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G e n e r a l i z a t i o n s  of  the  vec tor  
c o h e r e n t  s ta te  m e t h o d  

K . T .  H e c h t  1 

ABSTRACT The introduction of a set of intrinsic coordinates to give an explicit construction 
of the intrinsic states of vector coherent state theory has greatly simplified earlier attempts to 
generalize this theory to include the construction of vector coherent state realizations of operators 
other than the group generators. The group U(3) D U(2) • U(1) is used as a prototype. The 
construction of irreducible tensor operators with specific shift properties is illustrated with a 
number of examples. These show how the Wigner calculus for a higher symmetry group can 
be expressed solely in terms of the recoupling coefficients of the core subgroup and the simple 
K-matrix elements of vector coherent state theory. 

2.1 Introduction 

In the past few years vector coherent state (VCS) theory [1]-[6] and its associated 
K-matr ix  technique [1,7,8] have been used to great advantage to evaluate explicit ex- 
pressions for the matrix representations of higher rank Lie algebras. VCS theory can 
be applied whenever the generators of an algebra can be divided into (1) a "core" 
subalgebra, a subalgebra containing the Cartan subalgebra of the full algebra, (2) a 
set of m raising operators, and (3) a set of m adjoint lowering operators. VCS theory 
then gives a very explicit method of construction of the irreducible representations of 
the full algebra from the irreducible representations of the subalgebra by an inductive 
process, or in the language of quantum theory by a vector-coupling process which cou- 
ples the "collective" or "orbital" degrees of freedom with the "intrinsic" (or "spin", or 
"internal") degrees of freedom. 

In VCS theory the "collective" excitations are realized in terms of polynomials in a 
set of m complex Bargmann space variables, zi, i = 1, ..., m. The "intrinsic" states form 
a d-dimensional vector, where d is the dimension of the irreducible representation of 
the subalgebra which is used to induce the irreducible representation of the full algebra. 
Matrix elements of the generators of the algebra are then extremely simple and follow 
from a knowledge of the recoupling (Racah) coefficients of the subalgebra and the matrix 
elements of the intrinsic components of the generators. These follow from a knowledge 
of the generator matrix elements of the subalgebra. Like the matrix elements of the 
"spin" operators they do not require knowledge of the "intrinsic" or "spin" degrees of 
freedom. Generator matrix elements can thus be evaluated without the introduction of 
intrinsic or internal coordinates. For the detailed evaluation of the full Wigner-Racah 
calculus of higher rank algebras it becomes necessary to find the matrix elements of 
simple operators lying outside the group algebra. In a recent a t tempt to generalize 
VCS theory [9]-[11] coherent state realizations of such operators have also been given 
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28 Generalizations of the Vector Coherent State Method 

in terms of vector-coupled intrinsic operators and collective z-space operators. 
Unlike the intrinsic components of the group generators, however, the intrinsic com- 

ponents of operators lying outside the group algebra can now change the irreducible 
representation of the core subgroup, and their matrix elements are no longer known 
a priori.  In references [9]-[11] an attempt was made to define such intrinsic operators 
through their actions on the intrinsic state vectors without the explicit introduction of 
a set of intrinsic or internal coordinates. The process is complicated by the fact that 
such an intrinsic operator when acting on a component of an intrinsic state will make 
connections not only to pure intrinsic states in a different irreducible representation 
but as well to some simple collective or z-space excitations in this new irreducible 
representation. 

Despite those difficulties, a method was devised in references [9]-[11] whereby the 
intrinsic components of many simple operators were defined through their nonzero re- 
duced matrix elements. Such operators are thus defined through a table of reduced 
matrix elements with purely intrinsic states on the left (bra) side and both purely in- 
trinsic and mixed intrinsic - collective states on the right (ket) side. Although the whole 
procedure is cumbersome, this generalized VCS theory was used to calculate many of 
the simple Wigner coefficients of the neutron-proton quasispin group, 9 SO(5)DU(2), of 
the Sp(6)DU(3) fermion dynamical symmetry group [10], and of the canonical branch 
of the unitary group [11], U(3)DU(2)xU(1). This method led to expressions for the 
Wigner coefficients which involve only the K-normalization factors of VCS theory and 
recoupling coefficients for the core subalgebra. 

In principle therefore, the Wigner-Racah calculus of a higher rank symmetry algebra 
follows from the known Wigner-Racah calculus of a simpler subalgebra. In practice, 
however, this version of the generalized VCS method is somewhat difficult to apply 
because of the lack of an explicit construction of the intrinsic states and the intrinsic 
components of the operators. In a very recent development LeBlanc [12], using the work 
of Bouwknegt, McCarthy, and Pilch [13] on two-dimensional conformal field theories, 
has shown how the concepts of vertex and screening operators can be used to solve 
these difficulties in a very elegant way. 

In this work a set of intrinsic coordinates qi, i ---- 1 ,  . . . ,  ~ is introduced (where 
is the rank of the full group), together with their canonically conjugate momenta, pi. 
The qi are used to construct the highest weight components of the intrinsic states. The 
intrinsic components of general tensor operators are constructed through the qi's and 
pi's and the Bargmann variables of the core subalgebra. These constructions then lead 
directly to expressions for Wigner coefficients in terms of the K-normalization factors 
of VCS theory and recoupling coefficients of the core subalgebra. 

It is the purpose of this presentation to give a brief review of LeBlanc's method [12], 
in particular to show how it ties in with the earlier attempts to generalize VCS theory 
and how it eliminates all the difficulties of the earlier attempts. Although the new 
method is very general, it will be applied to the canonical group chain U(n)DU(n - 1) 
x U(1), particularly to the simplest nontrivial case with n = 3. Marcos Moshinsky's 
contributions to this basic problem are well known, particularly through his seminal 
work in references [14] and [15]. It is indeed a pleasure to dedicate this review to Marcos 
Moshinsky. 



