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A method for generating large-amplitude nonlinear plasma waves, 
which utilizes an optimized train of independently adjustable, intense 
laser pulses, is analyzed in one dimension both theoretically and nu- 
merically (using both Maxwell-fluid and particle-in-cell codes). Opti- 
mal pulse widths and interpulse spacings are computed for pulses with 
either square or finite-rise-time sine shapes. A resonant region of the 
plasma wave phase space is found where the plasma wave is driven 
most efficiently by the laser pulses. The width of this region, and thus 
the optimal finite-rise-time laser pulse width, was found to decrease 
with increasing background plasma density and plasma wave ampli- 
tude, while the nonlinear plasma wavelength, and thus the optimal in- 
terpulse spacing, increases. Also investigated axe damping of the wave 
by trapped background electrons, and the sensitivities of the resonance 
to variations in the laser and plasma parameters. Resonant excitation 
is found to be superior for electron acceleration to either beatwave 
or single-pulse excitation because comparable plasma wave amplitudes 
may be gener&ted at lower plasma densities, reducing electron-phase 
detuning, or at lower laser intensities, reducing laser-plasma instabili- 
ties. Practical experimental methods for producing the required pulse 
trains are discussed. 

I. I N T R O D U C T I O N  

The generation of large-amplitude, relativistic plasma waves is a subject of 
much current interest (1) because of its potential  use for ultrahigh-gradient 
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electron acceleration (2). While conventional if-driven accelerators are limited 
to fields _< 1 MV/cm, plasma accelerators have been shown experimentally to 
support gradients _< 100 MV/cm (3). The maximum axial electric field of a 
relativistic plasma wave, as predicted by one-dimensional (l-D) cold fluid the- 
ory, is the "wave-breaking" field (4), EwB "- E0~/2(Tp 1), where (5) E0 = 

1/2 (4~e2neo/me) 1/2 is the electron (m, cwp/e) ~_ 0.96n~0 [cm -s] V/cm, wp = 
plasma frequency, ne0 is the ambient electron density, 7p = (1 - v~/c2) -112, 
and vp is the phase velocity of the plasma wave. For a laser-driven, plasma- 
based accelerator, 7p = 7g -~ w/wp ;~, 1, where 7g = (1 - V~/C2) -112, Vg is 
the group velocity of the laser, and w is the laser frequency. For a laser of 
wavelength )t ~ 2rc/w = 1 pm and a plasma of density ne0 = 10 la cm -3, 
~,g _~ 300, E0 "~ 100 MV/cm and Ewe -~ 2.5 GV/cm. 

Until recently, only two major types of laser-driven, plasma-based acceler- 
ators had been investigated: the plasma beatwave accelerator (PBWA) (2,3) 
and the laser wake field accelerator (LWFA) (2,6-8). In the PBWA, two laser 
beams of frequencies wl and w2 are optically mixed in a plasma to produce a 
laser beatwave of frequency Aw = wl -w2, i.e., in effect a train of fixed equally 
spaced pulses of equal pulse widths. By adjusting the beat frequency and/or 
the plasma density such that Aw ~ wp, the laser beatwave can resonantly 
drive a large amplitude plasma wave. As the plasma wave amplitude grows, 
however, nonlinear effects cause the wavelength of the plasma wave to increase 
and, hence, the resonant frequency is shifted away from A0~. Eventually the 
relative phase between the laser beatwave and the plasma wave becomes r / 2  
out of phase and the beatwave no longer drives the plasma wave to higher 
amplitudes. This resonance detuning due to the increase in the plasma wave- 
length ultimately limits the plasma wave amplitude in the PBWA. In the 
LWFA, the ponderomotive force associated with the gradients in the inten- 
sity of a single, ultrashort laser pulse (9) drives a plasma wave "wake field." 
The maximum plasma wave amplitude is obtained when the pulse duration r 
and/or plasma density is adjusted such that r _ 2x/wp. The plasma wave am- 
plitude increases as the laser intensity I increases and the laser pulse length 
decreases (i.e., as the density increases). Hence, in the LWFA, the plasma 
wave amplitude is limited by the maximum laser intensity and the minimum 
laser pulse length which can be obtained by laser technology. Currently, these 
values are limited to I ~ l0 is W/cm 2 and r .~ 50 fs (9). 

Recently, the self-modulated LWFA has been suggested (10,11). Here, 
a single laser pulse is incident on a plasma with a density that is higher 
than the "resonant density" such that the laser pulse duration is now several 
plasma periods, i.e., r > 2z'/wp. Due to a self-modulation instability (12), the 
pulse breaks up into multiple pulses, each of which is "resonant." Although 
higher plasma densities and the high-intensity multiple-pulse structure lead 
to higher wake-field amplitudes, they are difficult to achieve simultaneously 
due to plasma defocnsing (13). In simulations of the self-modulated LWFA 
(10), the electron energy gain was observed to be limited by phase detuning 
between the accelerated electrons and the plasma wave. 

Electron-phase detuning is a fundamental limitation in all plasma-based 
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accelerators, i.e., accelerated electrons (with v ~ c) outrun the plasma wave 
(with vp _~ vg < c). Acceleration will cease once the electrons phase advance 
a d i s tance  (v - vp)t ~_ ~p/2 relative to the plasma wave, where ~p = 2~rc/wp 
is the plasma wave length. In the laboratory frame, this corresponds roughly 
to a detuning distance of Lt ~ ~'~,~p, where v = c has been assumed. It can 
be shown (14) that the maximum energy gain, AWt, of a trapped electron in 
a 1-D plasma wave of amplitude E~ is AWt ~ 4m,c27~E,/Eo for E~/E2o 

1 1, and in the nonlinear limit, AWt ~- 2rnec27~(E~/Eo) 2 for 2 
(14). For example, for a fixed value of ~ -- E~/EwB - 0.25 and a laser 
wavelength of A = 1 pm, AWt -~ 4.6 GeV for he0 = 10 is cm -3 (EwB = 7.7 
GV/cm), whereas AWt _~ 4.6 TeV for he0 = 10 le cm -3 (EwB = 2.5 GV/cm), 
where 7p - ~/wp >> 1 has been assumed. Notice that for a fixed e, AWt ~- 

4rn,c2~ 2 ~ neo 3/2, assuming E~/E~ ~ 1 and ~2p ~, 1. Hence, at the high 
densities required either for self-modulation or for the use of an ultrashort 
pulse in the standard LWFA, 7a is relatively low and acceleration is limited 
by electron phase detuning. As will be discussed below, the acceleration at 
high density is limited not only by phase detuning but by the pump depletion 
length Ld. 

In a previous paper (15), we proposed an alternative accelerator concept, 
which we call the resonant laser-plasma accelerator (RLPA), that combines 
the virtues of these others, but has the following additional advantages: (i)  
by utilizing a train of laser pulses with independently adjustable pulse widths 
and interpulse spacings, which are varied in an optimized manner, resonance 
with both the changing plasma-wave period and phase resonance width can 
be maintained in the nonlinear regime, and the maximum plasma-wave am- 
plitude is achieved; (ii) lower plasma densities can be used, thus avoiding 
electron-phase detuning; and (iii) lower peak laser intensities can be used, 
thus allowing for a reduction of laser-plasma instabilities. In this paper we 
investigate the RLPA concept (15-17) in greater detail, including important 
issues such as (1) the sensitivities of the wake fidd to changes in the laser 
and plasma parameters, (2) comparisons with the PBWA and LWFA, and (3) 
damping of the wave by trapped electrons. 

