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Results are presented from a posteriori evaluations of momentum and energy transfer between the
resolved and subgrid scales when the multifractal subgrid-scale model from Part I is implemented
in a flow solver for large-eddy simulations of turbulent flows. The multifractal subgrid-stress model

is used to evaluate the subgrid part �ij
* of the stress tensor, with the resolved part ūiūj evaluated by

an explicit filter. It is shown that the corresponding subgrid and resolved contributions P* and PR

to the resolved-scale energetics produce extremely accurate results for the combined subgrid energy
production field P�x , t�. A separate backscatter limiter is developed here that removes spurious
energy introduced in the resolved scales by including physical backscatter, without sacrificing the
high fidelity in the stress and energy production fields produced by the multifractal subgrid-scale
model. This limiter makes small reductions only to those components of the stress that contribute to
backscatter, and principally in locations where the gradients are large and thus the energy introduced
by numerical errors is also largest. Control of the energy introduced by numerical error is thus
accomplished in a manner that leaves the modeling of the subgrid-scale turbulence largely
unchanged. The multifractal subgrid-scale model and the backscatter limiter are then implemented
in a flow solver and shown to provide stable and accurate results in a posteriori tests based on
large-eddy simulations of forced homogeneous isotropic turbulence at cell Reynolds numbers
ranging from 160�Re��106, as well as in simulations of decaying turbulence where the model and
the limiter must adjust to the changing subgrid conditions. © 2005 American Institute of Physics.
�DOI: 10.1063/1.1965094�

I. INTRODUCTION

A companion paper,1 herein referred to as Part I, pre-
sented a new approach to modeling the subgrid stresses for
large-eddy simulation �LES� of turbulent flows, based on the
multifractal structure of the subgrid enstrophy field at
inertial-range scales. That work outlined a method for mod-
eling the subgrid vorticity field �sgs�x , t� with a multifractal
representation, and from this derived expressions for the sub-
grid velocity components ui

sgs�x , t� and the associated subgrid
stress component fields �ij

* �x , t�. Part I also presented results
from a priori tests in which the multifractal subgrid-scale
model was compared against direct numerical simulation
�DNS� data for homogeneous isotropic turbulence. Those re-
sults showed that the model recovered the filtered subgrid
velocity fields ui

sgs, the subgrid stresses �ij
* , and the subgrid

energy production field P* with significantly higher fidelity
than is typically reported for models based on traditional
eddy-viscosity or mixed scale-similarity approaches.

However, when any subgrid-stress model is imple-
mented in an LES flow solver, then the results will reflect not

only the fidelity of the subgrid-stress model, but also the
effects of purely numerical errors introduced by the flow
solver itself. These numerical errors include discretization
and truncation errors introduced by discrete representations
in the solver, aliasing errors introduced by nonlinear terms
due to the finite resolution of the computations, and filtering
and commutation errors introduced by implicit or explicit
filters used in the solver. The aliasing errors, which arise
from the inherent under-resolution in LES, inject spurious
energy into the resolved scales of the flow and thereby act to
destabilize the simulation. This spurious energy transfer is in
addition to the natural energy exchange between the resolved
and subgrid scales from physical interactions between the
stress and strain-rate fields in the turbulent flow. Thus even
with an “ideal” subgrid-scale turbulence model, namely one
that in the absence of numerical errors always produces the
exact subgrid-stress field �ij�x , t� when provided with exact
resolved velocity field data, the flow solver must also include
a means to remove the additional energy to remain stable and
obtain physically realistic results.

Against this background, subgrid-scale models have of-
ten been treated as much as a means of stabilizing computa-
tions by removing the additional energy as they are a means

a�Present address: Center for Turbulence Research, Stanford University,
Stanford, CA 94305-3035.

PHYSICS OF FLUIDS 17, 075112 �2005�

1070-6631/2005/17�7�/075112/19/$22.50 © 2005 American Institute of Physics17, 075112-1

http://dx.doi.org/10.1063/1.1965094


to model the physical interactions that give rise to the actual
energy transfer between the resolved and subgrid scales in
turbulent flows. Indeed the distinction between these two
roles of a subgrid-scale model is often not articulated. Thus
subgrid models have sometimes been deemed successful if
they produce the correct overall level of energy in the re-
solved scales, even if they fail to provide high fidelity in the
detailed spatial and temporal transport of momentum and
energy within the flow.