K. T. H e c h t  29 

2.2 Intrinsic and collective variables for U(3). 

The unitary group, U(3) D U(2) • U(1), furnishes one of the simplest examples for the 
application of VCS theory [6,16,17]. Generators are denoted by Eij, with i , j  = 1, 2, 3. 
The U(3) state vectors are specified by the Gel'fand basis 

I m13 m23 rn33 1 
m12 m22 . 

r a i l  

The (m13 - m23 + 1) intrinsic states are to be abbreviated by Ih > with 

lTtl3 ~n23 m33 \ 
IA)  = rn l3  rn23 ~ , m13 > m l l  > m 2 3 .  

r o l l  

The VCS z-space functional realizations of state vectors ]qJ) are given in terms of 
the z-space variables z13, z23 [for general, U(n), in terms of zi=, i = 1, ... n - 1] by 

(A]ez'E]~), z .  E = z13E13 + z23E23. (1) 

Operators X are given by their VCS realizations F(X), through 

r(X)(AlcZEl~ ) = (Ale~"EXlq,) _-- (Al(ez'Exe-z'E)e~"El~ > 
=(AI{X + [(z. E),X] + �89 E), [(z. E), X]] +. . .}ezElqJ ). (2) 

It is now extremely useful to introduce a set of intrinsic variables, to be distinguished 
from the collective variables z13, z23. For this purpose it is convenient to first replace 
[A) by the single highest weight state Ihw) (with mix = m13), and z .  E by the raising- 
generator function 

z ' .  E = z'12E12 -4- z;3E13 -I- z~3E23. (3) 

This is tantamount to a replacement of the core subalgebra U(2) + U(1) by the simple 
Cartan subalgebra itself. This seeming retrogression makes possible the introduction of 
a set of intrinsic variables. These are to include a set of hermitian ql (with conjugate 
hermitian Pi), such that 

~,q~] = - i  6ij, i , j  = 1,2,3, (4) 

where the highest weight state is to be specified by 

]hw) = exp[i(m13ql + m23q2 + m33q3)]10). (5) 

The intrinsic space inner product is defined such that (hw]hw) = 1. Note also that 
p~lhw) = mi31hw). The z'-space realizations of the generators follow from the z'-analog 
of Eq. (2). Final expressions are now somewhat more complicated due to the noncom- 
mutability of El2 and E23. Using the simple form of the Baker-Campbell-Hausdorff 
relation valid for this case 

t t ~ i t  1 t i ~ i i - i  1 t i - e z''E = ez12E12ez~3~23e tz13-bz12z23~'~1z = ez23E23ez12E12e (z13+~z12z23)E13, (6) 
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and the abbreviation O/OZ'ob =-- O'~b , we are led to 

and 

E ~  ~'E = ~z"~E~3 = 0h~ z'E, (7) 

, I -~I x z'.E E12 ez''E = (/~i2 + ~z23u13}e , 

z' E' e" E , ~  (~2 ' '  ~''z''E 
---- -- ~Z23~13}C , (8) 

where the right form of Eq. (8) leads to 

F(E12) = (~2 ' ' - ~ ' '  - ~z23u13~. (9) 

The left form is needed in the commutator expansion of the lowering operators [see 
Eq. (2)] e.g.: 

F ( E ~ I )  ( m , 3 - m 2 3 ) z ~ 2 - z 1 3 ~ 2 3  , l , , , , , ,~, 1 , , = ' "-~Z12(~Z23~23-- Z12012-- ~Z13013-- ~Z12223~i3 ) (10) 

[see Eq. (4.2) of Ref. [12] for the full set of F(E0) ]. The intrinsic and collective variables 
can now be untangled by a transformation to new variables z~b, 

' ' ' ' ' ' ( 1 1 )  Z12 = ZI2 , Z23 -= Z23 , ZI3 ~ Z13-  ~ZI2Z23 , 

leading to the standard VCS realization [6,16] of U(3) 

F(E13) - :  013, F(E23) = 023, (12a) 

F(E12) = ~2 -- z23013, F(E21)  -= }~l --  Z13023' 

r (E1, )  = ~1 - z,3O~3, r ( E ~ )  = E~ - z~30~, 

I~(E33) ---- ~-"33 -~- Z~300~3, (12b) 

F(E31)  = za3~c~l - z13~3 - z13zc~30c~3, 

F(E32) = z~3~2 - z23~3 - z23z~30~3, (12c) 

where repeated Greek indices are summed from 1 to 2. 
The intrinsic operators ~j  which generate the intrinsic U(2) + U(1) subalgebra can 

now be given explicitly in terms of intrinsic variables pi and z12 by 

~ 1  : Pl -- Z12012, ~22 ~" P2 + Z12012, J~33 = P3, (13) 

~21 = Z12(P 1 --  P2 --  Z12012). 

The (m13- m23 + 1) components of the intrinsic state are given in the intrinsic variables 
ql and z12 by 

]m13 m13 m23 m23 rrt33> = Z~13-ml l )  e{(m13ql+m23q2+m33q3)[O>. (14) 

mll  ~/(m13 -- m l l ) !  