This paper is concerned with determining the characteristics of the plasma 
wave generated by a nonevolving, optimized laser pulse train in 1-D. The laser 
intensity profile of the pulse train is assumed to be nonevolving and a function 
of only the variable ~ - vpt - z, where z is the axial propagation distance 
and vp -- v a is assumed. Neglected are various effects which could degrade 
the evolution of the laser pulse train, such as diffraction, pump depletion, and 
laser-plasma instabilities. 

In the absence of some form of optical guiding, a laser pulse will diffract af- 
ter propagating a distance characterized by the Rayleigh length, ZR = ~rr~/,~, 
where r0 is the minimum laser spotsize at focus. For a tightly focused laser 
pulse, ZR can be relatively short. However, it has been observed both numer- 
ically (10) and experimentally (18) that a preformed plasma channel can be 
used to guide the laser pulse and prevent diffraction. 

Pump depletion refers to the process by which the laser pulse loses energy 
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as it generates a plasma wave. A rough estimate for the pump depletion 
length, Ld, is given by equating the energy left behind in the plasma wave 
to the initial energy in the laser pulse train, i.e., LdE~ ~ crtotE~. Here, it 
is assumed that the laser pulse train consists of pulses with equal intensities 
(EL is the amplitude of the electric field of the laser pulse) and the sum of the 
pulse durations is trot. As an example, consider the sine pulse train described 
in See. III.B. Here, EL = 38 GV/cm, rtot = 2.2 ps and Ez = 0.18 GV/cm, 
which implies a depletion length of La = 30 m. In order to achieve large 
energy gains, AW, large pump depletion distances must also be obtained 
A W  = zEz < LdEz, where z is the acceleration length. In the limit "fg ~, 1, 
the energy gain after a pump depletion length scales roughly as one over the 
density, i.e., LdEz "~" 1/neo. Hence, for high energy gains, operating at lower 
plasma densities is required in order to avoid pump depletion, just as with 
phase detuning. To obtain energy gains larger than the pump depletion limit, 
multiple acceleration stages appear necessary. Alternatively, the use of an 
active medium has been suggested as a method to overcome pump depletion 
(19). 

Several laser-plasma instabilities could degrade the laser pulses as they 
propagate, such as stimulated Raman scattering, modulation and filimenta- 
tion instabilities, and parametric coupling to ion modes. Typically, the growth 
rates of these instabilities increase with increasing laser intensity. Since the 
use of multiple laser pulses reduces the peak intensity required to drive a 
large amplitude plasma wave, the growth rates for the various instabilities 
can be reduced. Furthermore, the analyses of these various instabilities gen- 
erally assume long uniform pulse profiles. It is not clear how a pulse train 
structure will affect the behavior of the instabilites. It may also be possible to 
reduce and/or elimiate some instabilities by introducing pulse-to-pulse phase 
incoherence of the high-frequency laser oscillations within the train. 

The analysis and numerical examples presented in this paper are based on a 
1-D model. The validity of the 1-D model of plasma wave excitation requires 
that do > ~p, where do = 2r0 is the transverse laser spot diameter. The 
above discussions on electron phase detuning and pump depletion indicate 
that in order to acheive large single stage energy gains, low plasma densities 
are preferred. To acheive high laser intensities at low plasma densities while 
remaining in the 1-D limit implies ultrahigh laser powers. For example at 
ne0 = 1016 cm -s, Ap = 330 pm, and to obtain an intensity of I _~ 10 is 
W/cm ~ requires a laser power of P >_ Ilr(do/2) 2 ~_ 850 TW, assuming do _> 
Ap. Such powers can be obtained by the petawatt (1015 W) laser systems 
currently under construction at Lawrence Livermore National Laboratory (20) 
and elsewhere. Proof-of-principle experiments, however, can be performed in 
the 1-D limit at higher plasma densities and lower intensities with smaller but 
shorter pulse laser systems. For example, at he0 = 5)< 10 lr cm -s, Ap = 47 pro, 
and an intensity of I _ 5 × 1017 W/cm 2 requires P _> 8.5 TW, which can be 
obtained with state-of-the art "table-top" systems. 

In See. II, analytic solutions and sample calculations for a square pulse train 
are presented to demonstrate the advantage of the use of multiple pulses in 
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terms of amplitude and energy efficiency. In See. III, numerical results are 
presented of pulse trains of both the square and sine shapes. Comparison of 
the different acceleration schemes suggests that the RLPA is more efficient 
than either the PBWA or the LWFA (See. III B 2). We also discuss the sen- 
sitivities of the wake fields produced by the various plasma wave generation 
schemes to changes in the laser and plasma parameters, such as laser inten- 
sity (See. III B 6), laser pulse widths and interpulse spacings (See. III B 4), and 
plasma density (See. III B 5). Kinetic effects investigated by use of a PIC code 
simulation are discussed in See. IV. Pulse-shaping techniques are discussed 
in See. V. Conclusions are presented in See. VI. 

II. ANALYSIS 

The laser-plasma interaction is modeled by the relativistic fluid-Maxwell 
equations. The laser pulse is described by the normalized transverse vector 
potential, ~ = eA±/mec ~. The laser envelope, lal, is assumed to be nonevolv- 
ing and a function of only ~ = vgt-z, where vg is the group velocity (assumed 
constant), i.e., the "quasi-static" approximation (8). Circular polarization is 

2 2 2 assumed, i.e., a = a (¢). The quantity a is related to the laser wavelength 
, ~  I0  1 / 2  2 and intensity I by a _ 6 × 10- )t[pm]I [W/cm ]. The plasma response 

is described by the normalized electrostatic potential, ~ = e~/mec s, which in 
the 1-D limit obeys the nonlinear Poisson equation (15-17,21) 

, [ (  = 1 -  - 1 , ( 1 )  

where Je = vo/e, ~'0 = (1 - j~)- l /S  and kp = ~aple is the plasma wave 
number. In deriving Eq. (1), ~b was assumed to be a function of only ~, i.e., 
vp ~ vg. In the limit a s ,~ 1, % = ~a/~ap (nonlinear corrections are discussed 
in (22)). As previously mentioned, the laser pulse structure is assumed to be 
nonevolving. This ignores various effects, such as diffraction, pump depletion 
and laser-plasma instabilities. 

