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Abstract

Asymptotic S-Matrix techniques are applied to the identification of a Stan­
dard Model background to polarized deep-inelastic scattering experiments at
HERA in search of Right-handed Charged Currents. It is also pointed out that
the Asymptotic S-Matrix produces finite observables free of Mass-Shell Anoma­
lies.

1. Introduction

Experiments using polarized beams are important for testing various aspects
of the Standard Model (SM). One of these aspects is the existence of left-handed
charged currents, but the absence of right-handed charged currents. One of
the goals of experimentation at HERA will be to test this hypothesis by means
of Deep Inelastic Scattering (DIS) experiments using a right-handed polarized
electron beamyll21 If such an experiment yields a signal of the type ell + P ~
X +missing energy, one may be led to the conclusion that the signal is due to a

right-handed coupling ofthe form gR q,e"Yl'(l + "Y5)1li"W1-)/L + h.c. In what follows
we shall show that this connection should not be immediately made, since the
SM left-handed charged current provides a finite background under the given
experimental conditions at HERA.

2. Right-handed Charged Current

Before taking up the discussion of the background, let us first record the cross
section for a right-handed coupling between a neutrino, electron and charged vec­
tor boson WR. In what follows we shall assume that the corresponding coupling
constant is the same as th~ Standard Model coupling constant for the left-handed
coupling. We shall denote the unknown mass of the new vector boson by MR.
The neutrino is assumed massless. Then the dominant process is shown in Fig.
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la, where kinematic notation is also introduced. The standard kinematic vari- 
ables are s = (p + l) 2, q2 = (l - l') ~ =- _Qg., x = Q2/2p  .q.  The differential 
cross section for a right-handed helicity electron to undergo DIS producing a 
right-handed neutrino via the exchange of WR is 

do'~ 7r a~ 
dx - 2M~ [(I÷:e-~'R/R)-Iu(~)+( 1-~ x~/~2 x'R2 (X+-~R)ln(l+~ffR)/)(~)) ] (1) 

In the above, U(/)) denotes the sum of contributions from quarks (antiquarks) of 
charge +2/3  (+1/3),  where the Q2-evolution has been ignored.* We have also 
used the notation a2 =- g]/4rr, with g2 = e/sin0~,, and ~/~ = s i M S .  The above 
formula shows that an upper limit on ~rg may be interpreted as a lower limit on 
MR. Estimates have suggested t31 that, in the case of a light, Dirac v~R such as 
the one we are using here, experiments at HERA might be sensitive to MR as 
large as 300-500 GeV. 

3. T h e  H E R A  B a c k g r o u n d  

This background consists of the process t41 e~ + p ~ VeL + 7 + X. In other 
words, a right-handed helicity electron flips its helicity, while radiating an unob- 
servable forward-going photon, and couples to a SM left-handed charged current, 
see Fig. lb. The collinear photon goes unobservably down the beam pipe within 
a forward angle whose size is restricted by the HERA luminosity monitors. 

One might think that the cross-section resulting from the amplitude in Fig. 
lb  is heavily suppressed, not so much due to the extra coupling a relative to 
the non-radiative process, but primarily due to the helicity-flip factor X 2 - 
( m e ~ E )  2 ~_ 4.0 × 10 -1° (the electron energy E at HERA is ~- 26 GeV). However, 
upon integration over the forward direction, a cancellation of the helicity-flip 
factor occurs, due to the collinear singularity of the electron propagator.tSl With 
the kinematics shown in Fig. lb,  the cross-section can be written 

f / ' y' 
where y' = p.  q /p .  (l - k).  Integrating over the photon direction inside a forward 

cone around 1, defined by the angular resolution A0f of the final state in the actual 
experimental situation, we have: 

kome dfLr 2 2 
xo + - + ("Jo) 

o 

(3) 

At HERA A[  ,.~ 10-3, ' Xe -~ 2.0 x 10 -5. Therefore the above factor is approx- 

* In other words the usual structure functions are ~iven in terms of quark distributions by 
G2 -- 2~GI -- 2~(U(z) +/)(~)), G3 = 2(U(z) - D(z)). 
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imately equal to 1! f Inputing the quark-parton model distributions, as before, 
we obtain: 

d n,7 o" L 
d~ 

r,<s.. (1+ =is_,) + 2 (1-~--~-s ) Li',. (- (s_,)] D (.) } (4) 

where Li2 is the dilogarithm and (£ = 8/M~v. This cross-section corresponds to 
a considerable background, as can be seen in Fig. 2. 