The full VCS state vector is given in terms of a polynomial in the collective variables 
Z13, Z23, 

1 w 
~w (__Z23) ~+M(z13 ) ~--M (15) 

zE~ ~ (7.) = z . = . ~ + ~  (z) = ~/(~ + M)!(~ - M)! 
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by 

/'/113 ?n23 m33 \ 

/ m12 m22 
//111 

where 

-- /- , /~ 

W = ml3 -4- m23 -- m12 -- m22, (17) 

and where the square bracket denotes SU(2) or ordinary angular momentum vector cou- 
pling, with a right to left coupling order. The U(2) notation, [0,-w], may be preferred 
to the simple angular momentum notation, 1 ]w, to highlight the antispinor character of 
z13, Z2s. Note that (-z23) and (z13) are the M = +�89 and -�89 components of the spin �89 
or [0,-1] tensor. On the other hand (013, 023) transform as the (+�89 -�89 components 
of a [1,01 tensor. (The phase r with ~ m23) _1 1 = � 8 9  - -  ~W -- ~(m12 -- m22) is based 
on the Biedenharn-Louck [18] phase convention; see the summary to Ref. [11].) 

The operators F(O) of Eq. (12) are non-unitary but can be transformed to unitary 
form 7(0) by the standard VCS transformation 7(0) = K-1F(O)K. For the U(n) 
groups the K operators are represented by simple 1 • 1 matrices and thus serve as simple 
normalization factors [6,16]. For U(3), with [m13, m23, m33] = [m3] and [m12 m2~] = 

K([m3], [m2]) = (ml3 - m33 + 1)! (m23 - m33)! 
(m12 - m33 + 1)! (m22 - ms3)!" (18) 

Final matrix elements in a U(3)DU(2)DU(1) basis thus follow from the z-space - 
intrinsic space matrix elements in the basis (16), multiplied by the K-factor for the 
initial state ket and the inverse K-l-factor for the final state bra. (Alternatively, as in 
Ref. [12], the unitarization can be effected by including the K-factor in the state vector 
definition.) Similarly, pure intrinsic operator matrix elements in the intrinsic basis (14) 
require the U(2) K-factors for ket and K -1 factors for bra where the U(2) K-factor is 
given by 

\ mll (roll m23)!" 

If operators other than the group generators can be expressed in terms of the collective 
operators z13, z23, 013, 023 and the intrinsic operators qi, Pi, z12, and 012 in a vector- 
coupled form, their matrix elements then follow directly through simple vector-coupling 
formulae. 

2.3 T h e  U(3) f u n d a m e n t a l  tensors .  

With the introduction of the intrinsic operators of Section 2.2 it is now possible to give 
very explicitly constructions for the U(3) irreducible tensor operators with very specific 
shift properties. For U(3) these can be specified by the usual double Gel'fand pattern, 
where the [M3] ~ [M13M23M33]-tensor 

Fll  
< r12 r22 > 

M13 M23 M13 -- TrM ([M3]) (20) 
M12 M22 

Mll 
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induces shifts in the irreducible representations [m3] ~ [m,3m23m33] given by the 
upper pattern 

m~3- m,a -- A1 = F,1, 

r r t23  - -  m23 = A2 = F12 + F 2 2  - -  r l , ,  

m~3 - m33 -- A3 = M13 +/1//23 + M33 - F 1 2  - F 2 2 .  

(21) 

The lower pattern labels M12M22, M1, on the other hand give the shifts in the U(2) D 
U(1) subgroup labels. Such a tensor will be named a unit-tensor if its SU(3)-reduced 
matrix element has the value +1. (In the language of Refs. [12] and [13] these are the 
so-called vertex operators for U(3).) A U(3) irreducible tensor operator of maximal shift 
(F~j = Mm) and maximal weight (M~j = Mm) is given by the simple exponential 
operator exp[i(M3 �9 q)]. To construct the remaining shift operators it is useful to in- 
troduce the so-called "screening charges" of Refs. [12] and [13]. These are operators s~j 
(i < j)  which shift the U(n) labels by one unit out of row i into row j but are U(n - 1)- 
scalars, the shift in the intrinsic labels being compensated by a corresponding shift in 
the collective variables in the VCS realizations. To achieve this end it is simplest to 
consider the left action of such operators and consider the left action VCS-realization 
p(X) of the raising generators X = Eij (i < j),  via 

p(X)<hwleZ'El~> = <hwl(-X)~Z'El~>. (22) 

After the untangling transformation (11) this leads to 

p(E12) = -0 ,2 ,  p(E,3) = - 0 , ~ ,  p(E~3) = - - ( 0 2 3  - -  Z 1 2 0 1 3 ) .  ( 2 3 )  

Note that the minus sign in Eq. (22) is required to preserve the commutator algebra of 
the Eij. The simple screening charges (corresponding to the two simple roots) are then 

s ~  = ~-i(q'-"~)p(E~2) = ~ - ~ / ~ l - ~ ) ( - O l ~ ) ,  
(24)  

823 = e-i(q2-q3) p( E23) : e-i(q2-q3)(-023 -}- z12013). 

Note the shift in the intrinsic variables and the compensating shift in the collective 
variables, and note that the s~j commute with the U(2) subalgebra, F(Eij) with i , j  = 
1,2. Note also that the derived s13 is given by [s12, s23]. 