A. Square Pubes 

Several properties of the plasma wave can be determined analytically from 
Eq. (1) for a series of square laser pulses. When a I is constant, Eq. (1) can 
be integrated to yield 

s s 2112 - ' l ' / /7~)  ] } ,  (2) {C:o-: )+ [c: -C:,o ' ' " '  
where z = 1 + ~, ~,± = (1 + aS) 112 and zo is an initial condition, i.e., z = z0 
at z I = 0. Here, z I = k~ld~/d~ and is the normalized axial electric field of 
the plasma wave, i.e., z ~ = Ez = Ex/Eo, where E0 = m, c2kp/e (sometimes 
referred to as the cold, nonrelativistic wave-breaking field (5)). 
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Consider an optimized square pulse train where a~ is the amplitude of the 
n th pulse. For the first pulse, Eq. (2) is solved with a - al and the initial 
condition z0 - zmino - 1. Equation (2) is integrated from the front of the 
pulse to the back. The optimal pulse length, L1, is determined by the 
distance required to reach maximum potential within the pulse, i.e., z ~ - 0 
and z -- zmax~. The wake behind the first pulse is given by solving Eq. (2) 
with a 2 - 0 using the initial conditions z '  -- 0 and z0 - Zmffix~. The potential 
of the wake oscillates between Zmffix~ and z~i,~. The distance required to 
reach the minimum potential, z ~ -- 0 and x - Xminl , is defined to be one half 
the nonlinear plasma wavelength, AN~/2. The optimal spacing between the 
first and second pulse is determined by placing the front of the second pulse 
at the position in the wake of the first pulse for which z ~ - 0 and z - Xminl. 
Hence, the optimal spacing between the first and second pulse is some odd 
multiple of Ajv~/2. In general, for an optimized square pulse train, it can be 
shown that  the amplitude of the wake behind the n ~h pulse oscillates between 
Xmin, ~ < X ~ Xmax,~, where 

- 2[Xm~x. ( l÷  ~ ] Xminn - -  ~g (3) 

=in=.,-  ")'~ [xlnin,`_. (1 ÷ fll~-) _ 2flg(;Vmin.,,_ ' 2  -- 7±,./")'~): : 111]. (4) 

Here, 7±,  = (1 ÷ a~) ll~ and Xmin0 ---~ 1. Furthermore, the maximum electric 
field amplitude behind the n th pulse is given by 

- - - , (5) 

where ~'m~,, -- Em~xJEo. In deriving Eqs. (3)-(5), the spacing between 
pulses and the pulse lengths are assumed to be optimized, such that the n th 
pulse begins at z - Zmi,._~ and ends at z - Zm~. .  Both the optimal 
width Ln of the n th pulse and the nonlineax wavelength of the wake behind 
the n lh pulse (and, hence, the optimal spacing between pulses) increase with 
increasing n. Wave breaking occurs when the electron fluid velocity becomes 
equal to the plasma wave phase velocity vg. When this occurs, the electron 
fluid density becomes singular. From Eq. (1), wave breaking occurs when 
zmi,,` --, 1/3'g, which implies Zm~,` - "  ZWB -- (27~ -- 1)/7g. This corresponds 

to a wave-breaking electric field of E~vB -- 2(7g - 1), or Ez - EWB (4). 
The above results, i.e., Eqs. 3-5, are valid for laser pulses with arbitrary 

group velocities vg _< c. Subluminous group velocity effects, vg < c, become 

important at high plasma densities, since 7g ~- •/•p 1/'~1/2 "~ - /"e0 • In the limit 
vg - c, Eqs. 1-5 simplify significantly (15-17). Numerical solutions to Eq. (I)  
indicate that  for z 2 <'~ Z~v B and 7~ >~> 1, Eq. (1) can be approximated by the 
limit ~g ~ 1, i.e., (7,8) 

- 1, ( 8 )  
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where the prime denotes kpld/d(~. For a series of optimized square pulses, 
analytic solutions can also be readily obtained from this reduced equation. In 
particular, 

2 2 . . . y ~ , , ,  Xmax,, = Y±lY±~ (T) 

/~max. X 112 _-1/2 -" max. --  =rmax,., (8)  

and Xmin~ = 1/Zmax,. Furthermore, the optimal width of the n th pulse, Ln, 
and the nonlinear wavelength of the wake behind the n t~ pulse, AN,, are given 
by 

Ln = (2/kp)zlm/~ E2(pn), (9) 

AN, = (4/kv)=~2,E2(t3n), (10) 

where E2 is the complete elliptic integral of the second kind, p2 n = 1 - 
7±.2 Xmax . - 2  and ~2 n = 1 - Xm~" . The optimal spacing between the end of 
the n th pulse and the front of the n t~ + 1 pulse is an odd integer multi- 
ple of AN,~2. Note for equal pulse amplitudes, i.e., al = a2 = ... = a0, 
Xmax" = ~/,~n = (1 + a2o) n. In the limit Z2max, :~, 1, kpLn ~- 2y~., 
kpANn - 4~'±., and =max, - kpT±.. Several recent papers have addressed 
various aspects of this problem (15-17). 

The maximum normalized electric field,/7"3max = I Emax/Eo, for an X m a  x 
optimized train of n square pulses of equal amplitudes, is plotted in Fig. 1 
versus the quantity a]. "~ halo, using the above analytical results. For 7a >> 1 

z Emax is approximately independent of he0. The curves show and =2 << zwB, 
the result for 1, 3, 5, 10, and 100 pulses. Figure 1 indicates that just a 
few optimized square pulses are far more efficient than a single pulse. For 
example, at he0 = 1015 cm -3 (A = 1 pm, 7a -~ 103, EWB "" 1.3 GV/cm), 
three square pulses can be used with an intensity I = 3.5 × 10 is W/cm2/pulse 
(a02 = 1.3) and a total pulse train fluence of Irtot = 27 MJ/cm 2 to produce 
Ez = 0.1 GV/cm. Here, rtot is the sum of the pulse durations in the train 
and 2.7a 2 _ 10-1sA2[pm]I[W/cm~]. A single pulse at he0 = 1015 cm -s  
requires I = 3.2 × 1019 W/cm 2 (a0 ~ = 12), over an order of maguitude higher 
intensity than in each pulse in the train, and a total fluenee six times greater 
(Irtot = 130 MJ/emZ), to produce this same Ez. (A low density was chosen for 
this example so that finite rise-time effects could be neglected, as discussed 
See. III B 1.) Figure 1 indicates that the amplitude-efficiency advantage of 
multiple pulses increases with increasing number of pulses n or total laser 
intensity a02. Figure 2 shows the ratio of the maximum field achieved with a 
train of pulses (Emax.) over that achieved with an equivalent-energy single 
pu l se  (Emaxt) versus a2n, demonstrating the energy-efficiency of the RLPA as 
compared with the LWFA. 
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FIG. 1. The maximum electric field (Em~x.) vs the quantity a]- = na 2 for n = 1, 
3, 5, 10 and 100. 

III. NUMERICAL OPTIMIZATION 

A. Square pulses 

Figure 3 shows an example of an optimized square pulse train (n = 4, 
a0 = 1.2, ne0 = 1016 cm-3), as obtained by a numerical solution of Eq. 1, in 
which the widths and spacing between pulses are varied in order to maximize 
Zrnax. For numerical reasons, we used non-ideal square pulses that have small 
but finite rise times, which is valid--as will explained in Sec. III B 1--in the 
limit of low density, as was used in the example of Fig. 3. It is found that 
Ez = 0.56 GV/cm for I I " t o  t = 19 MJ/cm ~. 