In this paper, it is shown that the spurious energy intro-
duced in the resolved scales by errors inherent in the numer-
ics of a flow solver may be removed in a manner that does
not significantly sacrifice the fidelity of the detailed spatial
and temporal transport of momentum and energy in the
�ij

* �x , t� and P*�x , t� fields produced by the multifractal
subgrid-scale model from Part I. By a relatively small reduc-
tion to only those stress components that contribute to back-
scatter of energy from the subgrid scales to the resolved
scales—i.e., by limiting backscatter, principally in regions
where the errors are largest—the control of spurious energy
is accomplished in a manner that leaves the modeling of the
subgrid-scale turbulence largely unchanged. This effectively
separates the role of the subgrid model from the additional
burden of controlling the numerical error. The multifractal
model and backscatter limiter are then implemented in a flow
solver and shown to provide stable and accurate results in
large-eddy simulations on a 323 grid of forced homogeneous
isotropic turbulence at cell Reynolds numbers ranging from
Re��160, for which filtered DNS data are available for
comparison, to the highest values tested, approaching Re�

�106. The multifractal subgrid-scale model and the back-
scatter limiter are furthermore shown to provide stable and
accurate results in LES of decaying homogeneous isotropic
turbulence, where both the model and the limiter must adjust
to the changing subgrid conditions.

II. MOMENTUM AND ENERGY TRANSPORT IN LES

A. Traditional form of the momentum equation

The most commonly used form of the momentum equa-
tion for large-eddy simulations of incompressible flows is

� ūi

�t
+

�

�xj
ūiūj − �

�2ūi

�xj � xj
+

1

�

� p̄

�xi
= −

�

�xj
�ij , �1�

where the subgrid stress is given by �ij �uiuj − ūiūj. Since the
uiuj term is typically not available to the flow solver, large-
eddy simulations based on this form of the momentum equa-
tion generally model both terms of �ij as a single entity, often
with an eddy-viscosity model or some other representation.
Irrespective of the subgrid model used for �ij, the kinetic
energy E�x , t�� 1

2 ūiūi of the resolved field then follows as

�E
�t

+ ūj

�E
�xj

=
�

�xj
�Q j� − D − P . �2�

Note that the flux vector Q j, given by

Q j�x,t� � − �ūi�ij + ūj
p̄

�
− �

�E
�xj

� , �3�

appears in �2� in divergence form and thus does not contrib-
ute to energy transfer between the resolved and subgrid
scales. The viscous dissipation of resolved kinetic energy,
given by

D�x,t� � �
� ūi

�xj

� ūi

�xj
, �4�

scales in �2� relative to the inertial transport of E with the cell
Reynolds number as Re�

−1, and thus is a negligible contribu-
tor to the energy balance at large Re�. The remaining term

P�x,t� � − �ijS̄ij �5�

is often called the “subgrid energy production,” where S̄ij is
the resolved strain-rate tensor defined as

S̄ij �
1

2
	 � ūi

�xj
+

� ūj

�xi

 . �6�

P�x , t� gives the inertial transfer of kinetic energy between
the resolved and subgrid fields due to vortex line stretching
in one field by the strain rate field imposed from the other.

B. Present form of the momentum equation

While �1� is the more widely used form of the momen-
tum equation, an alternative is to equivalently express this as

� ūi

�t
+

�

�xj
ūiūj +

1

�

� p̄

�xi
− �

�2ūi

�xj � xj
= −

�

�xj
�ij

* , �7�

where the long overbar represents an explicit filter on the
product ūiūj of the resolved velocity components. The corre-
sponding subgrid stress �ij

* in �7� is then given in terms of the
resolved and subgrid velocity fields by

�ij
* � ūiuj

sgs + ui
sgsūj + ui

sgsuj
sgs. �8�

In principle, �ij
* could also be modeled as a single entity by

an eddy-viscosity model or some other representation. How-
ever, unlike �ij in Sec. II A, �ij

* in �8� involves only terms
which depend directly on the subgrid velocity field. A further
alternative is thus to develop a subgrid model that can ex-
plicitly evaluate the contributions of the subgrid velocity
fields ui

sgs to each of the three terms in �8�. Such a model for
the subgrid velocities was developed in Part I from a multi-
fractal cascade representation for the subgrid vorticity field.