Shift tensors of the type (20) with shifts of type (21) can then be derived from the 
shift tensors with maximal weight and maximal shift via the "equivariance condition" 

(Sij) m:3-m~3+l ThV~([M3]) = Thr~, ([Ma])(sO) "m-m~3+l, (25) 

where the shift P' follows from the shift 

! ! 
r : [m13 m23 m33] ~ ImP3 m23 m331 

via the Weyl reflection rlj corresponding to the simple slj 

! I 
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e.g. if T([M3]) is ~ U(3) fundamental tensor with [M3] = [100] and if the shift F is 
given by (AIA2A3) = (010) so that [m'3] = Imp3, m23 + 1, m33]; then the shift 

/'12 * [m13m23m33]  ~-- [m23 - 1, m,3 + 1, m33] --+ r12 * [m13, m23 + 1, m33] 

---- [m23 , m13 + 1, m33] 

i t I corresponds to a r '  given by (A1A2Aa) = (100); whereas the shift 

/'23 * [/D'13 /D~23 ~n331 = [Trtl3 Tr133 -- 1 ~Tt23 + 1] ~ r23 * [Y[t13 TD,23 -~- 1 m33] 

= [m13 rn33 - 1 rn23 + 2] 

corresponds to a r '  given by (A~A~A~) = (001). This leads to the two relations 

0 1 / olin= (812)m13-m23 1 0 0 1 0 0 

hw hw 
0 0 

1 0 0 = 1 0 0 " 
hw hw 

(26) 

Since the maximal-shift maximal-weight operator with Fll = ['12 -- 1, F22 = O, 
has the simple value e iql the remaining two maximal-weight operators follow from these 
equations 

0 / o / 
1 0 0 

hw 
0 

( 0  0 I 1 0 0 
hw 

= eiqaSl2 = elq2(--O12), (27) 

= e iq l ( s12s23+sa3(p2-p3) )  

= e i q 3 { a 1 2 a 2 3 - O 1 3 ( p 2 - p 3 + l  -z12012)}. (2s) 

Lower weight components of these shift operators follow from commutator  relations, 
such as 

0 0 )  (29) IF(E31), Thrw([100])] = (twlE~llhW) Terw([100]), with [gw) -- 0 ' 

through the well-known simple generator matrix elements [6,16]. This leads to the 
(AaA2A3) = (100) fundamental shift tensors 

1 

1 0 
1 

1 

1 

I 0 
0 

0 

1 

o I i o I 0 ~ e iql, 1 0 0 ~ Z12 eiql ,  
0 1 0 

0 

o i l  o = e 'ql(zl~ + z12z23). 
0 

(30a) 
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Note that the first two components are built from purely intrinsic operators. These 
intrinsic (ZXIA2LXz) = (100)-operators will be given the intrinsic shift label :~. Their 

! ! 
SU(2) angular momentum tensor character is (J~)+�89 = e iq', (~ )~ �89  = z12e iq', so that  

1 <1~ / 
1 0 0 

1 0 
1 

1 

1 0 0 
0 0 

0 

1 < 1 0 /  1_ 
(~) i �89  1 0 0 ---- (;~) 2_! , 

1 0 2 
0 

= v ~ [ z ~ ( ~ . )  x ( ~ ) ~ ] o ,  

(30b) 

where the square bracket vector-coupling of the intrinsic and collective spin - {  tensors 
of the last component are given in right to left coupling order. The (A1A2A3) = (010) 
shift tensors can be expressed in the same way in terms of intrinsic shift operators :~, 

where 

0 0 

1 0 0 = , 1 0 0 = ( ~ ) _ ! ,  
1 0 1 0 2 

1 0 

0 <1o> 
1 0 0 = V~[Z�89 X (/~)�89 

0 0 
0 

(31a) 

1 1 
( ~ ) ~ � 8 9  ~ --eiq2012, (~)'ff_�89 = eiq2(Pl -- P2 -- Z12012). ( 3 1 b )  

In general such operators are not unit tensors since their SU(3) reduced matrix 
elements are not unity. The explicit form of the operators makes it easy to calculate 
the SU(3)-reduced matrix elements; e.g., 

m13 m23 -4- 1 m33 [ m13 rn23 m33 > 
m13 m23 + 1 eiq~ (Pl -- P2 --  '7"12012) m13 m23 

7n13 77~13 

= (m13 -- m23) 

1 m - 1 1 1 m - 1 ) 1 ( m 1 3 -  m23 1))(+1) = <~( 13 m~3)�89 m23), ~ - ~ ~( 1 3 -  m23 

[ o ]  
1 0 11[mlam23m33])), (31c) • < ( [m13 ,~+ l ,m33111  1 o o 

where the (-t-1) is the trivial value of the SU(3) D SU(2) reduced Wigner coefficient 
connecting highest weight states. With the value of the SU(2) Wigner coefficient, the 
SU(3)-reduced matrix element is seen to be [(m13 - m2z)(m13 - m23 + 1)] 1/2. Note 
that  the SU(3)-reduced matrix element is given a double-bar, double caret notation to 
distinguish it from an SU(2)-reduced matrix element which is to be given the ordinary 
double-bar symbol. The (A1A2A3) = (001) shift tensor of Eq. (28) appears to be more 
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complicated; but it can be given in simple SU(2)-tensor form through the commutator 
relation [12] 

1 
{0~2023 - 0,3(p2 - P3 + 1 - z120,z)} = [0,3, D] = [(0)+}, gt], (32) 

where fl is the U(2) scalar operator 

n : Zc~3OQ#3r - -  ( ~ 1  + J~22 - -  /,/~3 "Jl- 1)z~3v%3 

= --2( Iintr " V~ [�89 + / ~ 2 -  2~3) + 1] z~,30~3, 
(33) 

where repeated Greek indices are summed from 1 to 2, and where Iin% e.g., is given 
byilintr I~ntr, Iintr) = (/~2, 1 2(~1 -- ~22) '  ~t21)" This leads to the (unnormalized) shift ~ +  , 

tensors 

o <o0> 
I o o 

1 o 
1 

1 0 0 ) . 1 
1 0 0 = e'q3[(Oq)5_�89 a], 

1 0 

0 <00> 
1 0 0 = e~q3{(~2 - ~3 + 1 - z23023)(~1 - -  ~ 3 3  - -  Z13(~13) (34) 