The laser pulses are optimally located in the regions where d~b/d~ > 0. If 
the laser pulse is located in the region of d~/d~ < 0, it will absorb energy 
from, and reduce the amplitude of, the plasma wave. Likewise, if it is in the 
region of d~b/d( > 0, it will impart energy to, and increase the amplitude 
of, the plasma wave. Whether or not the laser pulse absorbs energy from or 
imparts energy to the plasma wave depends on the sign of dyR/d~, where qR 
is the index of refraction. In the limit vg = c, the 1-D nonlinear index of 
refraction for an intense laser pulse in a plasma is given by (8,21,23) 

1 - + (11 )  

When dqR[d( < U (i.e., dck[d( < 0), the pulse photons will frequency up-shift 
as they propagate, hence the pulse absorbs energy from the wave (24,23). Fre- 
quency down-shifting (giving energy to the plasma wave) requires d~R/d¢ > 0 
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(i.e., dq~/d( > 0). Hence, to enhance the plasma wave amplitude, pulses are 
optimally placed where d~b/d~ > O. 

When a train that is not optimized is used, for instance fixed interpulse 
spacings (as in the case of the PBWA), Zmax reaches some saturated value 
before being driven down by destructive interference when the pulses become 
out of phase with the wave, i.e., when they are located in regions where 
d~/d~ < 0. This is referred to as resonance detuning. Within the optimal 
(absorption) region, the plasma wave is driven most effectively near ~ - ~ m i n  

(where both the fluid velocity and density of electrons are maximum), and 
least effectively as ~b ~ ~bmax. 

B. Sine pulses 

The above results are valid in the limits of either infinitesimally short rise 
times, or low density. In practice, the rise time rri0e of a pulse directly out of 
a laser is finite and determined by the bandwidth of the laser amplifiers; e.g., 
currently, the minimum amplified pulse width is 7"mi n ' ~  50 fs ( 2 5 ) .  In order to 
study the effects of plasma density and finite rise times on efficiency, we now 
consider pulses with an envelope profile a(~) given by a half-period of a sine 
function. (That Gaussian profiles give qualitatively similar results is verified 
in other simulations.) 

In Fig. 4(a), we plot the wake field resulting from single pulse excita- 
tion (LWFA) including fast oscillations of the laser pulse. For this exam- 
ple, neo = 10 le cm -3, a0 -- 1.2, and the pulse is linearly polarized, i.e., 
1.4a02 ~_ 10-1sA2[pm]I[W/cm~]. The high-frequency density fluctuation in- 
side the laser pulse envelope is due to fast component of the ponderomotive 
force at twice the laser frequency, i.e., a 2 -- (fi2/2)(l+cos 2k~) for a - fi cos k~. 
Figure 4(b) shows an example of a sine pulse train that was optimized nu- 
merically. For the laser amplitude, only the envelope, averaged over the fast 
oscillations, is shown. For this pulse train, n = 4, a0 - 1.2, he0 - 10 is 
cm -3, and the pulses are linearly polarized. The first pulse in Fig. 4(b) has 
an optimum pulse width r = "/'opt - "  940 fs (resonant with he0 = 1016 cm -~ 
and a0 -- 1.2) and the final pulse has r = ropt = " t 'min  ---~ 200 fs (Irtot = 2.2 
MJ/cm2), which gives Ez - 0.18 GV/cm (e = 0.07). As in the square wave 
case, AA,., and thus the spacing between pulses, increases with each succeeding 
pulse as Xmax increases. 

1. Plasma wave phase resonance region 

Note that whereas with increasing Zmax, ropt for succeeding square wave 
pulses increases "/'opt ~ '  )~N,,/C, the opposite is true for multiple sine pulses. 
This difference arises because, whereas for square pulses ~" is independent of 
rri,e, for sine pulses r ~ 2rri,e. It is more advantageous to have a short sine 
pulse width ( r  << AN./c), so that the highest pulse amplitude is reached near 
¢~min (where it is most effective in driving the plasma wave), than to have 
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a long sine pulse width ( r  ~ )tJV,/C), SO tha t  the pulse is driving the wave 
for a longer t ime, albeit most ly  when it is less effective (away from ~min ) .  

Sine pulses are found to be more effective than square pulses for this same 
reason. For the later sine pulses, ~'opt is found to be approximately  given by 
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the width of the region between where ~ < 0 and d~/d( > 0, which defines 
a "phase resonance width" Lres for finite ristetime pulses (see Fig. 5). The 

^ I / " \  
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FIG. 5. Legend explaining the definitions of various optimi~,ation paz~aneters. 

physical origin of Lr~ is that in this region (i) the ponderomotive force of the 
laser pulse is in the right phase with the electron motion to give energy to 
the plasma wave, and (ii) the density of electrons with which the laser pulse 
can interact is highest. The latter is clearly seen in Fig. 6, which is the same 
as Fig. 4(b), except the plasma-wave density is plotted instead of the electric 
field. 

For the wake behind the n th pulse, Lr~ can be determined from Eq. (1) in 
the limit v 0 - e, 

= I, 

_.+ - - 1  -1 /2  where ~ sin 2 az = 1 - Zm~ . .  In the limit Zm~, > >  1, L ~  zp =mix. -~ 

1//~m~. and, hence, the resonance becomes sharper with increasing plasma 
wave amplitude ( Q =_ AJvn/ Lr~ "" Zmsx,). 

Figure 7 shows a plot of Lr~/C, which approximates 1"opt, versns ~, where 
= E~/EwB, for various densities. Notice that, in the regime of high he0, 

finite rise-time effects become important at high t, i.e., ropt decreases below 
7"mi n as ~ increases beyond a critical value (e.g., Lr~/C < 50 fs for c - 0.16 
at n~0 = 1016 era-a). Since pulses with r < l"mi n ~ 50 fs cannot currently 
be produced, the later pulses in a train will not be optimized. Although the 
later pulses with r - rmin > ropt will continue to increase c, they will do 
this less effectively than a train in which all pulses are of optimal widths. In 
fact, a pulse train in this high-he0 regime can be less amplitude efficient than 
a single optimized pulse at the same density; i.e., a greater It"tot is required 
for the pulse train to achieve a given E~ at fixed n~0. But, as will be shown 
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in See. III B 4, the reduction in efficiency for pulses with longer than optimal 
rn is more than compensated by a reduction in the sensitivity of the wake- 
field amplitude to changes in AN. Furthermore, high ne0 is unfavorable for 
electron acceleration because of electron-phase detuning, AWt -~ e~n'~/2 in 
the J~ ;:~ 1 and 7a 2 >> I regime, as will be discussed in greater detail in the 
next subsection. 

~. E~cienctt comparison between RLPA and LWFA 

Figure 7 indicates that, for low ne0 and up to the previously mentioned 
critical value of c, the condition '/'opt ---~ Lres/c ~_ 1"min ~'* 50 I"8 can be satisfied 
for all of the pulses in a train [as was the case of Fig. 4(b)]. Consequently, 
multiple sine pulses in this regime are found to be similar to ideal square 
pulses in that a pulse train is more amplitude efficient than a single pulse 
at the same density. Specifically, 8 times higher intensity (a0 = 3.4, or I = 
1.6 x 1019 W/crn 2 (26)), corresponding to 2.5 times more fiuence (Irtot = 5.6 
MJ/cm2), is required of a single pulse (r = ropt = 700 fs for n,0 = 1016 
cm -3) to reach the same value of Ez (0.18 GV/cm) as is reached by the 
train of Fig. 4(b). Reducing the intensity required to reach large plasma- 
wave amplitudes also reduces strongly driven instabilities, such as stimulated 
Raman scattering, self-focusing, or filamentation, which disrupt either the 
plasma wave or the laser beam. Pulse-to-pulse phase incoherence of the high- 
frequency laser oscillations can also reduce instabilities. A single pulse with 
the same intensity and pulse width as the first pulse in Fig. 4(b), corresponding 
to 0.43 times the laser fluence (Irtot = 2.4 MJ/cm~), results in a 3.9-times- 
smaller Ez (46 MV/cm). 

