators for difference in restricted mean lifetime under scenarios 1-3, heavy censoring case (entries are as in Table 1)
Method True MC Bias MC SD Ave. SE CP
Heavy Censoring, Scenario 1
Unstabilized inverse weighting 1.172 0.040 0.331 0.342 0.948
Stabilized inverse weighting 1.172 0.050 0.334 0.344 0.947
Chen & Tsiatis” method 1.172 0.593 0.334 0.337 0.584
Naive 1.172 —0.157 0.339 0.344 0.926
Heavy Censoring, Scenario 2
Unstabilized inverse weighting 1.172 0.006 0.329 0.329 0.959
Stabilized inverse weighting 1.172 0.003 0.328 0.346 0.960
Chen & Tsiatis’ method 1.172 0.004 0.334 0.345 0.956
Naive 1.172 —0.725 0.344 0.350 0.455
Heavy Censoring, Scenario 3
Unstabilized inverse weighting 1.172 —0.009 0.350 0.345 0.936
Stabilized inverse weighting 1.172 —-0.014 0.348 0.343 0.941
Chen & Tsiatis” method 1.172 —0.015 0.345 0.340 0.940
Naive 1.172 —0.743 0.348 0.344 0.424

can be severe if they are not properly accounted for in the
analysis.

Under scenarios 2 and 3, where there are no time-dependent
confounders, the usual partial likelihood estimator is semi-
parametric efficient in estimating coefficients of a Cox pro-
portional hazards model. Therefore, the Chen and Tsiatis
(2001) method can be used as a benchmark to evaluate the
loss of efficiency of the proposed methods due to inverse prob-
ability weighting. Our results demonstrate that the stabi-
lized version of the proposed estimator behaves very simi-
larly to the estimator of Chen and Tsiatis (2001). This would
be expected since the weights would tend toward 1 in this
scenario, such that the loss of efficiency (corresponding to
the unstabilized weighting) is only mild. In addition, simula-
tion results suggest that the effect of the stabilization factor,
k(t; Z, A), on the efficiency is more pronounced for estima-
tors of the Cox regression parameter, compared to the es-
timators of d. Results in Table 3 show that, at least under
the simulated scenarios, stabilization results in considerable
efficiency gains for §;, but only mild increases in precision
for 4.

6. Application

Data were obtained from the Scientific Registry of Trans-
plant Recipients (SRTR). The study population (n = 6371)
included all chronic liver disease patients initially wait listed
for deceased-donor liver transplantation in the United States
at age > 18 between March 1, 2002 and February 28, 2003.
For each patient, the time origin (¢ = 0) was the date of wait
listing. Patients were followed from that date until the ear-
liest of death, receipt of a liver transplant, loss to follow-
up, and the end of the observation period: December 31,
2008.

The event of interest was wait list mortality. Independent
censoring consisted of random loss to follow-up and adminis-
trative censoring at the end of the observation period. Depen-
dent censoring occurred through liver transplantation which,

although not preventing the observation of death, does pre-
clude wait list death.

The objective of the analysis was to compare 5-year mean
wait list survival time between Hepatitis C positive (HCV+)
versus HCV— patients. HCV is a leading cause of chronic
liver disease. Baseline adjustment covariates included the
following factors, as measured at the time of wait initial
listing: age, gender, race, region, MELD score, serum al-
bumin, sodium, body mass index, diabetes, hospitalization
status, ascites, dialysis, and encephalopathy. The MELD score
is a log linear combination of serum creatinine, bilirubin,
and international normalized ratio for prothrombin time.
MELD has been shown to be a very strong predictor of
wait list mortality. Currently, patients are ordered on the
wait list in a decreasing order of MELD score, such that
the higher the MELD score, the greater the liver transplant
hazard.

MELD is time-dependent, since a patient’s score will be
updated regularly. Other time-dependent covariates include
dialysis, serum albumin, sodium, and active and removal sta-
tus. In the time-until-transplant model, each of these factors
was represented in the time-dependent covariate vector. The
Cox model for transplant was given by

AL (1) = {1 = LOH1 = Ri)}AF () exp{0f Xi ()}, (16)

where I;(¢) is an indicator for being inactivated from the
wait and R;(t) is an indicator for being removed from the
wait list at time ¢ It is not possible for a patient to re-
ceive a transplant while they are inactivated (usually tempo-
rary) or removed (typically permanent). To fit model (16),
we deleted patient subintervals where either [;(t) =1 or
R;(t) = 1. After model (16) was fitted, the IPCW weight
was then computed using flt'{l —Li(s)H{1- Ri(s)}dxlc (s),
such that the transplant hazard increment was set to 0 for
each subinterval where the patient was either inactivated or
removed.

