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Abstract—A second-order microelectromechanical systems
(MEMS) filter with high selectivity and sharp rolloff is required
in wireless transceivers used in dense wireless sensor networks
(WSNs). These sensors are expected to replace existing wired
sensors used in industrial-plant management and environmen-
tal monitoring. These filters, together with MEMS-based oscil-
lators and mixers, are expected to replace off-chip components
and enable the development of a single-chip transceiver. Such
a transceiver will leverage the integrated MEMS components’
characteristics to operate at lower power and, hence, longer
battery life, making autonomous WSNs more feasible in a wider
range of applications. As a result, this paper presents the design
and optimization of the coupling beam of wineglass-mode mi-
cromechanical disk filters using simulated annealing. The filter
under consideration consists of two identical wineglass-mode disk
resonators, mechanically coupled by a flexural-mode beam. The
coupled two-resonator system exhibits two mechanical-resonance
modes with closely spaced frequencies that define the filter pass-
band. A constraint is added on the beam length to eliminate the
effect of the coupling-beam mass on the filter’s resonant frequency.
A new process flow is proposed to realize self-aligned overhanging
coupling beams designed in this paper.

Index Terms—High-frequency microelectromechanical systems
(MEMS), micromechanical filters, optimization, simulated anneal-
ing, spring coupling.

NOMENCLATURE

Resonance frequency.

Disk radius.

Material density.

Poisson’s ratio.

Young’s modulus of elasticity.
Natural angular frequency.
Radial-displacement component.
Tangential-displacement component.
re Resonator effective mass.

Resonator effective stiffness.
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I. INTRODUCTION

IRELESS sensor networks (WSNs) are expected to

dominate industrial and environmental sensing net-
works to replace the current wired architecture not only to
reduce cost but also to increase flexibility, scalability, and
interoperability [1], [2]. Cost overhead stems from the wiring
and maintenance costs associated with wired technologies [2],
[3]. To reduce such cost, a low-cost wireless transceiver has
to be integrated with the sensor to enable data transmission to
the main command and control unit. The cost of a wireless
transceiver can be significantly reduced if it can be manufac-
tured using a batch process. This will eliminate the use of
printed circuit boards used to integrate different subsystems [4];
thus, reduce cost. Such integration covers all off-chip passive
components such as antennas [5], capacitors [6], inductors [7],
and frequency selection and generation blocks [8].

In addition, new domains that were very hard to monitor
with wired technologies can now be exploited using wireless
sensors. For example, wireless sensors would be the only prac-
tical option for high-resolution crops monitoring where wired
sensors cannot be used. Wireless sensors can enable monitoring
harsh environments where environmental constraints and avail-
able space for sensor limits the use of wired networks. This is a
typical scenario in chemical plants, semiconductor fabrication
plants, power plants, and environmental monitoring [9]. In any
of these wireless-sensor applications, size, power, cost, and
performance of the wireless transceiver play an important role
in enabling the WSNSs.

Frequency selecting and generating components, namely,
filters and oscillators, are inherent building blocks in any
modern wireless-transceiver system as they play a key role
in determining the overall system performance and sensitivity
[10]-[13]. In current systems, off-chip mechanically resonant
components, such as crystal resonators and filters [14], surface-
acoustic-wave (SAW) filters [15], [16], and film bulk acoustic
resonators [17], [18], are currently used to realize high-() band-
pass filters, commonly used in the radio-frequency (RF) and
intermediate-frequency (IF) stages of heterodyne transceivers
[12], [13]. These mechanical components have higher quality
factors as compared to their transistor-based counterparts [3],
[5]; as a result, they greatly outperform comparable filters
implemented using transistor technologies [13], [15]. On the
other hand, these mechanical devices are bulky and cannot be
integrated on-chip owing to their non-CMOS-compatible fabri-
cation technology; as a result, the overall system cost increases.
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In addition, the insertion loss associated with these off-chip
components affects the system performance and reduces the
battery lifetime if additional amplification stages are required
[8], [11]. For these reasons, research on how to implement
microelectromechanical-systems (MEMS)-based filters and os-
cillators is currently an active area of research [8], [19], [20].