0 0 - - ( ~ 2  --  Z23013)(~1 --  Z13Oq23)} 
0 

1 z 1 z : e'q3 {[�89 +/~2) - ~3 - ] ~30~3 + 1][�89 +/~2) - ~3 - ~ ~30~31 - r ~ r ~ 

Equations (30), (31) and (34) give the components of all U(3) fundamental tensors 
in very explicit form in terms of intrinsic and collective variables. It is now of interest 
to compare these with earlier attempts to build a generalized VCS theory for operators 
lying outside the Lie algebra. In the earlier work n the U(3) fundamental tensors were 
given by the oscillator creation operators, a t ,  with i = 1,2, 3, p = particle index (where 
E,j = Epa~pajp). Eq. (2), with Z = a t ,  led to 

r ( I4 / t )  , = (•p)m, (35a) 

r ( ( 4 ) o  o) = + v tzl/2(z) • (35b) 

1 1 
t ~ - ~ t  (%)o}, and where the slashed operators with --- {(%)§ 

were intrinsic operators. Like the intrinsic generators these were defined solely through 
their SU(3) reduced matrix elements, the intrinsic nature of the operator dictating 
that these have only purely intrinsic states in the left (bra) side of the matrix elements. 
(Matrix elements of such intrinsic operators are given in Ref. [11] for all Moshinsky 
polynomials of st.) It is now very interesting to note that these intrinsic operator 
matrix elements depended on the nature of the shift, e.g., if the operator adds zero 
squares to the third row of the U(3) tableau, i.e. for shifts with Az = 0, the intrinsic 
operator (~)o has zero reduced matrix elements. In this case, therefore, Eqs. (35a) and 
(34b), with (~pt)o~ effectively missing, have exactly the same structure as Eqs. (30b) and 
(31). However, the very explicit construction of the (~) and (~) operators in terms 
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of the intrinsic Pi, qi, z12, and 012 is a tremendous advantage. With shift A 3 # 0, 
1 

both the intrinsic operators ((~pt)o and ((~)~ have non-zero matrix elements. Moreover, 
they connect purely intrinsic states on the left to mixed intrinsic - collective states on 
the right, destroying some of the simplicity of the intrinsic - collective vector-coupling 
calculus. We note that  Eq. (34) has some of the same characteristics since the ~- 
operator  is a function of both intrinsic and collective variables. The very explicit form 
of the operators,  however, now makes it possible to express their matrix elements in 
the standard vector coupling form. With the eigenvalue difference ~([m3], [m2]) - 
Ft([m3], [m~]) --- ( F t - 9 t ' ) ,  

(f~ - fY) = -(rn22 - m33), for [r/-tPl2//2;2 ] : [m12 + 1,  T/Z2] , 
(36) 

( ~  - ~')  = - ( m l =  - m3~ + 1), for [m;2 m;d = [m,=, m2= + ~], 

the SU(2) reduced matrix elements of the A3 = 1 shift tensor now has the standard 

form, e.g. 

0 < <0 0>m13 m13 m23 m33 + 1 1 0 0 
rn]2 rn22 1 0 

1 ! t 
= (--1)2 (m12-m22-m12+m22-1) (~  -- ~ ')  ((w -- 1) }lO�89 

X 

m23 m33 > 
rt/12 m22 

[ [m,3m2M [O,-w] [m12m22]] 
[ool [lOl [ lOl ]  

[?Tt13m23 ] [ 0 , - - ( w -  1)] [m~2m~2] J 

K ( [ m l 3  ?7223 m33]' [m12 m22]) . (37) 
K( [m13  m23 m33 -[- 1], [m~2 m~2]) 

From Eqs. (30) and (31) it can be seen that  all matrix elements have this standard 
form. They are given in terms of (I)  a K-factor ratio, (2 )  an SU(2) or ordinary angular 
momentum recoupling coefficient, and (3) SU(2) reduced matrix elements of simple 
collective and/or  intrinsic operators which are now very easy to evaluate because these 
operators are given in very explicit form. In the special case of Eq. (37), the collec- 

tive SU(2) reduced matrix element has the value ((w - 1)ll0}llw) -- - v ~  + 1; the 
dependence on intrinsic operators sits solely in the fl eigenvalue difference; and the 9- j  
uni tary recoupling coefficient with one [00] representation collapses to an ordinary uni- 
ta ry  Racah coefficient. In standard angular momentum notation it is the U-coefficient 

w I w-l]  with A 1 m 1 t I U(~ 2 I '  �89 2 1 '  ~ ~( 1 3 -  Tg/'23), I --m22), : = 1(/O.12 I '  = ~(m12 - m22 ). 

2.4 More complicated shift tensors. 

The techniques used to calculate the U(3) fundamental [100]-tensors can now be used 
to calculate more challenging tensors. The elementary [ll0]-tensors follow from the 
maximal-shift  maximal-weight tensor e i(ql+q2) and can be expressed in vector-coupled 
form. The (110)-shift tensors are: 
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1 <11} 
1 1 0 = e i(ql+q2), 

t I 
1 

The (lO1)-shift tensors are: 

1 <10> 
1 1 0 = 

1 1 
1 

1 

1 

1 1 0 ~ "  ~'(ql+q2)Z~�89 (38) 
1 0 

/n 

-v%,q3[o�89 • (ti)�89 ~ 

1 0 ) . 1_ �89 
1 1 0 = e'q3{[(:~)~:�89 (~)• -P3)}.  