In order to drive the same 
higher ne0 must be used with 

~1/2 T pulse, E~ .~ "~0 " for a~ < I.) 

Ez with the same I as a sine pulse train, a 
a single sine pulse. (Recall that, for a single 

Thus, the same value of Ez = 0.18 GV/cm as 
is reached by the train in Fig. 4(b) is obtained by a less intense single pulse 

18 3 (a0 = 0 .7 )  w i t h  r = ropt = 90 fs  at  neo = 10 cm- , and with 70 times less 
energy (IT"tot = 30 kJ/cm2). The maximum energy gain, as determined by 
electron phase detuning, is AWt = 400 keV for the single pulse. Since energy 
gain favors low neo, the pulse train in Fig. 4(b) can accelerate an electron to an 
energy that is orders of magnitude greater; i.e., AWt = 400 GeV, 1000 times 
greater than the single pulse. Thus, a pulse train of equivalent intensity--at 
either equal or lower neo--can accelerate an electron to greater energy than a 
single pulse (27). Table 1 gives a summary of the various laser, plasma, and 
acceleration parameters that were found in the above comparison between the 
sine pulse train and the single sine pulse. Table 2 gives the same parameters 
found in the comparison between the square pulse train and the single square 
pulse discussed in See. IIIA. 
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Train (4 Pulses) 1 Pulse 1 Pulse 
Plasma density ne (cm -~) 10 l° lO in 10 l° 
Wave-breaklng field EwB (GV/cm) 2.4 2.4 7.7 
Longitudinal field E .  (GV/cm) 0.18 0.18 0.18 
Plasm& wavelength Ap (#m) 330 330 33 
Laser field EL (GV/cm) 38 110 22 
Laser wavelength A (pro) 1.0 1.0 1.0 
Laser pulsewidth rn (fs) 940-660-400-200 700 90 
Laser intensity a~ 1.4/pu]se 12 0.5 
Laser intensity I (W/cm 2) 2 x lOiS/pulse 1.6 × 10 a9 7 × 1017 
Laser power [P _> Ix(Ap/2) ~] (PW) 1.7 14 6 × 10 -3 
Total laser fluence [/net] (MJ/cm 2) 2.2 5.6 0.031 
Dephasing length L¢ (cm) 2.2 × 103 2.2 × l0 s 2.2 
Pump depletion length Ld (cm) 3.0 × 10 s 7.8 x 103 40 
Total energy gain AW (TeV) 0.4 0.4 4.2 x 10 - t  

TABLE 1. A summary of the various laser, plasma, and acceler&tion parameters 
that were found in the comparison between the sine pulse train (first column) and 
the single sine pulse with the same plasma density (second column) and the single 
sine pulse with higher density (third column). 

3. Efficiency comparison between RLPA and PBWA 

Thus far, the RLPA concept has been compared only to the LWFA; in this 
section, it is compared to the PBWA. In the example of Fig. 8(a), four beat 
pulses were assumed with amplitudes a0 = 1.2 in a plasma of density ne0 = 
1016 cm -3. In this case, the unperturbed plasma wave frequency was used for 
the beat frequency in a PBWA pulse train, A~ .~ ~p. However, as expected in 
this nonlinear regime, resonance detuning between the plasma wave and the 
PBWA laser train is observed. Therefore, for a more reasonable comparison, 
the pulse width for the PBWA needs to be optimized for a given plasma 
density, as was done for the RLPA, but in this case with the constraint that 
the pulse widths, pulse amplitudes, and interpulse spacings are kept constant 
for all pulses in the train. The PBWA optimized in this manner is shown 
in Fig. 8(b). A beatwave wavelength greater than the one corresponding to 
the unperturbed density Ap is found to be optimum (28), compensating for 
the increase in the nonlinear wavelength AN that arises from the increase in 
plasma wave amplitude. As can be seen from Fig. 8(b), the net effect is to 
move the spacing between the peaks of the laser pulses closer to AN, and 
thus the locations of the peaks closer to the plasma wave resonance regions 
(Lr~). Although the final wake of the optimized PBWA is found in the 
example of Fig. 8(b) to be similar to that in the RLPA scheme for comparable 
laser pulse intensities, it should be emphasized that much more energy was 
required for the former. This is related to the fact that the RLPA is more 
efficient than the PBWA not only because it mitigates resonance detuning 
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Train (3 Square Pubes) Single Pube 
Plasma density ne (cm -5) l0 an 10 a~ 
Wave-breaklng field Ewe (GV/cm) 1.3 1.3 
Longitudinal field E,  (GV/cm) 0.1 0.1 
Plasma wavelength ~p (/Jm) 1000 1000 
Laser wavelength ~ (#m) 1.0 1.0 
Laser pulsewidth rn (ps) 2-2.5-3.1 4.1 
Laser intensity a] 1.3/pulse 12 
Laser intensity I (W/cm 2) 3.5 × 10aS/pulse 3.2 × 1019 
Laser power [P > I~r(~tp/2) 2] (PW) 27 250 
Total laser fluence [/not] (MJ/cm 2) 27 130 
Dephasing length L, (cm) 1.1 × 10 s 1.1 × 10 s 
Pump depletion length La (cm) 3.0 x 10* 1.5 × 105 
Total energy gain AW (TeV) 3 11 

TABLE 2. A summary of the various laser, plasma, and acceleration parameters 
that were found in the comparison between the square pulse train and the single 
square pulse with the same plasma density. 

by adjusting to the change in ,~Jv, as the plasma wave grows, but because 
it also adjusts to the change in the phase resonance width, i.e.,the plasma 
wave is driven more efficiently when Topt ~ '  Lres/C as in the ItLPA than when 
Topt ~ "  L,/c  ~ AN,/2c as in the PBWA. 