The remainder of this paper is organized as follows:
Section II presents earlier work done in this field. Then, a
description of the micromechanical-filter structure and opera-
tion is presented in Section III. The theory behind the high-
frequency (HF) micromechanical-resonator and filter design
are presented in Sections IV and V, respectively. Section VI
presents the optimization of the coupling-beam dimensions
and the coupling locations using simulated annealing. Finally,
Section VII describes the fabrication process for realizing the
designed filter.

II. RELATED WORK

Advances in surface-micromachining technologies made it
possible to fabricate on-chip high-() micromechanical res-
onators (abbreviated as “presonators”) and filters [21], [22].
Different approaches have been recently applied to tackle
various performance aspects of MEMS resonators. These ap-
proaches were successful in positioning vibrating RF MEMS
technology as a serious option to replace off-chip counterparts.
Namely, low-cost wafer-level vacuum packaging [23], CMOS
integration [24], [25], temperature compensation [26], and
higher frequency operation [8] would enable low-cost on-chip
RF MEMS resonators that can eventually outperform existing
technologies.

Vibrating MEMS wineglass-mode disk resonators fabricated
using polysilicon as the structural material, first demonstrated
by Abdelmoneum er al. [27], [28], exhibit @’s of more than
96 000 under vacuum and 8600 in atmosphere and center fre-
quency around 71 MHz [27] and, later, with )’s in the excess
of 145000 in vacuum [29]. These resonators were incorporated
in demonstrating reference oscillators with phase-noise perfor-
mance surpassing Global System for Mobile communications
requirements [8]. At this point, it appears that presonators can
potentially serve well as miniaturized substitutes for crystals in
a variety of high-Q oscillator and filtering applications.

IF (i.e., 455 kHz) MEMS filters were demonstrated early
in literature [30]; later, higher frequency MEMS filters with
frequencies around 7.8 MHz and percent bandwidths from
0.2% to 2.5% (Q from 40 to 450) were also demonstrated
[31]. Unfortunately, filters working at much higher frequencies
are still needed for useful implementation in communication
systems, in particular at RF range [11], [32]. This paper focuses
on frequencies in the vicinity of 71 MHz and percent bandwidth
from 0.14% to 1.6% (@ from 62 to 710); however, practical
implementation is not limited to this range.

III. FILTER STRUCTURE AND OPERATION

The filter consists of two identical mechanical wineglass-
mode disk resonators, mechanically coupled by a flexural-mode
or an extensional-mode beam, all suspended at 4000 A above
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Fig. 1. Coupled spring—mass resonators. (a) Resonators at rest. (b) Single
resonator natural mode. (c) In-phase mode. (d) Out-of-phase mode [33].
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Side Anchors N First Polysilicon layer
[ Second Polysilicon layer
1 Third Polysilicon layer
Fig. 2. Schematic for the wineglass-mode filter fabricated using the self-

aligned process.

the substrate. A capacitive transducer electrode is positioned
on the side of one of the resonators to excite the resonator
with the desired wineglass vibration mode. Another electrode is
positioned on the side of the other resonator to read the output
response from the filter.

Such a coupled two-resonator system exhibits two
mechanical-resonance modes with closely spaced frequencies
that define the filter passband. Fig. 1 shows the equivalent
lumped-mass mechanical system of the filter. The frequencies
of the constituent resonators determine the center frequency of
the filter, while the bandwidth is determined by the stiffness
of the coupling spring and the coupling location. Using the
earlier procedure, wineglass resonators can be mechanically
coupled as shown in Fig. 2. As shown in Fig. 4, each mode
peak corresponds to a distinct physical-mode shape. In the
lower frequency mode, the resonators are 180° out of phase,
and in the higher frequency mode, both resonators vibrate in
phase.

The operation of this filter can be seen as a device that
takes an electrical input signal, converts it to mechanical
signal, processes this signal in the mechanical domain, then
converts the resulting signal once more to an electrical output
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signal, ready for further processing by subsequent electronic
stages.

IV. HF yRESONATOR

HF stemless wineglass-mode disk resonator has been pre-
sented recently by Abdelmoneum et al. [27]. Fig. 3(a) shows
the SEM of the wineglass-mode disk resonator. The resonator
features four anchored supports attached to the disk at its four
wineglass nodal points. This wineglass resonator is able to
operate with substantially high Q.

The electrodes are located around the circumference of the
disk, one in each of the four quadrants about 1000 A from
the disk and are used for electrostatic excitation and detection.
To select the wineglass-mode shape, identical signals should
be applied on opposing electrodes along one axis. The sensing
can be done using the electrodes on the orthogonal axis; they
can also be connected to an out-of-phase input signal to add
additional drive force.