4. Theoretical problems and the Asymptotic S-Matrix 

The fact that  the above process, calculated at an electron energy very high 
relative to me, gives a non-zero contribution identical to the massless limit of 
the process, makes the prediction suspicious. ES] Lee and Nauenberg's conclusion 
that  the helicity-flip cross-section survives in the limit me ~ 0 is profoundly 
troublesome since, if taken seriously via such arguments as the calculation of 
section 3, it would correspond to a mass-singularity-induced anomaly (mass- 
shell anomaly). In other words, a Lagrangian (such as f~C2ED) that  is chirally 
invariant in the massless limit produces chiral symmetry breaking effects, such 
as the non-decoupling of the electron-helicity states for certain processes, in the 
massless limit. For a complete review of the problem, the associated difficulties 
having to do with different regularization schemes of the mass singularities, and 
its resolution, see Ref. I~l and references contained therein. 

Suffice it here to say that  the important  physical ingredient that  becomes 
relevant in calculating the high-energy limit of certain processes in perturbation 
theory is the physical degeneracy of free-particle states with different particle 
content, within the experimental resolutions of the actual physical process (ex- 
periment). Consider, as an example, the Hamiltonian of Quantum Electrody- 
namics, HQE D = Ho + V, where H0 is the free-particle Hamiltonian and V the 
interaction Hamiltonian. Because of the masslessness of the photon, the asymp- 
totic behaviour of scattering states e - i H t  [¢) do not approach free-particle states 
e-iH°t I¢0) in the limit / --* ± ~ .  The long-range tale of the Coulomb potential 
survives in the remote past and far future, making the one-electron Fock state 
surrounded by a soft photon cloud. On the other hand, this same masslessness of 
the photon, allows the soft cloud to be unobservable within the detector energy 
resolution i.e., degenerate with the one-particle state. Omitting this effect from 
the usual Feynman-Dyson S-matrix (SFD) i.e., assuming the asymptotic Hamilto- 
nian of QED is H0, gives rise to IR divergencies and doesn't describe the actual 
physical degeneracy. In general, omitt ing an asymptotic interaction from the 

t Notice that we would recover the same result even in the massless limit Xe --* 0~ i.e., for an 
exactly massless electron, after the forward integration. 
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asymptotic Hamiltonlan of a massless gauge theory produces mass-singularities, 
mass-shell anomalies, and disregards physical degeneracy. The high-energy limit 
of a massive theory, calculated via the resulting SF1), resurrects these problem- 
atic (but complementary) features. 

One can properly account for the asymptotic properties of these theories, by 
choosing an interacting asymptotic Hamiltonian: 

H0 --, Ha(A)  = H0 + VA(A) (5) 

The physical meaning of A will be explained later in this section. The corre- 
sponding Asymptotic S-matrix is 

~2 (-)t ~(+) =~( - )  S 12 (+)t S A  = H,HA H,HA HA,Ho FD HA,Ho (6) 

n(T) = limt__,+~ eiHte -iHAt with the M~ller wave operators defined as ~'//,H~ = 

fl(~=) c)(~:)f Transforming all operators in the interaction picture we may write: H,Ho ~ ~HA,Ho" 

a~.) .  0 = re~pI-~ f etVA(~)l, S ~  = re~pl-i f e~V(t)J (7) 
::~OO - - O O  

In this picture a perturbative evaluation of SA is straightforward. Suppose we are 
interested in QED radiative corrections to a basic process that occurs in a theory 
with an interaction Hamiltonian V(t). One can write V(t) = v ( Q E D ) ( t ) + V ( J ) ( t ) ,  

where V(J)(t) is the rest of the Hamiltonian, giving rise to the non-radiative 
process (such as the one in section 2). Then: 

8 

E h,(k., k., k:)0..[-,(S~)'<] (s) 
d d I----1 

In the above expression S is a 8 × 3 sign matrix and w stands for the energies 
of the particles in each vertex hi. We can now define the asymptotic interaction 
Hamiltonian as 

8 

= e i d-~k'd~'k2 E h l ( k , , k , , k , ) O ( A -  I(S.)~l)..p[-i(s.)~t] (9) 
1=1 

We see that A corresponds to the experimental regions of phase space character- 
izing a certain physical process within which the energies (Sw) z of the particles 
at the corresponding vertex I are indistinguishable (degenerate). More precisely, 
one may write: 

,', = u A . ,  A<, e {~,", ,,,s, ~ ...} 

where 6~n: the beam angular resolution, a ~ =  the final-state angular resolution, 
5E = A E I E ,  A E  = m a x { A E  in, AEf)-=the energy resolution. It is obvious 
that 
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~7(QED ) f ¢ O, if 3 ei, i : Xi =-- milwl < A ,  
"A t = 0, otherwise. 

This construction definea the high-energy limit of a theory and automatically 
includes the massless limit (massless theory). A perturbative evaluation of the 
asymptotic wave operators may be obtained from the following formula: 

1 1 1 

1112...l~ 
( i0)  

with Vii - f d 3klid ak2j hzj (kli ,  k2j, kaj)OA. 