1 0 
m 

The (Oll)-shift tensors are: 

(39) 

0 <1~ 
1 1 0 = --v~eiq3[0} x (2~)�89 ~ 

1 1 
1 

0 

r ~11 1 1 0 ---- t t , ~ , •  -- (~)  -- P3 + 1)}, 
1 0 

m 

(40) 

where upper (or lower) subscripts apply for m = 1 (or 0). The operators are again 

in a form from which their matrix elements lead to the basic structure built from (1) 
a / ( - fac tor  ratio, (2) an SU(2) recoupling coefficient, and (3) simple collective and/or 
intrinsic SU(2)-reduced matrix elements (see Ref. [12]). 

More complicated tensors can be built from repeated coupling of the basic [100] and 
[ll0]-tensors. It is instructive to consider the octet [210]-tensors, where a multiplicity 
occurs for the first time. The equivariance condition, (25), leads to two independent 
solutibns [12] for [210]-tensors with shifts (A1A2A3) = (111). Alternatively, we could 
consider the symmetric or antisymmetric combination of the coupled tensors 

([TF([100]) x TF'([ll0])] [21~ 4- [TF'([110]) x TF([100])j] ~oJ) , (41) 

where these can be written explicitly via Eqs. (30)-(34) and (38)-(40). The antisym- 

metric combination leads to the simple commutators, e.g., the commutator 

[< 1 >< 0 
1 0 1 0 

1 0 0 ~ 1 1 
1 0 t 0 

1 1 

] = - ~ ' ( q , + q ~ + q 3 ) ( 0 1 2  - z23O13) 
0 = _e~(q,+q2+q~)F(E12), ( 4 2 )  
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while 

[< 1 > <  0 >] 
1 0 1 0 = .  _ei(ql+q2+qa)Ol 3 

1 0 0 , 1 1 0 ( 4 3 )  
1 0 1 1 = -ei(ql+q2+q3)F(E13) �9 

1 1 

Moreover, the same result is obtained if the shifts (100) in F and (011) in F' are 
replaced by (010) in F and (101) in F', or by (001) in F and (110) in F', thus clearly 
showing that the antisymmetric combination of coupled tensors lead to the group gen- 
erators, multiplied by the shift factor e i(ql+q2+q3). The ei(q~+q2+q3)F(Eij) can thus be 
identified with the upper pattern [ 1 ]  

1 1 . 
2 1 0 

The symmetric combination (or a symmetric coupling of [100] and [200]-tensors to 
resultant [210]), will lead to the independent [ 1 ]  

2 0 
2 1 0 

upper pattern operator. To gain SU(3)-coefficients orthogonal to those associated with 
the generators, e~(q~+q2+q3)F(Eij), it is necessary to take an [m3]-dependent linear com- 
bination of the symmetric and antisymmetric coupled tensors. This "orthogonalization 
problem" seems to be endemic to all cases with multiplicity. 

2.5 Totally symmetric shift tensors. 

Finally, to illustrate the new techniques further, we shall give the details for the cal- 
culation of the totally symmetric U(3) [A00]-tensors with arbitrary shifts (A1/X2A3) , 
A = A 1 + A 2 + A 3. The highest weight component of such a tensor is given by 

m 1 

hw 

(< 1 0 (< 0 >) 31 1 hw0 0 0 1 1 0 0 1 0 hw~ 0 0 

where the hw [100]-tensors raised to the A~ h power are given by e ~ql and Eqs. (27) 
and (28), respectively. The only lower weight components needed for the most general 
SU(3) ~ SU(2) Wigner coefficient can be obtained by taking the commutator of F(E31) 
with the above tensor k times in succession. This process of taking k commutators in 
succession, when divided by the generator matrix element product leads to the lower 
weight tensor component 
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A1 + Az 
A 

A - k  

({1 
1 

• 1 0 
1 

1 

(/ ~ 1 
x 1 0 

0 
0 

where we have used 
~-~ /A 
H A - i - 1  
i=o 

~ / 0 0 
0 

A - k  
Aa--ka o> 

0 
0 

0 

A - i - 1  

= E 
ki 

kl +k 2 +k3=k 

(/ 1 ))h ( / l  01 00 00 0 

0 0 
1 0 0 1 0 1 

o>) 1 0 1 0 0 
1 0 1 

~ 0 0 1 0 0 
0 0 

0 

A2--k2 

k3 

(45) 

0 E3~ A - i 0 = (46) 
a - ~ (~x - k ) !  

It is now useful to recouple the operators 

= ?~l(~l-k~)(v~[z�89 x (~)}]o)k, = ~ (kl)! (A 1 "[- 1) [ z ~  x (~)  Ji(a,-k,) 

(47) 

where we have used successive SU(2) recoupling coefficients of 9-j type with Jm = 
J34 = J = 0, together with u((al2 kl)~2 (A12 h)~2;2~-z 0), and the z-space polynomial 

buildup relation, [Z~ x Z2]m = 5c(~+0 ~/[c!/a@ Zm ~. Finally, the SU(2)recoupling 
transformation 

[[ [ ~'a k"�89 ,~,~1�89 u . . . ~ l ~ t  1- " /  
z ~  x~)~j x z~ •  Ju~ ,+~-~ l -~  

~( ml -- ]r "~ ]) (a2  -- k2 "}-1) (A,  + A 2 + 1) (k, + k2)! 
(48) = ( A I ~  1) (A2 + 1) ? ~ ' ~ ' ~ 2  = ~ ( - - - ~  + 1) kl! k2! 