It is useful to compare the wake fields produced by the various concepts 
given equal total  laser fluence (or energy), since that  is the technological 
limitation imposed by the type of lasers capable of the high-intensities required 
(29). The intensity and pulse width were varied in such a way that  the total 
laser energy and number of pulses (n = 4) were kept the same for both the 
PBWA and the RLPA. It is found that  the optimized PBWA is less energy- 
efficient than either the RLPA or the LWFA for a given density. For example, 
a PBWA pulse train with a0 = 1.0, 1" = 1.2 ps, where r is the pulse width for 
each pulse, and total fluence in the pulse train equal to Irtot = 3.4 MJ /cm 2, 
produced a normalized wake-field amplitude of Ez/Eo = 0.4 at a density 
of ne0 = 10 le cm -3 (E0 ~ 96 MV/cm). An equivalent-energy RLPA train 
(a0 = 1.6, rtot = 1.9 ps) gave E,/Eo = 3.0, which is 7.5 times larger. In 
another example with ne0 = 10 ]6 cm -~, a LWFA single pulse with Irtot = 5.2 
MJ /cm 2 (a0 = 3.4, ~" = 700 fs) produced a wake larger by a factor of 1.2, 
Ez/Eo = 1.7, than an equivalent-energy PBWA (four pulses) with a0 = 1.2 
and r = 1300 fs, which generated Ez/Eo = 1.4. These results are summarized 
in Tables 3 and 4. Thus, based on the previous discussion, the RLPA is the 
most energy efficient of all three schemes in this parameter regime. 
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,t. Wake-field amplitude vs interpulse spacing and pulse width 

The sensitivity of the growth of Emax to changes in the pulse widths r 
and interpulse spacings AN, of the laser pulses of Fig. 4(b) (ne = 10 t e c m  -3 
and a0 -~ 1.2) was studied numerically. It is governed by both the number 

I-..4 

ID 
N -,=4 ,i .I  

o 

2 

0 

- 1  

i ! ! 

(a)  . . . . . . . . .  . , . ° t , .  ttold ( ' ~ 0 )  
. . . . . . . . . . . . . .  p o t e n t i a l  ( x - l )  

_ _  intensity ( a  t )  

/-._ 

~ . . - . : : . " " ' ~ . . ~ 2 : - "  

",,)'" "., i" '--'" ",,./ 

, , , I , , , I 

0 2 0 0 0  4 0 0 0  
t--.l~ (f-) 

| 

6 0 0 0  

"o 

-F-4 

N • 1..,I 

t.., 

O 

4 

2 

0 

! ! n 

( b )  . . . . . . . . .  .a.~t~° n.,d (zJ%) 
. . . . . . . . . . . . . .  p o t e n t i a l  ( x - l )  

_ _  i n t ~ n s i t y  ( a S ~  -. 

- -  / - .-'\, 
: : : • , . :  "... , .: .  

• ° ' o  • • t . *  : • 

; " 4 : ~ ". '~. " i } ,  

".. " " ~ "i" 
"l 

..... ", "," ",. ~. i , / ;  

., \ J  

- 2  i | , I , , i , i , , 

0 2 0 0 0  4 0 0 0  6 0 0 0  
t-Vo (f-) 

\ 

8000 
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Plasma density ne (cm -~) 
Total laser fluence lrtot (MJ/cm 2) 
Laser intensity ao ~ 
Laser pulsewidth r .  (fs) 
Longitudinal field E~/Eo 

RLPA PB WA 
1016 1016 
3.4 3.4 
2.6/ptdse 1.0/pulse 
940-540-320-100 1200 
3.0 0.4 

TABLE 3. A comparison between the RLPA and PBWA at the same plasma 
density and laser energy fluence shows that the former produces a 7.5 times greater 
wake field. 

Plasma density ne (cm -3) 
Total laser fluence Irtot (MJ/cm 2) 
Laser intensity ao ~ 
Laser pulsewidth rn (fs) 
Longitudinal field Ez/Eo 

L WFA PB WA 
10 le 10 TM 

5.2 5.2 
11 1.4/puhe 
700 1300/pube 
1.7 1.4 

TABLE 4. A comparison between the LWFA and PBWA at the same plasma 
density and laser energy fluence shows that the former produces a 1.2 times greater 
wake field. 

of pulses and the Q of the resonance, where Q -,~ Z m a x  is as defined in Sec. 
III B 1. This can be seen from Fig. 9 in which we plot the maximum electric 
field/~max produced by varying both c and AN., for the second n = 2 (a), 
third n = 3 (b), and fourth n = 4 (c) pulses of the train shown in Fig. 4(b). 
For instance, from Fig. 9(c), it appears that  the fourth pulse n = 4 is highly 
sensitive to absolute changes in 7" or AN, in the vicinity of r - -  7"op t .  

It can clearly be seen from Fig. 9(c) that  the wake from pulses with r > ropt 
axe found to be less sensitive to changes in interpulse spacing than those with 
r -- ropt, without sacrificing much efficiency. For instance, if the pulse width 
of the last pulse (n - 4) were r -- 300 fs ~_ 1.Sropt (instead of Topt),  it is found 
that  a decrease in the optimal spacing between the last and the third pulse 
(AN3) by 25 fs (corresponding t o  ~ A N a / C l " o p t  - "  13%) results in a decrease of 
Ez (from the value obtained using 7" = 7"op t and the optimal position) by only 
2.2% (instead of 5%). Note, in the r = 1.5ropt case, IT"tot - 2.3 MJ /cm 2, 
corresponding to a laser pulse train energy increase of only 4.5%. 

The added pulses can also absorb the plasma wave, i.e., the maximum elec- 
tric field (/~max~) can be reduced to a value below that  without it (Emsx._l), 
when the spacing (A,~) is reduced such that  the pulse becomes located in the 
d~b/d~ < 0 region. Absorption can be optimized just as amplification can, by 
varying 1- and AN, with the maximum amount of absorption equaling the max- 
imum amount of amplification. The second pulse can in fact totally absorb 
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the plasma wave produced by the first pulse (16), the energy of the plasma 
wave going into upshifting the frequency of the light (24,23). 

The wakefield amplitude is less sensitive to an increase in the spacing (,~), 
since this moves the pulse further from the d~/d~ < 0 region, and thus the 
wake continues to be enhanced, but less effectively. As An increases beyond 
its optimum value, E m ~ .  approaches asymptotically the value it had without 
the pulse, J~max,_l. Thus, the larger the value of n, the less the sensitivity to 
spacing, since the value of/~m~x,_~ is large to begin with, and thus the relative 
change, A/~max./Emnx._s cannot be as large as it is for, say, the n = 2 pulse, 
for which Em~._~ = ~Tm~ is smaller. (See the scaling change of Emffix. for 
the three plots of Fig. 9.) 

5. Wake-field amplitude v8 plasma density 

Since the exact resonant plasma density is difficult to produce with cur- 
rent technology, we will consider the stability of the final RLPA wake field 
to variation of the ambient plasma density. In Fig. 10(a), the sensitivity 
of the wake field versus the ambient plasma density for the pulse train in 
Fig. 4(b) is shown. The density resonance width is 0.51, which is defined as 
Ane/neo = (nu --nt,)/neo, where nu and nL are the upper and lower values of 
the ambient density for which the wake amplitude is half of its peak value (the 
peak value occurs at the resonant ambient density he0). For comparison, the 
density resonances for the PBWA pulse train of Fig. 8(b) and the LWFA pulse 
of Fig. 4(a) are shown in Fig. 10(b) and Fig. 10(c), respectively. The arrows 
indicate the densities corresponding to the resonant densities in the linear ap- 
proximation, A~ = t%(ne) for fixed A~ in the PBWA, and r = 2~r/0~p(n,) for 
fixed r in the LWFA. As expected, since it is impulsively driven, the LWFA is 
found to be the least density sensitive, with a resonance width equal to 3.90. 
For the PBWA, the corresponding density resonance width is found to be 
equal to 0.62. Thus despite the much greater efficiency of the RLPA than the 
PBWA, their sensitivities to ambient density variation are similar. Achiev- 
ing a density uniformity meeting this requirement should pose no significant 
technological challenges--at least for a proof-of-principle experiment--since, 
in fact, by use of multiphoton ionization (30), uniform laboratory plasmas 
have been created over distances on the order of 10 cm. 