Fig. 3(b) and (c) shows the measured frequency response for
a 73-MHz version measured in vacuum and in air, respectively.
With only two successive perimeter nodal supports, () was
about 98 000 in vacuum and 8600 in air. The reasons of such
high @ are as follows: 1) unlike clamped-beam resonators, the
disk supports are at the four nodal points where the displace-
ment is almost zero, so minimum energy is transferred to sub-
strate through anchors; 2) fabrication error in support location is
minimum, because they are done in the same stage the resonator
is deposited, unlike stemmed wineglass resonators; and 3)
squeeze-film damping effect for this resonator is minimal, since
the resonator vibrates in plane, the surface area is very small as
compared to that of plane clamped-beam resonators.
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Wineglass-mode resonator. (a) SEM picture. Measured frequency spectrum (b) in vacuum and (c) in air [27].

A. Resonator Governing Equation

The wineglass-mode disk vibrates in an elliptical-mode
shape as shown in Fig. 4. This mode is a compound mode
in which the displacement vector consists of two orthogonal
components, a tangential component, and a radial one. Assum-
ing that the disk thickness is much smaller than its radius, the
disk can be approximated as a thin circular plate. The mode
equation for the lowest order compound mode for a circular
plate was derived by Onoe [34], where the mode frequency f,
for a wineglass-mode disk can be obtained by solving the mode
frequency equation [34]

2 (§) -2 d w0 -2 -d = a0 @)
where

3
2pw2 1+v
= 22—2 =RV R ST

R is the disk radius, w, = 27 f, is the angular frequency,
n = 2 is the mode order, and p, v, and E are the density,
Poisson ratio, and Young’s modulus, respectively, of the disk
structural material.

The effective mass of resonator at any point on the disk
periphery can be evaluated from

- KEtotal (3)

mrev

2

where K Ft,) s the total kinetic energy of the resonator and is
obtained by integrating over the resonator volume. K Eiqq) 1S
equal to the summation (integration) of the product of an infin-
itesimal mass and the total velocity of that mass. The computed
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Fig. 4. Simulation for filter flexural-mode coupling. (a) Unterminated
frequency-response plot. (b) Out-of-phase mode. (c) In-phase mode.

total kinetic energy is also equal to the product of the effective
mass at a specific location m,. and the corresponding velocity
Ve at the same location. Implementing the wineglass-mode
disk-resonator equation, the earlier equation can be rewritten
as given in

kel LRng(%a s (8)+ o ()] o

[21%& S (CTC> are s (CTC) (CTC)} 2 4)

where H is the disk thickness, B/A = —4.5236, and J,, is
Bessel function of the first type and order n. Now, the effective
stiffness at the coupling location can be evaluated using

re =

K. = wzmre' (5)
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V. MICROMECHANICAL-FILTER DESIGN

The filter design is dominantly governed by the bandwidth
equation

fo K.
Kij Krc

BW = (6)
where f, is the center frequency of the filter, it is also the reso-
nant frequency of each of the resonators, K;; is the normalized
coupling coefficient (K;; = 0.7225 [35]), K. is the coupling-
beam stiffness, and K, is the resonator effective stiffness at
the coupling location. It is obvious that the bandwidth depends
only on the resonator stiffness, i.e., the coupling location on
the resonators, and the coupling-beam stiffness. The other two
parameters are constants. In such microscale filters, it may not
be possible to design a highly compliant coupling beam for
desired low-bandwidth filters. As a result, the coupling location
plays an important role in determining the filter bandwidth as
well, as it affects the resonator effective stiffness. As will be
shown later, if the coupling is at low-velocity location on the
resonator, the effective mass increases and so is the effective
stiffness, consequently, the filter bandwidth decreases.

A. Coupling-Beam Governing Equations

Extensional- and torsional-mode coupling elements have
similar equations. The stiffness of the coupling beam is given by

K. =wA\/pE 1= %/\,

In this microscale, the mass of the coupling beam and that of
the resonator are of the same order. As a result, it is important
to account for the coupling-beam mass. Since this is not an easy
process, an easier way is to set the beam length equal to an odd
multiple of quarter the wavelength. By doing so, the coupling-
beam mass should have no effect on the resonator frequency
[30], [36].

