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Abstract. Scale mixtures of uniform distributions are used to model non-normal data in time
series and econometrics in a Bayesian framework. Heteroscedastic and skewed data models are
also tackled using scale mixture of uniform distributions.

This paper uses scale mixture methodology to develop models that result in a full
Bayesian analysis of non-normal data. The benefits are two-fold: it provides a flexi-
ble approach to model skewed and heavy-tailed data, as well as situations where het-
eroscedasticity or autocorrelation is present; the natural hierarchical structure of the
scale mixture representation results in a very simple-to-implement Markov chain Monte
Carlo (MCMC) scheme that provides a full Bayesian analysis.

The scale mixture idea appeared as early as the 1970’s. The scale mixture of normal
family was introduced in [1]. It was first used to sample symmetric distributions that
have a normal component; see [2] for recent representations of scale mixtures of normal
distributions.

Scale Mixture of Normals Given latent variableλ , a random variableX with lo-
cation and scale parametersθ and σ is conditionally distributed as normalX

�
λ �

N � θ � α � λ � σ2 � , whereα � 
 � is a positive function onℜ andλ � π � λ � ; π � 
 � is a prob-
ability density function either discreteor continuous. The distribution ofX is referred to
as a scale mixture of normals (SMN), with mixing parameterλ and scale mixing density
π � 
 � .

The class of models defined above is very large and useful. Yet, such representa-
tions of normal distributions can be restrictive in many situations where the Gaussian
assumption may not be the appropriate choice:for example, contexts such as analysis of
financial data may clearly require assuming a non-normal likelihood. Thus distributions
generated above are very much close to normals, differing only at the first two moments.
To overcome this difficulty, and mimicking somewhat the idea in SMN, we have the
following:

Scale Mixture of Uniforms Suppose that a random variableX has unimodal and
skewed distribution with modeµ, then it may be written using the following representa-
tion: X

�
V 
 v � U � µ � σ1g � v � � µ � σ2g � v � � , σ1 � 0, σ2 � 0 andσ1 �
 σ2; g � 
 � is positive

and invertible;V has distribution defined onℜ with density fV � 
 � . The distribution ofX
is termed as a scale mixture of uniforms (SMU).

Here are some facts which can be easily established.

admin
© 2003 American Institute of Physics 0-7354-0162-4/03/$20.00

admin
CP690,

admin
The Monte Carlo Method in the Physical Sciences,

admin
edited by J. E. Gubernatis

admin
394

http://dx.doi.org/10.1063/1.1632162


If X
�
V � v � U � µ � σ � v � µ � σ � v � andV � Gamma � 3� 2 � 1� 2� thenX � N � µ � σ 2 � 	

If fX is a unimodal, symmetric density about 0 andf �X � x � exists for all x, then the
following hold: fX � x � � � �

v � g � 1 � x � f �X � g � v � � g � � v � dv � then fV � v � � � f �X � g � v � � g � v � g � � v � .
From the above development we have the following:
Remark 1. The class of unimodal, symmetric distributions can be written as scale

mixtures of uniform distributions.
Remark 2. All densities having the quadratic formf � � x 	 µ

σ � 2 � are covered under the
SMU Definition. Many well known distribution belongs to this category; as examples,
normal, studentt, Cauchy. Also, non-quadratic formmodels are encapsulated in the
scale mixture of uniforms family.

Example: Heteroscedastic regressions The assumption of constant variance is usu-
ally inappropriate in many business applications. Traditionally, there are two approaches
dealing with non-constant variance: weightedleast squares is appropriate when the form
of the non-constant variance is either knownexactly or there is some known parametric
form. Alternatively, one can transformy to h � y � whereh � � is chosen so that varh � y �
is constant. Here we discuss how to modelboth the mean and variance simultaneously
under our scale mixture of uniform framework. The basic model is given by:

E 
 Xi � � Ziβ � logvar
 Xi � � 2Wiθ � i � 1 � 	 	 	 � n

Zi � � 1 � Zi1 � 	 	 	 � ZiJ � � β � � β0 � β1 � 	 	 	 � βJ � �
Wi � � 1 � Wi1 � 	 	 	 � WiK � � θ � � θ0 � θ1 � 	 	 	 � θK �

If for somek, ∑n
i � 1Wik 
 0, we use� Wik and � θ to replaceWik andθ . Another change

is that we useλk � e 	 θk . λ is often referred to as “precision”, and it is conventional to
let it have an inverse gamma distribution.The SMU representation is the follows:

Xi

� 
 Vi � vi � � U

�
Ziβ � � vi

∏λWk
k

� Ziβ � � vi

∏λWk
k � �

andVi � iid fV � 	 � 	 The condition for the above representation is that we constrainE 
 V � �
3. It’s easy to find suchV , for instance, letV � Gamma � 3� 2 � 1� 2� .

For the implementation of a Gibbs sampler we need all the full conditional distri-
butions. There will be a parameter associated withfV but the full conditional for this
parameter will be based on theVi being iid from fV and so should not pose any prob-
lem. All the full conditionals forvi, β j andλk are truncated version of some standard
distributions which can be sampled using well established algorithms.
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