The study population consisted of 2754 HCV+ (5 =1)
and 3617 HCV— (j =0) patients. There were a total of
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Table 3
Comparing efficiency of the unstabilized and stabilized inverse weighting methods in estimating § in (1) and coefficients of Cox’s

proportional hazards models in (4) (;5\ is weighted estimator for 0; @ is weighted estimator for B; in (4), j = 0,1; RE is the
relative efficiency compared to the unstabilized inverse weighting method, calculated as the square of the ratio of the Monte
Carlo standard deviation for the unstabilized inverse weighting estimator over that for the indicated estimator)

B B 3

Method MC SD RE MC SD RE MC SD RE
Light Censoring, Scenario 1

Unstabilized inverse weighting 0.059 1 0.058 1 0.319 1

Stabilized inverse weighting 0.057 1.085 0.055 1.114 0.317 1.011
Light Censoring, Scenario 2

Unstabilized inverse weighting 0.058 1 0.058 1 0.321 1

Stabilized inverse weighting 0.057 1.035 0.057 1.060 0.320 1.004
Light Censoring, Scenario 3

Unstabilized inverse weighting 0.060 1 0.060 1 0.337 1

Stabilized inverse weighting 0.057 1.094 0.056 1.143 0.337 0.999
Heavy Censoring, Scenario 1

Unstabilized inverse weighting 0.069 1 0.066 1 0.334 1

Stabilized inverse weighting 0.063 1.195 0.059 1.250 0.331 1.016
Heavy Censoring, Scenario 2

Unstabilized inverse weighting 0.064 1 0.066 1 0.329 1

Stabilized inverse weighting 0.062 1.070 0.062 1.110 0.328 1.006
Heavy Censoring, Scenario 3

Unstabilized inverse weighting 0.069 0.072 1 0.350 1

Stabilized inverse weighting 0.062 1.217 0.063 1.320 0.348 1.024

- - - HCV- ——HCV+ Table 4

Survival

L

0 T T T T T T T T T T T T T T T T T T

0 1 2 3 4 5
Time (years)

Figure 1. Average wait list survival probability for HCV—
and HCV + patients at 5 years.

1849 wait list deaths, 3194 liver transplants, and 1328 in-
dependently censored subjects. Average survival curves are
presented in Figure 1. Average wait list survival proba-
bility was 51% for HCV— patients at 5 years, compared
to 41% for HCV+ patients. In Table 4, we compute 1-,
3-, and 5-year average restricted mean wait list lifetime for
HCV+ and HCV— patients. For each of L =1,L =3, and
L =5 years, average restricted mean lifetime is significantly
greater for HCV— compared to HCV+ patients. In Figure 2,

Average restricted mean wait list lifetime for HCV+ and
HCV— patients restricted to L =1, L =3, and L =5 years

o~
~

L H1 io 5 SE (9) p

1 0.83 0.85 —0.02 0.01 0.047
3 2.10 2.21 —0.11 0.03 0.002
5 3.04 3.31 —0.26 0.06 <0.0001

we plot the point estimates and 95% confidence intervals
for 4.

7. Discussion

In this article, we have proposed methods for estimating
differences in restricted mean survival time between groups
where group assignment is not randomized and, conditional
on baseline covariates and group assignment, censoring may
still be correlated with survival time. Differences in re-
stricted mean lifetime may be of direct interest, and could
also serve as a cumulative effect measure in settings where
group-specific hazards are nonproportional. To be general,
in our formulation, we considered that both conditionally
independent and dependent censoring exist, which is often
the case in practice; this formulation includes as a spe-
cial case when only one type of censoring exits. The pro-
posed methods employ two general approaches to account
for two types of confounders. The proposed methods combine
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Figure 2. Point estimates and 95% confidence intervals for
differences in average restricted mean wait list lifetime be-
tween HCV+ and HCV— patients.

inverse probability of censoring weighting (e.g., Robins and
Rotnitzky, 1992) and the procedure of explicitly averag-
ing over the marginal covariate distribution (e.g., Chen and
Tsiatis, 2001).

In our proposed procedure, computation is simplified by
treating the IPCW weights as fixed. Since the inverse weights
are actually estimated using the data, treating them as fixed
should result in conservative confidence intervals and hy-
pothesis tests, as reported by several previous authors (e.g.,
Hernén et al., 2000, 2001; Pan and Schaubel, 2008). Our sim-
ulation results reveal the proposed standard error estima-
tors and corresponding confidence intervals are quite accu-
rate. An alternative to treating the weights as fixed would
be to use the bootstrap, but this is much less-convenient
computationally.

The methods we propose require that the IPCW weight
be correctly specified. The degree of bias introduced by mis-
specifying the Cox model for censoring would be expected
to increase with increasing proportion of dependent (rela-
tive to independent) censoring; increasing strength of asso-
ciation (i) between the death hazard and time-dependent
confounders and (ii) between the dependent censoring haz-
ard and time-dependent confounders; and of course degree
to which the IPCW model is misspecified. Fortunately, one
can readily evaluate the fit of the proportional hazards
model through well-established techniques and using standard
software.

There are several alternatives to our proposed approach,
one being joint modeling. For example, one could combine a
mixed model for the longitudinal measurements with a hazard
model that uses time-dependent covariates (e.g., Proust-Lima
and Taylor, 2009). Or, one could also model mean residual
survival time directly using pseudo-observations (Andersen,
Hansen, and Klein, 2004). It could well be the case that the
preferred method is a function of the data configuration. A
detailed comparison of the three types of approaches would
be very useful to practitioners.

Biometrics, September 2011

8. Supplementary Materials

The Web Appendix, referenced in Sections 3 and 4 is available
under the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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