For the flexural-mode coupling with clamped ends, the beam
stiffness is calculated using

n=1,35.... (7

Elo?(sina + sinh )
L3(cosacosha — 1)’

4/ pAw?

K.= e
ET

®)

Again, it is important to find the coupling-beam dimensions
that correspond for the quarter-wavelength to eliminate the
effect of the coupling-beam mass. As a result, the equality given
by (9) should be satisfied

HG6 = sinacosh a + cos asinh o = 0. )

B. Simulations for Extensional-Mode Filters

A coupling-beam width of 1 um was chosen; beam stiffness
and beam length were obtained from (7). The coupling location
was chosen to be at the outer radius of the resonators. Using
(3), the BW is 1.14 MHz. Fig. 5(a) and (b) shows the filter’s
simulated peak frequencies, while Fig. 5(c) shows the filter’s
unterminated frequency-response plot.
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Fig. 5. Simulation for filter with extensional-mode coupling. (a) Untermi-
nated frequency-response plot. (b) Out-of-phase mode. (c) In-phase mode.

C. Simulations for Flexural-Mode Filters

The coupling-beam width was chosen equal to 1 ym (limited
by the lithography resolution available in the university fabri-
cation plant) and beam stiffness and beam length were obtained
from (8). The coupling location was chosen to be at the outer
radius of the resonators. Using (3), the bandwidth was 259 kHz.
Fig. 4 shows the filter’s simulated peak frequencies as well as
the unterminated frequency-response plot.

VI. FILTER OPTIMIZATION FOR A DESIRED BANDWIDTH

It is clear that the bandwidth for the extensional mode cou-
pling is much higher than that for the flexural-mode coupling.
This is due to the fact that the beam stiffness in extensional

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 4, APRIL 2009

mode is much higher than its stiffness in flexural mode. In
conclusion, if the desired bandwidth is in the range of hundreds
of kilohertz, flexural-mode coupling beams should be used.
While for bandwidths on the order of megahertz, extensional-
mode coupling beams should be used.

Since filters are designed to have a certain bandwidth at
a certain given frequency, the objective in this section is to
find a wineglass-mode filter with a bandwidth of 100 kHz.
Optimization is used to reach the desired target bandwidth.

A. Definition of the Design Variables

It can be deduced from (6) that the bandwidth depends on the
resonator stiffness and the coupling-beam stiffness. Equations
(4) and (5) show that the resonator stiffness can be controlled
by controlling the resonator thickness H and the coupling
location r., while, from (7) and (8), the coupling-beam stiffness
is controlled by the coupling-beam dimensions (length, width,
and thickness).

Since the thicknesses of the beam and the resonator are
controlled by the manufacturing process, they are kept fixed
during optimization. Thus, the selected design variables are the
beam length (1), the beamwidth (w), and the coupling location
from the center (r.).

B. Definition of the Constraints

The upper and lower bounds of the beamwidth are again
governed by the manufacturing process. The coupling location
has to be off the disk center and along the vertical direction
to transfer all the vertical energy without any horizontal energy
component. Thus, the beam length has to be at least equal to the
disk diameter. In addition, if the beam length exceeds a certain
value, (7) and (8) become unsolvable because of their extreme
nonlinearity. Using the earlier two conditions, the upper and
lower bounds of the beam length are obtained. The upper
bound over the coupling location is simply the beam radius.
In addition, two more equality constraints are needed to ensure
that the resulting bandwidth is equal to 100 kHz and that (9) is
satisfied. Mathematically, these constraints can be written as

0.75 <w < 2.0 um (10)
55 <1< 90 um (11)
10 <7, < 26.5 um (12)
hi =abs(BW — 100 x 10%) =0 (13)
hy = H6 = 0. (14)

C. Definition of the Design Objective

Since the objective here is to reach a certain bandwidth,
the objective can be easily handled as a constraint, as shown
earlier. In addition, since the satisfaction of the second equality
constraint (hy) is too hard due to the high nonlinearity of the
equation, the authors considered minimizing the absolute value
of H6 as the design objective instead, as shown in (15). This
way, H6 can get as close as possible to zero, as needed, without
really affecting the actual problem. As a result, ho is no longer
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Fig. 6. Three-dimensional model of the proposed 100-kHz bandwidth filter.

considered as a constraint and is removed from constraints
equations, given earlier

min (abs(H6)) . (15)

D. Optimization Method

Simulated annealing [37], [38], first introduced by
Kirkpatrick et al. [37], is a global stochastic optimization
method capable of finding optimal or near-optimal solutions
to problems with ill-behaved objective functions which
resist optimization by traditional gradient-based techniques.
Simulated annealing has a broad range of use in realistic
engineering problems because they are often characterized by
poorly behaved objective functions [39].

