MEASUREMENT OF ALPHA-WIDTHS IN 16O RELEVANT TO ASTROPHYSICS

F. D. Becchetti, J. Janecke and D. Overway
University of Michigan*, Ann Arbor, Mi. 48109

C. Thorn
Brookhaven National Laboratory†, Upton, L.I., N.Y. 11973

E. R. Flynn, D. L. Hanson and J. W. Sunier
LASL‡, Los Alamos, N.M. 47544

G. Kekelis
Williams College, Williamstown, Ma. 01267

ABSTRACT

Several different α-transfer reactions, 12C \rightarrow^{16}O, have been studied at high bombarding energies with magnetic spectrometers. Line-widths, α-spectroscopic factors, S_{α}, and reduced α-widths, γ_{α}^2 and θ_{α}^2, have been determined for levels in 16O, including several of importance in astrophysics.

The 12C(α, γ)16O reaction rate is of vital importance in the burning of helium stars but is extremely difficult to measure at stellar temperatures ($E_{\alpha} \approx 300$ keV). The alpha width of the bound 7.12 MeV $J^\pi=1^-$ level in 16O determines the 12C(α, γ)16O rate at low energies. The α-width for this level has been inferred from 12C/16O abundances and postulated to be small, $\theta_{\alpha}^2(7.1) \approx .03$. Early measurements of $\theta_{\alpha}^2(7.1)$ from (6Li,d) and (7Li,t) are unreliable due to compound nucleus decay. High bombarding energies appear to be clearly preferable.

We have therefore studied the reactions 12C(6Li,d) and (7Li,t) as well as 12C(10B,6Li), (11B,7Li) and (11B,7Li*) at high bombarding energies. Spectra are displayed in figs. 1 and 2.

As expected, (11B,7Li), (7Li,t) and (7Li,d) populate α-cluster states in 16O. Surprisingly (10B,6Li) and (11B,7Li*) also preferentially populate α-cluster states (but to a much lesser degree), which is unexpected based on accepted shell-model wave-functions for 10B and 7Li. An analysis of the data indicates $\theta_{\alpha}^2(7.1) = 0.14 \pm 0.04$ and $\theta_{\alpha}^2(9.6) \approx 0.6$. Thus $\theta_{\alpha}^2(7.1)$ is larger than earlier determinations. In addition, line-width measurements of $\Gamma_{c.m.}(9.6)$ indicate $\Gamma_{c.m.} = 390 \pm 60$ keV, which is much smaller than the accepted value (510 \pm 60 keV). We compare, in fig. 3, values of S_{α} deduced from (7Li,t) with recent theoretical calculations for 16O.

A large value of $\theta_{\alpha}^2(7.1)$ could imply a large stellar helium burning rate which would deplete 12C in old stars. In any case it appears that α-transfer reactions cannot be used to justify a small α-width for the 7.12 MeV $J^\pi=1^-$ level in 16O.

*Supported in part by the National Science Foundation.
†Supported by the U. S. Department of Energy.

ISSN: 0094-243X/78/752/$1.50 Copyright 1978 American Institute of Physics
REFERENCES

Fig. 1 Spectrum from \(^{(7Li,t)}\) taken at LASL

Fig. 2 \(^{10B,6Li}16O\) spectrum

Fig. 3 Comparison of \(S_\alpha\) with theory\(^5,6\)