[ [ ~-zl }(A1+a2)l �89 (Al+"2-kl-k2) 
• Z~(kl+k~ x ( g ) ~  x (~)~ ] ] , 

}(a:+a2-k~-k2) 

when combined with Eq. (47) and its A2, k2 analog, leads to a kl, k2-independent result 
for fixed kl + k2 = k - k3. The kl(k2)-sum over binomial coefficients is therefore trivial 
and leads to the vector coupled form 

A1 

< AI+A2 A A - k  0 0 0 > 0 

A - k  
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( A  1 q'- A 2 --  k + k3)! ( A 1  "]- A2  - -  k "31- k 3 q- 1)! (k - k3)[ 

X 

((o 
0 0 

• 1 0 
1 0 

1 

• [(~)~ • (~)~] ~+~] ~(~'+~-~+~) 
~(~l+a~-k+~) 

//"- '(/~ 00 
0 1 0 0 

0 0 
0 

(49) 

0 /00/ 
The operator 1 0 0 is a U(2)-scalar. From Eq. (34) and the simple eigenval- 

0 0 
0 

ues of (I t~ �9 I t~ and �89 +/~2 - 2~3 - z~30~3) it can be seen that 

ml3  m23 m33 + 1 I 
m12 m22 1 

rol l  

o O)lmx  0 0 m12 m32 
0 0 rol l  

0 

K2([m~], [m2l) (m13 - m33 + 1) (m23 - m33), 
K:([m3], [m21) 

(5o1 

= ( m 1 2  - -  m 3 3  -~- 1) (m22 - m33) = 

= [ma3 m23 m33 + 1] [see Eq. (18)]. The k3 successive applications of this 

m3 ) m13 m23m33+ 3) 
m~2 = m12 ~Tt22 

rol l  

(m,3 - m 3 z  + 1)! (m23 - m33)! (51) 

with [m~] 
operator then yield 

0 0 m13 m2a 
1 0 0 m12 

0 0 roll 
0 

g2([m13 m23 m33 + kal, [m2]) 
X 

K2([m13 m23 m33], [m2]) (m,3 - m33 + 1 - k3)! (m23 - m33 - k3)!" 

Next, the eigenvalue difference (ft - ft') of Eq. (36) can be put in the form 

f~([m3], [m2])-  fl([m3], IMP]) 

= g2([m13 r.23 .*~ + 1], ImP2 m~2]) (ml~ - m~3 + 1) (r .~  - m~).  

Through the use of Eqs. (34) and (52), the (A3 - k3)-fold action of the tensor 

0 
( 0 0 / 

1 0 0 = ( T )  
1 0 

1 

can thus be replaced by 

( m 1 3  m23 m33 "1- A3 mlz mz3 mzz+kz )  
r~12 rh~ (T) a3-k3 m12 m22 

rol l  + A3 -- k 3 rol l  

(52) 
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K2([m13 m23 m33 "[- m3], [#t12 ~/2S]) 
= (-1)a~-k~ K2([m,3 m23 m33 "]- k3], [m12 m22]) 

X (m13 -- m33 -}- 1 - k3)[ (m23 - m33 - k3)! (53) 
(rn~3 - rna3 + 1 - A3)! (m23 - m33 - A3)! 

m13 m23 rn33 + A3 m13 m23 m33 + k3 \ 
rhl2 m22 ((~13) s m12 ms2 ) mll + Aa - k3 mn 

with rh12 + ms2 -~ m12 -~- m22 -~- A3 - k3, 
The SU(2)-reduced matrix element of the totally symmetric shift tensor, including 

the initial/final-state K-ratio factor, can thus be replaced through ordinary angular 
m o m e n t u m  recoupling techniques by 

m13 § A1 m23 § A2 rn33 + A3 

A1 

A 0 0 m13 m23 m33 
A -- k 0 rnl2 m22 

= ( - 1 )  ~ [(A)]- �89 I (AI '~-A2)] (AI "~- As -]- I ) '  
k _ (A 1 "31- A 2 -  k-~- k3)! (A 1-~- A 2 - k-~- k 3-~ 1)! ( k -  k3)! 

[ n3x [ , / [  (m13 -- m33 + 1)[ (m23 -- m33)[ 
X [ k3 ) ~--ljA3-k3v~A3 -- k3)! [ml~Erh22] (m13 -- m33 -- A3 + 1)! (m23 - m33 - A3)! 

X 1('2([m13 m23 m33 "~ n31, [~t12 ?Tt22]) (54) 

X U ( [ m l s m 2 2  ] [A 3 - ]g3, 0] [m'12 m~s ][m 1 -~- ~2 - ~ -[- k3, 0]; [#t12 #t22] [A - k, 0]) 

X ( m13 /,~112 rt123 m33 § A3 ~t122 zI(A3--k3) (0) m13 m12 11123 I"11,22 m33 § k3 } 

X ~ m13 § A1 m23 + A2 mz3 + A3 
mh m~s 

m13 rn23 m33 -'}- A3 \ 
~12 rh~2 / 

with phase factor r = ms2 + As _ m22.1 Since 77t12 --~ #t2s is fixed by k3, the additional 
sum is effectively a single sum over the intermediate angular momentum quantum 
number 1 - ~(m~2 - fft22). The U-coefficient, written here in U(2) form, is a standard 
angular m om en t u m  unitary-form Racah coefficient. In Eq. (54) we have also expressed 
the collective operator (013) a3-k3 in terms of the standard collective polynomial  

((~13)A3-k3 ---- r  k3)! z[A3-k3, 0] [ ~  r2.�89 ~ - = ( 5 5 )  

The SU(2) reduced matrix elements in the angular momentum coupled basis (16) are 
given by 

<m13 rhl2 m23 rh22 m33+A3 Z�89 m13 rrtl2 m23 me2 ma3§ 



42 G e n e r a l i z a t i o n s  o f  t h e  V e c t o r  C o h e r e n t  S t a t e  M e t h o d  

= U([ml3 m23] [0 , -w]  [m12 m221 [A3-- k3, 0]; [m12 m22 ] [0, - - (w- -  A 3-~ ]g3)]) 
1 II~w) (56a) 

with the pure z-space SU(2) reduced matrix element 

(~(~ - a~ + k:)iiz�89189 
(w + 1)! 