6. Wake-field amplitude vs laser intensity 

In addition to density variation, shot-to-shot laser intensity fluctuations 
can result in detuning. Figure 11(a) shows the dependence of wake field 
amplitude on the laser intensity for the RLPA, with the same pulse widths 
and interpulse spacings as were used in the pulse train shown in Fig. 4(b). 
As usual we assume here that  the intensities of all pulses in the train are the 
same. Note the multiple peaks and sudden discontinuities in the slope of the 
curve. They correspond to the various pulses coming in and out of resonance 
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as ]~max and thus A/v change with increasing intensity. The peak at a0 2 = 1.4 
corresponds to optimization of all pulses. As the intensity (a0 ~) increases, the 
position of the fourth pulse moves toward the absorption region (d~/d~ < 0) 
and thus Zmax becomes reduced. At a0 2 = 1.6, the fourth pulse moves into the 
emission region again (d~/d~ > 0) and there is a sharp discontinuity. Another 
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FIG.  11. Fins] wake-field amplitude as a function only of the laser intensity (con- 
stant A~ and Ln) for (a) RLPA, and (b) PBWA. 
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discontinuity appears at a ] = 2.1 as the third pulse moves from the absorption 
to the emission region. The peak at a02 ,~ 2.3 corresponds to the fourth pulse 
reaching resonance again. Unlike the RLPA case (Fig. l l(a)),  Fig. l l ( b ) - -  
which shows the sensitivity of the PBWA--does not have several peaks, since 
the pulses in this case are much longer than Lr~, and since the intensity in 
this example was optimized in such a way that detuning would not occur. 
However, as can be seen from Fig. l l (a) ,  the amplitude fluctuations of the 
RLPA are in the worst case only 20% for a 10% change in laser intensity, which 
does not represent a serious problem since shot-to-shot intensity stabilities of 
< 5% are achievable. 

IV. PARTICLE-IN-CELL CODE SIMULATIONS 

In order to study kinetic effects, we used a particle-in-cell (PIC) code with 
one spatial dimension and three velocity dimensions. The simulation is fully 
relativistic and incorporates all of Maxwell's equations. In order to simulate 
a laser pulse, one boundary becomes an antenna. A sine wave oscillates at 
the laser's wavelength, in this case 1 pro. To get the correct pulse shape, 
another sine wave modulates the laser wave so that the pulse has the shape 
of a half sine-wave equal to the pulse width. A spatial grid was set up so that 
one laser wavelength was equal to 20 grid points. For a particle density np of 
1.4 × 10 le cm -3, similar to that chosen in the previous fluid model simulations, 
the plasma wavelength )~p is 279 pm, or 940 fs. 

The total domain of the simulation is 10,~p in length. The electron-ion 
mass ratio is 1/1836, with the electron charge chosen to give the correct ~p 
for the above np with 10 particles/ceU. The first simulation run, shown in 
Fig. 12(a), was for a LWFA with a pulse width equal to ~p. Qualitatively, it 
has the same characteristics as that of the fluid model, although the density 
used in the PIC code was slightly higher. Comparison of these two results 
validates the quasi-static approximation and the assumption of nonevolving 
pulse-shapes used in the fluid code, but, of course, only for the short distances 
studied. 

Because of the computing expense involved in running the PIC code, opti- 
mization of the R.LPA could not be done by variation of parameters as was 
done with the fluid code. A good approximation, however, was made by per- 
forming a total of four separate simulations, adding one pulse at a time. The 
half-width of each succeeding pulse was made to coincide with Lt~, which 
was determined by the previous simulation. The results appear in Fig. 12(b). 

A feature revealed only when the PIC code is used to model the RLPA is 
particle trapping and damping of the plasma wave wake field. Notice that in 
Fig. 12(b) the wake-field amplitude decreases significantly after it reaches its 
peak amplitude, i.e., after the last of the four laser pulses is added to the train. 
This is not observed in PIC simulation of the single-pulse case of Fig. 12(a), 
which implies that trapping and wave damping only occur when the wake 
is driven to sufficiently large amplitudes. The PIC-simulation particles start 
with a small temperature such that their initial velocities are much less than 
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the phase velocity of the wave. However, the latter pump pulses cause some 
of the background electrons become trapped in the plasma wave, and these 
trapped electrons continue to be accelerated in the wake behind the pulse 
train, depleting energy from the plasma wave, thus causing its amplitude to  
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FIG.  12. PIC simulation solution with ne = 10 TM cm -a and a ~ = 1.44 for (a) a 
single sine pulse, and (b) four sine pulses. Plasma wave damping is observed at late 
times only in the latter case. 
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damp. A phase space diagram of longitudinal electron momentum vs time 
(p,/rn~c vs t - z/c)  from the PIC simulation of the RLPA is shown in Fig. 
13. The solid line represents the prediction of the cold fluid theory (8,21), i.e., 
pz/m~c = 7vz/c ,  where 

p, _ (1 + a ~) - (1 + ~b) 2 (13) 
rn,c - 2(1 + ~b) ' 

assuming v U ~ c. The solid line was obtained by plotting the above expression 
for p~(() with both a~(() and ~(() computed by the PIC code. It can be seen 
from Fig. 13 that the fluid theory and the PIC code agree well for the bulk 
of the particles. However, an energetic tail of electrons indicates that some 
trapping by the wave has occured. 

A more quantitative estimate of the fraction of trapped electrons can be 
obtained from Fig. 14, which shows normalized longitudinal electron velocity 
distributions [f(pz/mec)  vs pz/mec] calculated at various time intervals (in- 
tervals in t - z /c)  during the simulation. These t - z / c  intervals correspond 
roughly to the region between the fronts of the n and n + 1 pulses and are 
approximately a plasma wavelength in width (the last interval extends from 
the end of the last pulse to the end of the simulation region). Hence, for each 
time interval the momentum distribution is integrated over approximately a 
plasma wavelength, and in one case, Fig. 14(d), over several ~p. By compar- 
ing Fig. 14 with the fluid theory prediction of Fig. 13, it can be seen that the 
tail of trapped electrons are those with momenta exceeding approximately 
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FIG. 13. Phase space diagram of longitudinal momentum vs time (pz/mec vs 
t--z/c) from the PIC simulation of the RLPA. The solid line represents the prediction 
of the cold fluid theory. 
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p z / r n ~ c  >_ 1, just to the high-energy side of the peak on the right side in Fig. 
14. 