The high nonlinearity in the objective function and the
constraints, in the current optimization problem, prevented
normal-gradient-based algorithms, such as sequential quadratic
programming [40] from performing well. As a result, simulated
annealing was used, and it was able to reach a near-optimal
solution (the detailed algorithm is presented in [41]).

The optimum values of the design variables are [ =
63.47 pm, w = 0.82 pm, and r. = 10 pum. A 3-D model for
the filter is shown in Fig. 6. Fig. 7(b) and (c) shows the filter’s
simulated peak frequencies, while Fig. 7(a) shows the filter’s
unterminated frequency-response plot.

VII. FABRICATION AND LAYOUT

The first demonstrated wineglass-mode disk resonator was
fabricated using a self-aligned surface-micromachining process
that uses polysilicon as the structural material [27]. This self-
aligned process eliminates () degradation resulting from anchor
losses that take place due to anchor misalignment (during
the anchor-patterning step) to the mode nodal points [42].
The selection of the disk structural material is not limited
to polysilicon only; higher frequencies can be achieved using
materials with higher modulus of elasticity like diamond and
silicon carbide [28]. The proposed filter can be fabricated
using the same self-aligned processes used to fabricate the first
wineglass-mode resonator [27]. Fig. 2 shows a 3-D schematic
of the wineglass-mode disk filter using the concept of the
wineglass-mode disk resonator, first demonstrated in [27]. The
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Fig. 7. Simulation for filter with 100-kHz bandwidth. (a) Out-of-phase mode.
(b) In-phase mode. (c) Unterminated frequency-response plot.

device consists of three polysilicon layers. The first layer is
a 3000-A-thick layer that defines the input/output and bias
interconnects. The second layer is a 2-um structural layer that
simultaneously defines the disk structure and anchor openings
(self-aligned layer). The third layer is a 2-pm layer that refills
the anchor openings and make contact to the interconnect layer
and defines the input/output electrodes. Figs. 8—15 show each
of the aforementioned steps.

The process starts by forming a passivation layer on top of
a bare silicon substrate. The passivation layer is composed of
a 2-pum-thick oxide layer followed by the deposition of 0.3-um
silicon nitride layer, both deposited in the same furnace using
low-pressure chemical vapor deposition (LPCVD). Following
the deposition of the passivation layers, a 3000-A polysilicon
layer is then deposited using LPCVD, doped using phosphorus
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oxychloride (POCL) doping, and patterned using reactive-ion
etching (RIE). This silicon layer serves as the “interconnects”
layer (first polysilicon layer shown in Fig. 2) which provides
input/output/bias lines to the device. To isolate the structural
polysilicon layer (second polylayer shown in Fig. 2) to be de-
posited later from the formed interconnect polylayer, a 0.5-pym
oxide layer is deposited using LPCVD. A 2-um structural
polylayer is then deposited using LPCVD, doped using POCL
doping, and then followed by depositing a 0.5-pm oxide hard-
mask layer. The top oxide hard mask is then patterned to form
the mask for the disk structure, coupling-beam opening, and
center-stem anchor opening. This pattern is then transferred to
the underlying structural polylayer using RIE. This is the self-
aligned step in which both of the disk structure, coupling-beam
opening, and the anchors are defined in the same patterning
step, thus eliminating any misalignment between the anchor and
the mode nodal points. The capacitive gap separating the disk
structure from the electrodes (to be deposited and patterned) is
then defined by depositing 1000 A of oxide. This thin oxide
layer will be etched away during the release step to form the
capacitive air gap. It should be noted that other high dielectric
materials (high K) can be deposited instead of oxide.