(-1)aa-ka i w § 2 4 7  
(56b) 

Similarly 

m13 q- A1 m23 q- A2 m33 4- A3 

x [z+(k-~3)(~.)[(~)+ x (~)§ +<~'+~-~+~) 

m13 m23 m33 -4- A3 \ 
rh12 th22 / 

= / [ a l  + a~, ol [o, - (k  - k~)] [a,  + As - k - k3, o] ] (57a) 
L [mh "G]  [0, - ( ~ -  a~ + k)] [~h  ~h ]  

x (~(w - a~ + k)lIz~(~-~)(~.)lll(w - a~ + k3)) 

with the pure z-space and pure intrinsic space SU(2)-reduced matrix elements 

(srb) 

and 

1 m 

i AI! A2! (m13 - m23)! (m~3 - m23 § A, § 1)! (57~) 
= (a~ + as)! (~,~ - ~ 3  - as)! (~,~ - m~ + a~ - a s  + 1)!" 

Since the vector-coupled operator now involves both an intrinsic and a collective com- 
ponent, the unitary 9-j coefficient in Eq. (57a), written again in U(2) form, now will 
not collapse to a Racah coefficient as in Eq. (56a). 

The totally symmetric shift tensor of Eqs. (46) and (54) is not a unit tensor. To 
convert the SU(2) matrix element of Eq. (54) into an SU(3) D SU(2) reduced Wigner 
coefficient, this matrix element must be divided by the U(3)-reduced (double-caret, 
double-bar) matrix element of this operator 

a~ + a:  0 I I [ m ~  m23 m33])) (([m13 § A1, m23 § As: m33 § a~]ll a o o 

(58) 
V(A1 + a~ + a3)! " ~  (m~z - .~j~ - Aj + j - i - 1)! i<j 
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i<j Ni  mi3 -- 'mJ 3 q- Ai'~ ~jj-+T : i)!' 

where this formula can be derived by a successive application of the buildup relation, 
starting with A = 1, 

(([ma + A]ll [ T[A-I' 00] X TB~176176176 H [maD> 

= U([ms][100][m3 + A][A - 1, 00]; [m3 + 1] [A00]) 

x <<[m3 + 1]llTtl~176 (<[m3 + A]IIT[A-I' ~176 + 1])). 

(59) 

The U-coefficient is now a U(3) Racah coefficient whose value is known from permu- 
tation group techniques (see e.g. Eq. (A.9) of Ref. [17]), and the fundamental tensor 
U(3)-reduced matrix elements are easy to calculate [see, e.g., Eq. (31c)]. We note that 
the result is independent of coupling order and independent of the choice of shift in the 
representation [m3 + 1] for these totally symmetric tensors. 

Eqs. (54), with (56), (57), and (58) lead to an expression for the SU(3) D SU(2) 
Wigner coefficient for the general coupling of [m3] • [A000] with A = A~ + A2 + A3: 

-- m33)! 
-- m33 -- A3)! 

([m3] [m2]; [AO0] [A-  k, O] II [m~] [m~]) 

= (-1)m~+a2-m~2 (m,3 --m3----3 -2 A----~+ 1)! (m23 

1 ) ( w - A 3 + k 3 + l )  

x I ( m l s + A ' - m 3 3 - A 3 + 2 ) ! ( m 2 3 + A 2 - m 3 3 - A 3 + 1 ) !  
(m,~ + a ,  - .~3~ + 2)! (m2~ + A2 - . ~  + I)! 

k ~ k! ( n  - k)! (A 1 -t- A 2 + 1)! 

1 
X 

k3! (/~3 -- k3)! (k -- k3)! (/~1 "]- A2 -- k --}- k3)! (w -- /~3 "}- k3)! 

K2([m,3 .~23 r .~  + a~], [~12 '~22]) (60) 
x g([m,3 m~3 r~] ,  Ira. m~])K([.& mi~ m~3]), ['~h ~ni~] 

[ ~ ( m "  m~3) a~ + k~) i - _ l - � 8 9  ~(-~1~ ~ )  
• I ~(a ,  + / ' 2 )  �89 - k~) i ~(A1 + A2 - k + k3) J 1 t t [~(ml~ m23) ~(~ a~+k)  ~ ' ' 

- ~(m12 - m22 ) 

X 1 
X U(  (m12 -~ m22) (n3 2- k3) (/Yt~2 -2 m~2) ( n l  "~- A22- ]~ -~- ]r , (#t12 -2 #t22 ) ( n  ~ k) ) 

where the recoupling coefficients are now written in terms of standard angular momen- 
tum notation. This result is in agreement with the expression derived by the earlier 
version of the generalized VCS method (see Eq. (84) of Ref. [11]). Since this relation 
includes two summations, the new expression is in terms of its complexity comparable 
to previously known results. Now, however, all SU(3) results are expressed in terms of 
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only two basic ingredients, SU(2)-recoupling coefficients and the simple K-factors of 
VCS theory. 
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