The kinetic energy E�x , t� in the resolved field then fol-
lows from �7� as

�E
�t

+ ūj

�E
�xj

=
�

�xj
�R j� − D − P , �9�

where the corresponding flux vector R j is now given by

R j�x,t� � − �ūi�ūiūj + �ij
* � − ūjE + ūj

p̄

�
− �

�E
�xj

� . �10�

The viscous dissipation D of resolved kinetic energy in �9� is
still given by �4�, and thus remains negligible at large Re�.
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However, now the subgrid energy production P is

P�x,t� � − �ūiūj + �ij
* �S̄ij , �11�

which can be separated into subgrid and resolved parts as
P�P*+PR, with

P*�x,t� � − �ij
* S̄ij �12�

giving the contribution to subgrid energy production due to
the subgrid stress �ij

* in �8�, and

PR�x,t� � − ūiūjS̄ij �13�

giving the contribution to subgrid energy production by the
resolved stress ūiūj. The contribution PR to the total energy
transfer, termed “false” dissipation by Lund,2 in fact gives
the energy exchange due to interaction between the filtered
components of the resolved velocity field and the resolved
strain-rate field, as discussed by Leonard.3

The form of the momentum equation in �7� with the
associated subgrid stress in �8� and the subgrid energy pro-
duction P in �11� have been analyzed by Lilly,4 Deardorff,5

Leonard,3 Clark et al.,6 Mansour et al.,7 Antonopoulos-
Domis,8 and Rogallo and Moin.9 Lilly4 first proposed ap-
proximating ūiūj � ūiūj in �7�, while Leonard3 proposed ex-

plicitly evaluating the ūiūj term for various simple filter func-

tions. Clark et al.6 further approximated the resolved-subgrid

terms in �8� as ūiuj
sgs+ui

sgsūj �0 and modeled the subgrid-

subgrid term ui
sgsuj

sgs with an eddy-viscosity representation.
Owing to the inaccuracy of these early approximations, most
subsequent large-eddy simulations have instead been based
on the form of the momentum equation in �1�.

More recently several studies2,10–12 have used the mo-
mentum equation in �7� with various subgrid-scale models
for large eddy simulations. The present study is also based on
�7�, but uses the multifractal model from Part I to represent
the subgrid stress, together with an explicit filter for evalu-

ating ūiūj.

C. The multifractal subgrid-scale model

The multifractal subgrid-scale model is based on a rep-
resentation of the subgrid vorticity field in terms of a scale-
invariant multiplicative cascade for the subgrid enstrophy,
and an additive cascade for the progressively isotropic
decorrelation of the subgrid vorticity orientation from the
smallest resolved scale �. The subgrid velocities ui

sgs in �8�
then result from Biot–Savart integrals over this modeled sub-
grid vorticity field. A complete derivation of the model and
the explicit filter used in evaluating �ij

* in �8� and ūiūj in �7�
is given in Part I. To implement the multifractal model, the
momentum equation in �7� is solved with

�ij
* � B�ūiuj

� + ūjui
�� + B2ui

�uj
�, �14�

where

B � 0.47 2−�2/3�N�2�4/3�N − 1�1/2 �15�

with the number N of iterations in the multifractal cascade
given by

N � log2��/��� . �16�

Each of the filtered products represented by the long over-
bars in �14� is explicitly evaluated as

ūiuj
� �

1

�3�
�3

Gi�x�H j�x�d3x , �17�

ui
�uj

� �
1

�3�
�3

Hi�x�H j�x�d3x , �18�

and the filtered product of the resolved velocity components
in �7� is similarly evaluated as

ūiūj �
1

�3�
�3

Gi�x�G j�x�d3x . �19�

The functions Gi�x� and Hi�x� in �17�–�19� are tensor-
product expansions of ūi�x� and ui

��x�, respectively, using
Legendre basis functions �k as

ūi�x� � �
l,m,n

almn�l�x��m�y��n�z� � Gi�x� , �20�

ui
��x� � �

l,m,n
blmn�l�x��m�y��n�z� � Hi�x� , �21�

where the required cell-centered values of ui
� are obtained

from the cell-centered values of ūi�x� as

ui
� � ūi − a000. �22�

Equations �7� and �14�–�22� give a complete statement of the
multifractal model for large-eddy simulation.

III. ENERGY TRANSFER BY THE MULTIFRACTAL
MODEL

Here we assess the energy transfer implied by the mul-
tifractal subgrid-scale model given above, including the sub-
grid part P*�x , t� in �12� and the resolved part PR�x , t� in
�13�, as well as the combined subgrid energy transfer P�x , t�
in �11�. Figure 1 shows correlations of all three of these
fields, obtained from 5123 DNS velocity fields for forced
homogeneous isotropic turbulence filtered onto a 323 grid to
simulate the resolved velocity fields in a large-eddy simula-
tion, and provided as the inputs to the multifractal subgrid-
scale model. The resulting correlation coefficient of 0.85 for
P*, which gives the contributions from �ij

* �x , t� to the total
subgrid energy production, is consistent with the results in
Part I. As noted there, at least some of the errors in P* are
due to correlations that result from the multifractal cascade
for the subgrid vorticity field, but which were ignored in
evaluating the Biot–Savart integral in Part I from the multi-
fractal subgrid vorticity field.