5. H E R A  background revisited 

Let us calculate again the radiative process of section 3, using the correct 
matrix SA. Our choice of initial arid final states will be: 

I i) = le(1;R)) , ] . f )=  lu~(l';L)"/(k;A)) 

Considering the hadronic part of the process as an external source of W-bosons 
we may write: 

= ¢(°) oO)f ¢(1) [s(A /ls  <Sl Ii) + <Sn li> (11) 

The first term is the extra contribution coming from the degeneracy of the initial 
state within the experimental angular resolution of the electron beam. Indeed 
one may show 

k,~ ~ ,k,~O(~)m O(A-lu'l)  (12) 
n~)t[ i)=~)--~f~' lv(k ' ;a ' )~(1-k ' ;~))g-~°)(  1-  - - - , J ,  ~ J ~ - ~ _ ~ 7 ~ ,  

In the above u' = w(1 - k ' ,m~) + w(k' ,mT) - w(1,m~). Notice how the asymp- 
totic wave operator transforms a one-particle state into an electron-photon state 
degenerate with that  one. The second term in Eq. (11) can be calculated from 
the Feynman rules. The SA-matrix element is shown in Fig. 3. Looking at 
the collinear phase space where the final photon is almost parellel to the initial 
electron, we deduce the following singularity structure for the cross-section: 

1 1 

+ iA0 ) 2 } (la) 

i) Massless limit: 
, R,~' Obviously l i m x ~  0 ac~ L = O. Therefore there are no mass-shell anomalies in the 

massless limit, if one computes the physically relevant Sa-matrix elements. 
ii) High-energy limit: 
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In eq. (13) we shall have to input the experimental  values of the physical reso- 

lutions. At HERA, X~ "~ 2.0 x 10 -5 , A~ ~ 10 -3. For the inltal (beam) angular 

resolution an adequate est imate can be given by a lower limit to the ability of 
the accelerator to distinguish a single-electron from a collinear dec t ron-photon  
state going through the interaction region. Hence an upper  limit is 6~n < g/d* 
where ~r is the transverse radius of the beam at the interaction region and d the 
drift distance of the electrons from the final focus to the interaction region. At 

HERA,  o'/d ~_ 0.07mm/5.5m ~- 1.2 x 10-s.  t Notice that  in all cases we may 
write 

+ __ 2 , x 0 + ( 6 2  (14) 

. R, 'y  
Therefore lirnc,p a~ L ,,~ a ,  and the prediction of the background made in section 
3 is approximately correct. However, survival of this background is not connected 

to mass-shell anomalies any more since, as we showed, the massless limit of the 
process is indeed smooth and equal to zero. 

6. Conclusion 

Per turbat ive  calculations using SFD in massless gauge theories or in massive 
theories when the high-energy limit of a physical process is sought, are plagued 

by mass singularities, mass-shell anomalies, and are based on matr ix  elements 
that  do not account for the physical degeneracy occuring in these cases. SA, on 
the other  hand, incorporates in its definition the notion of physical degeneracy 
and is characterized by finite and non-anomalous matr ix  elements. Hence it 
allows reliable per turbat ive calculations in massless gauge theories or when high- 
energy-limit processes are considered. Processes that  involve ezactly massless 
particles, and that  are anomalous when calculated via S F D  , turn  out to have 
a smooth massless limit equal to zero when calculated via SA. This is due to 
the fact tha t  the experimental  resolutions introduced by the t ransformation of 
Fock states into coherent states cut-off the mass singularities in that  case. For 
this reason, a discussion analogous to the helicity-flip process shows that  there 
are no longitudinal massless photons in massless QED, contrary to some recent 
claims, c~l Processes that  involve massive particles, but  whose energy is much 
larger than  their  mass, may be calculated via SA as well. These processes, if 

anomalous in the SFD-approach, have a smooth massless limit equal to zero in 
the SA-approach, but  their high-energy (experimental) limit may be non- zero, 
if the experimental  resolutions happen to be smaller than  the corresponding 
mass-parameters.  This is the criterion defining when the high-energy limit of a 
process corresponds to a massive or a massless theory. Through this approach, 
a SM background is identified and will have to be taken into account for the 
polarized DIS experiments designed at HERA. 

* Actually we suspect that in reality ~ << o' /d.  
t By comparison, at SLC cr/d "~ 10 -s. 
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Figure Captions 
Fig. 1 
a. Deep-lnelastic scattering via a hypothetical WR exchange. 
b. Radiative deep-inelastlc scattering via a Standard Model W exchange. 
Fig. 2 
The ratio of the signal over the background as a function of MR. 
Fig. 3 
a. The two-particle state contribution to the SA-matrix dement. 
b. The one-particle state contribution, corresponding to the SFD-matrix element. 
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