V. PULSE TRAIN GENERATION TECHNIQUES 

There are several ways of producing the required pulse train in practice, 
but they have yet to be fully investigated in the high-power regime that is 
required for wake field generation. The first, shown in Fig. 15, is to use 
Fourier filtering. In this case, a mask is placed in the pulse stretcher of a 
CPA system (9) to modify the phase and/or amplitude of every component 
of the initial pulse in such a way that, when it is recompressed, a series of 
pulses with arbitrary spacings and widths will be produced (31). The mini- 
mum rise time of each individual pulse is still governed by the gain bandwidth 
of the amplifiers. This technique has been demonstrated quite effectively in 
the case of an unamplified pulses using a zero-dispersion stretcher, i .e. ,  the 
gratings of the stretcher being located at the focal plane of the lenses. The 
possible difficulties that are encountered with amplification of the pulses are: 
(1) reduction of the bandwidth due to gain narrowing, (2) distortion of the 
pulse shapes due to gain saturation, and (3) nonlinear interference between 
pulses, which overlap in time in the amplifiers when they are stretched. The 
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FIG. 14. Normalized electron momentum distribution [ f (p=/mec)  vs p , / m e c ]  from 
the PIC simulation of the RLPA at vsa'ious times: (a) t - z / c  = 0.0 - 1.2 ps, (b) 
t - z / c  = 1.2 - 2.2 ps, (c) t - z / c  = 2.2 - 3.2 ps, and (d) t - z / c  = 3.2 - 6.0 ps. 
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FIG. 15. A variably spaced pulse train with arbitrary pulse widths is produced by 
use of Fourier filtering in the laser stretcher stage. 

first problem, gain narrowing, also limits the minimum pulse width of a single 
pulse, and is overcome by use of larger bandwith gain media or a combination 
of amplifiers with different gain media, having adjacent but different central 
frequencies, effectively producing a larger net bandwidth (33). The second 
problem, gain saturation, can be avoided by reducing the single-stage am- 
plification and adding more amplifier stages if necessary. The last problem 
is circumvented by avoiding any fast amplitude modulation of the chirped 
pulse in order to minimize nonlinear effects in the amplifier; this implies that  
phase masks are preferable to amplitude masks. Shaped pulses have already 
been amplified in the laboratory (32), at least in preliminary ways, but more 
development is necessary. 

By use of either a computer-controlled liquid crystal display (34), or an 
acoustoptic modulator (35), located in the Fourier plane, the pulses may be 
modulated in real time (between shots). This provides the possibility of max- 
imizing the wake field experimentally using real-time feedback between the 
modulator and a diagnostic of the plasma wave amplitude. A possible prob- 
lem with the use of spatial filtering with finite resolution is spatial diffraction of 
the laser beam, the effect of which is to create a spatially dependent temporal 
pulse profile (36). However, this is less of a problem for wake field generation 
than for other applications of pulse shaping, because the wake field is excited 
at the laser focus, in the far field, and because it is sensitive to the laser pulse 
envelope and not changes in the carrier frequency. 

A less elegant method of producing optimized pulse trains is to divide the 
amplified stretched pulse by use of beamsplitters placed after the amplifiers, 
then send the separate pulses to separate compressors, with adjustable lengths 
and delays, and finally recombine the pulses before they enter the interaction 
chamber. Alternatively, several pulses could be created using a beamsplitter 
and separate delay lines (as in a Michelson interferometer) placed before the 
amplifiers, but, as mentioned above, this may create high frequency beating 
of the chirped pulses, inducing deleterious effects (37). 

The advantage, however, of the pulse shaping technique discussed in the 
previous paragraphs is that  the pulsewidths and interpulse spacings may be 
tailored independently of each other, unlike the case of optical mixing, as 
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is used in the standard beatwave accelerator. In the latter case, two long 
pulses (pulselengths equal to several plasma wavelengths) and with different 
central frequencies (differing by the plasma frequency) are amplified in sepa- 
rate laser amplifier chains and then optically mixed in the plasma in order to 
create a modulation that approximates a train of equally spaced pulses with 
equal pulsewidths (equal to the spacing). As a consequence of both resonance 
detuning and narrowing of the phase-resonance width (Lr~), the heatwave 
method of driving a plasma wave is less efficient then either the RLPA or the 
LWFA, as discussed in See. III B 3. 

VI. CONCLUSIONS 

Optimal pulse widths and interpulse spacings were exactly computed from 
analytical theory for a train of square pulses, and were optimized numerically 
for a train of sine pulses with realistic rise times. By optimally varying the 
pulse widths and interpulse spacings, resonance detuning between the laser 
pulses and the plasma wave can be eliminated. This implies that plasma waves 
can be driven up to the limits imposed by wave-breaking, particle trapping, 
and/or the limits of laser pulse train technology. 

Resonant regions of the plasma wave phase space were found where the 
plasma wave is driven by the laser pulses most efficiently (i.e., the regions 
where ~b < 0 and dc~/d~ > 0). In order to overlap the laser pulses with these 
regions, the optimal interpulse spacings were found to increase as the plasma 
wave amplitude (and nonlinear plasma wavelength AN) increases. One the 
other hand, the width of this phase resonance region Lr~wand thus the opti- 
mal finite-rise-time laser pulse width ropt--decreases with increasing plasma 
wave amplitude, due to wave steepening. It also decreases with increasing 
background density, in this case due to the relationship r ,,, 2~r/wp ~ n'~ l/z, 
familiar from single-pulse excitation (LWFA). 

The sensitivities of the wake field to changes in the plasma density and 
laser intensity were not found to pose significant technological problems. Wake 
fields from trains with somewhat-longer-than-optimal pulse widths were found 
to be considerably less sensitive to variation of interpulse spacing without 
sacrificing much efficiency. 

PIC code results validated the use of the quasi-static approximation and 
the assumption of nonevolving pulse shapes in the fluid code for the short 
distances studied. They also showed the importance of particle trapping and 
wake-field damping for large amplitude plasma waves. 

In these 1-D studies, the RLPA was found to have advantages over either 
the PBWA or the LWFA, since comparable plasma wave amplitudes may 
be generated at lower plasma densities, reducing electron-phase detuning, or 
at lower laser intensities, reducing laser-plasma instabilities. The increased 
efficiency of the RLPA arises not only because it mitigates resonance detuning 
by adjusting to the change in ~v ,  as the plasma wave grows, but also because 
it adjusts to the change in the phase resonance width, i.e., the plasma wave is 
driven more efficiently when 7"op t ~ '  Lres/C than when Top t ~ '  L,~/c ~ AN,/2c 
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as in the PBWA. This advantage exists even at relatively low plasma wave 
amplitudes, far from wavebreaking, when the change of AN. is not significant, 
but the change of L ~  is significant. 

If large single-stage energy gains are desired (> 100 GeV), then low plasma 
densities (n~ _< 1016 cm -s) are advantageous because of the favorable scaling 
of the pump depletion distance, the phase detuning distance, and the phase 
resonance width. However, in order to reach the required high intensities, 
and yet remain in the 1-D regime, large laser powers (PW) will be necessary, 
because of the increase in the plasma wavelength with decreasing density. 
Such large laser systems will be available within the next few years. In the 
nearer term, for lower energy-gain applications (GeV), or proof-of-principle 
experiments, higher plasma densities (n~ _< 10 is cm -s)  can be used. In 
this case, much lower laser powers are sufficient (TW), which are currently 
available from table-top lasers with ultrashort-pulses (r _< 100 fs). Practical 
methods for tailoring laser pulse trains using pulse-shaping techniques are also 
presently available. 
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