The use of high-K materials to form the capacitive gap is
interesting as it can substantially reduce the motional resistance
of the resonator and, hence, alleviate impedance-matching
problems. However, the problem lies in processing these ma-
terials with enough selectivity as compared to silicon oxide so
that they are not etched away with the sacrificial oxide during
the final release step. Anchor and electrode openings are then
patterned and etched through the spacer oxide and the sacri-
ficial oxide layers to provide direct electrical contact between
the interconnects polysilicon layer and the anchor/electrode
layer to be deposited next. Oxide spacer is etched away from
the coupling-beam opening using a different mask. Following
the etching of the sacrificial and spacer oxide to expose the
coupling-beam opening (in structural disk) and interconnect
layers, wafer is ash cleaned to remove any photoresist residuals.
The third and last 2-pum polysilicon layer forming anchor
and electrodes are then deposited using LPCVD, doped using
POCL doping, and capped with 0.5 pm of hard-mask oxide
deposited using LPCVD. The deposited polylayer refills the
anchor openings and make both electrical and mechanical
contacts to the interconnect polylayer. The pattern on the top
oxide hard mask is then transferred to the underlying third
poll area via RIE to form the input—output electrodes and
anchors. Finally, the device is released using HF and dried using
supercritical cleaning.

VIII. CONCLUSION

In this paper, a new design process for mechanically coupled
vibrating RF MEMS filters was developed. The design process
was applied to the wineglass-mode disk resonator to create HF
(about 71 MHz) high-Q filters with bandwidths of 1.14 MHz,
259 kHz, and 100 kHz. Such filters can find their way to
replace bulky and off-chip crystal and SAW high-() bandpass
filters, commonly used in the RF and IF stages of heterodyning
transceivers. By doing so, it should be feasible to develop
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Isolation Oxide

Fig. 8. Second polysilicon layer is patterned to define central stem anchor and
overhanging coupling-beam opening.

Isolation Oxide

Fig. 9. Oxide spacer is deposited to define the side air gap.

Isolation Oxide

Fig. 10. Photoresist is patterned to open contacts through sacrificial oxide to
the underlying poly1 interconnect layer.

Fig. 11.
opening.

Photoresist is patterned to etch the gap oxide from the coupling-beam

I 1

Isolation Oxide

Fig. 12.  Wafer is ashed to remove any photoresist residuals before depositing
the third polysilicon layer.

low-cost single-chip wireless transceiver that can be used in
an autonomous sensors deployed in WSNs for an array of
applications.

Simulated annealing was used to find the coupling location
and the coupling-beam dimensions to obtain a desired filter
bandwidth. The algorithm was implemented to design a filter
with bandwidth of 100 kHz as an example. The algorithm can
also be implemented to any other desired bandwidth.

Upon the experimentation of the equations governing the
bandwidth, it can be deduced that the design is mostly sensitive
to slight tolerances in the beamwidth. This is because the



SHALABY et al.: DESIGN OF SPRING COUPLING FOR HIGH-(@ HIGH-FREQUENCY MEMS FILTERS

Doped Polysilicon Electrode Layer

L]

Oxide Hard Mask

p—

[

=l
—_—

| ]

|

Isolation Oxide

Fig. 13. Third polysilicon layer (defining in/out electrodes and coupling
beam) is deposited, doped, and capped with oxide hard mask.

Doped Polysilicon Electrode Layer

Oxide Hard Mask
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Isolation Oxide

Fig. 14. Third polysilicon layer is patterned to define in/out electrodes and
overhanging coupling beam.

Overhanging Coupling Beam
Disk Structure

‘//[:ﬁ

Wet etch of sacrificial oxide and gap spacing oxide releasing the filter

Input/Output Electrodes

1/

Fig. 15.
structure.

current fabrication techniques have no accurate control on such
dimension. The variation in the beamwidth can be around
0.2 pm. With a width of 0.82 um, the tolerance is 24%. This
means that at least the bandwidth will also vary by 24%.
In addition, a variation in the beamwidth will violate (9) for
flexural-mode beam coupling, and so, the filter center frequency
may be affected. Since there are no analytical equations model,
the effect of the coupling-beam mass on the filter center fre-
quency, tedious finite-element simulations would be needed to
do complete sensitivity analysis for the designed filter.

Finally, the fabrication process is similar to regular MUMPS
process. The only slight variation is that it needs the creation a
nanogap between the electrodes and the resonator disks. This is
done by depositing a very thin sacrificial oxide layer (OX2) of
0.1-pm thickness.

As a future work, the authors plan to fabricate and test the
optimized filter to verify the obtained simulation results.
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