It is here further apparent from the results in Fig. 1 that
there is a very high correlation, exceeding 0.997, in the re-
solved part PR that gives the contributions from ūiūj to the
combined subgrid energy production in �11�. This indicates
that the explicit filter used in �19� to evaluate ūiūj is ex-
tremely accurate for the conditions considered here. More-
over, since the relative sizes of the original 5123 DNS grid

075112-3 Multifractal subgrid-scale modeling. II Phys. Fluids 17, 075112 �2005�



and the filtered 323 grid used to simulate the resolved veloc-
ity fields provide for significant subgrid-scale turbulence, the
present high correlation should be reasonably indicative of
practical LES conditions. At these conditions the resolved

part PR is found to contribute more than 80% of the total
subgrid energy production P. Thus it is not surprising that
the correlation in Fig. 1 between the total subgrid production
P from the multifractal model and from the filtered DNS
data is also in excess of 0.99. While it has long been
understood13 that the filter kernel strongly influences P�x , t�,
for smooth filters a relatively precise estimate for the lower
bound of the contribution of PR to P, corresponding to arbi-
trarily high cell Reynolds numbers Re�, is given by Leonard3

as 0.3±0.1. This suggests that even at much larger Re� val-
ues typical of many practical large-eddy simulations, PR will
remain a substantial contributor to P. Given the relative ac-
curacy of the explicit filter used in �19� to evaluate ūiūj, this
suggests that high accuracy in the total subgrid energy pro-
duction P�x , t� seen in Fig. 1 will be maintained with the
present model even at large Re� values.

Figure 2 compares a typical two-dimensional intersec-
tion through the total subgrid energy production fields P�x , t�
obtained from the multifractal model with the filtered DNS

FIG. 1. Correlations for the subgrid energy production field P�x , t� from the
multifractal subgrid-scale model and corresponding exact values from 5123

DNS fields filtered onto the same 323 LES grid, showing results for the
subgrid part P*�x , t� �top�, the resolved part PR�x , t� �middle�, and the com-
bined total P�x , t� �bottom�, giving correlation coefficients of 0.85, 0.997,
and 0.99, respectively.

FIG. 2. �Color�. Typical comparisons of two-dimensional intersections
through the subgrid energy production field P�x , t� on the 323 LES grid,
showing the result from the multifractal subgrid-scale model �top� and the
corresponding exact result from the 5123 DNS field filtered onto the same
323 grid �bottom�. The same color scale is used for both fields to allow direct
comparisons. Note local regions of large forward scatter and backscatter of
energy between the resolved and subgrid scales.
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data. It is apparent that the result in the top panel from the
multifractal model gives an extremely accurate representa-
tion of the “exact” result in the bottom panel. In particular,
both the forward transfer and backscatter of energy between
the resolved and subgrid fields are accurately reproduced by
the model. The considerations above indicate that as Re�

becomes arbitrarily large, some decrease in the accuracy of
P�x , t� from the multifractal model may be expected, but the
continued contribution of the resolved part PR to the total
subgrid production P and the relatively high accuracy of the
explicit filter in evaluating ūiūj indicate that the model will
continue to provide an accurate representation of the subgrid
production field.

IV. CONTROL OF NUMERICAL ERRORS

As noted in the Introduction, irrespective of the fidelity
in �ij�x , t� and P�x , t� of the subgrid-scale model used in any
large-eddy simulation, the calculation must additionally pro-
vide a means for controlling errors introduced by the numer-
ics of the solver itself. Some of these errors will act to de-
grade the accuracy of the simulation without necessarily
destabilizing it, and significant effort has been expended to
understand and develop techniques for reducing such errors
in large-eddy simulations.14–17 Other errors such as aliasing
can introduce spurious energy into the resolved scales which,
unless removed, will destabilize the calculation. Many prior
approaches have removed this spurious energy by modifying
an eddy viscosity in the subgrid-scale model to provide an
explicit increase in the forward transfer of energy from the
resolved scales. While such approaches can ensure an appro-
priate average rate of subgrid energy production to give the
correct overall energy in the resolved scales, the resulting
subgrid-scale stress and subgrid energy production fields
�ij�x , t� and P�x , t� typically lack significant fidelity. Aside
from such purely dissipative subgrid-scale models, a number
of other approaches18–23 have explicitly allowed for back-
scatter to permit higher-fidelity representations for �ij�x , t�
and P�x , t�. Such backscatter can, however, lead to compu-
tational instabilities due to the additional energy being intro-
duced in the resolved scales, and thus such approaches have
limited the backscatter in various ways to stabilize the cal-
culation. Typically this is done by modifying an eddy viscos-
ity, though doing so generally further decreases the fidelity of
the subgrid stress and energy production fields.

