XI H: Cluster Effects in Astrophysics

MEASUREMENT OF ALPHA-WIDTHS IN ¹⁶O RELEVANT TO ASTROPHYSICS

F. D. Becchetti, J. Janecke and D. Overway University of Michigan*, Ann Arbor, Mi. 48109

C. Thorn Brookhaven National Laboratory[†], Upton, L.I., N.Y. 11973

> E. R. Flynn, D. L. Hanson and J. W. Sunier LASL[†], Los Alamos, N.M. 47544

G. Kekelis Williams College, Williamstown, Ma. 01267

ABSTRACT

Several different α -transfer reactions, $^{12}\text{C} \rightarrow ^{16}\text{O}$, have been studied at high bombarding energies with magnetic spectrometers. Line-widths, α -spectroscopic factors, S_{α} , and reduced α -widths, γ_{α}^{2} and θ_{α}^{2} , have been determined for levels in ^{16}O , including several of importance in astrophysics.

The ${}^{12}\text{C}(\alpha,\gamma){}^{16}\text{O}$ reaction rate is of vital importance in the burning of helium stars^1 but is extremely difficult to measure at stellar temperatures $(\text{E}_{\alpha} \approx 300 \text{ keV}){}^2$ The alpha width of the bound 7.12 MeV JT=1 level in ${}^{16}\text{O}$ determines the ${}^{12}\text{C}(\alpha,\gamma){}^{16}\text{O}$ rate at low energies. The α -width for this level has been inferred from ${}^{12}\text{C}/{}^{16}\text{O}$ abundances^3 and postulated to be small, $\theta_{\alpha}{}^2(7.1) \approx .03.$ Early measurements of $\theta_{\alpha}{}^2(7.1)$ from (${}^6\text{Li}$,d) and (${}^7\text{Li}$,t) are unreliable due to compound nucleus decay. High bombarding energies appear to be clearly preferable^4 .

We have therefore studied the reactions $^{12}C(^{6}Li, d)$ and $(^{7}Li, t)$ as well as $^{12}C(^{10}B, ^{6}Li)$, $(^{11}B, ^{7}Li)$ and $(^{11}B, ^{7}Li*)$ at high bombarding energies. Spectra are displayed in figs. 1 and 2.

bombarding energies. Spectra are displayed in figs. 1 and 2. As expected, $(^{11}B,^{7}Li),(^{7}Li,t)$ and $(^{6}Li)d$ populate α -cluster states in ¹⁶0. Surprisingly $(^{10}B,^{6}Li)d$ and $(^{11}B,^{7}Li)d$ also preferentially populate α -cluster states (but to a much lesser degree), which is unexpected based on accepted shell-model wavefunctions for $^{10},^{11}B$ and $^{6},^{7}Li$. An analysis of the data indicates $\theta_{\alpha}^2(7.1) = 0.14 \pm 0.04$ and $\theta_{\alpha}^2(9.6) \approx 0.6$. Thus $\theta_{\alpha}^2(7.1)$ is larger than earlier determinations.³ In addition, line-width measurements of $\Gamma_{\text{c.m.}}(9.6)$ indicate $\Gamma_{\text{c.m.}} = 390 \pm 60$ keV, which is much smaller than the accepted value (510 ± 60 keV). We compare, in fig. 3, values of S_{α} deduced from (⁷Li,t) with recent theoretical calculations⁵,⁶ for 160.

A large value of $\theta_{\alpha}^2(7.1)$ could imply a large stellar helium burning rate which would deplete ¹²C in old stars. In any case it appears that α -transfer reactions cannot be used to justify a small α -width for the 7.12 MeV J^T=1⁻ level in ¹⁶O.

*Supported in part by the National Science Foundation. +Supported by the U. S. Department of Energy.

ISSN: 0094-243X/78/752/\$1.50 Copyright 1978 American Institute of Physics

REFERENCES

- W. Fowler et al., Ann. Rev. Astron. and Astrophys. 5 (1967) 525. 1.
- 2.
- P. Dyer and C. Barnes, Nucl. Phys. A233 (1974) 495.
 W. D. Arnett, Astrophys. J. <u>176</u> (1972) 681; <u>170</u> (1971) L43. 3.
- 4.
- 5.
- M. E. Cobern <u>et al.</u>, Phys. Rev. <u>C14</u> (1976) 491.
 Y. Suzuki, Prog. Theo. Phys. <u>56</u> (1976) 111.
 M. I. Ichimura <u>et al.</u>, Nucl. Phys. <u>A204</u> (1973) 225; K.T. Hecht, 6. private communication.

Fig. 1 Spectrum from (Li,t) taken at LASL

Fig. 3 Comparison of S_{α} with theory 5,6