Unlike eddy-viscosity models, the present multifractal
subgrid-scale model was shown in Sec. III to provide re-
markably accurate representation of both forward transfer
and backscatter of energy in P�x , t� between the resolved and
subgrid scales. However, as with any model it must addition-
ally provide a means to control the effects of numerical er-
rors introduced by the flow solver. In this section we dem-
onstrate how this spurious energy can be effectively
controlled by means of a backscatter limiter that does not
significantly reduce the fidelity in the spatial and temporal
structure of the subgrid energy production field P�x , t� or the

stress fields �ij
* �x , t� and ūiūj�x , t�.

A. Backscatter limiting for large-eddy simulations

We show here that the spurious energy introduced in the
resolved scales by explicitly including backscatter may be
removed by limiting the magnitude of those stresses respon-
sible for the backscatter of energy into the resolved scales.
As understood for over a decade, in actual turbulent flows
energy is transferred both from the resolved to the subgrid
scales as well as from the subgrid to the resolved scales,
often in approximately equal proportions.13 Thus the energy
production P may be decomposed into terms involving for-
ward transfer of energy where

P�ij�
forw.�x,t� � − �ū�i�ū�j� + ��ij�

* �dS̄�ij� � 0, �23�

with subscript parentheses indicating that no sum is implied,
and backscatter of energy where

P�ij�
back�x,t� � − �ū�i�ū�j� + ��ij�

* �dS̄�ij� 	 0, �24�

and where the superscript “d” denotes the deviatoric part of
the tensor. The full energy transfer field is then given by

P�x,t� = �
�ij�

P�ij�
forw.�x,t� + �

�ij�
P�ij�

back�x,t� . �25�

While �23�–�25� define the local energy transfer in the
continuous system, in a discrete simulation backscatter may
give rise to artificial amplification of resolved energy and
lead to destabilization of the simulation, as discussed above.
Thus the energy transfer of a discrete system Pdisc. is given
by

Pdisc.�x,t� � �
�ij�

P�ij�
forw.�x,t� + �

�ij�
P�ij�

back�x,t� + ��x,t� , �26�

where � is the erroneous backscatter to the resolved scales.
Given that the numerical error should originate where
resolved-scale gradients are large, and thus where the natural
backscatter is also relatively large, it appears reasonable to
expect this error to be proportional to the magnitude of the
backscatter components of �24� and thus given by

��x,t� � 
�
�ij�

P�ij�
back�x,t� , �27�

with 
 the constant of proportionality.
The artificial backscatter � in �27� may be eliminated in

the discrete system, however, by making small reductions in
the local magnitude to those stress components that contrib-
ute to local backscatter of energy from the subgrid scales to
the resolved scales. To do this, the limiter first calculates
each of the terms P�ij� from �23�–�25� that contribute to the
local subgrid production. Any of the local P�ij� terms that are
negative will contribute to local backscatter of energy, and
thus only those terms are reduced as

P�ij�̂ � �1 − CB�P�ij�, �28�

where
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CB �



1 + 

�29�

is the prescribed backscatter-limiter coefficient in terms of 

in �27�. This has the effect of locally reducing the contribu-
tion to backscatter into the resolved scales by the amount
CBP�ij�, which is largest where P�ij� is most strongly negative
and thus where by �27� the numerical errors are also approxi-
mately largest.

To implement this in the momentum equation in �7�, for
each �ij� in �25� for which P�ij�	0 the corresponding pro-

duction term P�ij� is effectively replaced with P�ij�̂ from �28�
by replacing the corresponding �ū�i�ū�j��d in �7� with the
backscatter-limited value

	ū�i�ū�j�
ˆ 
d

= �1 − CB��ū�i�ū�j��d, �30�

and replacing the corresponding ���ij�
* �d in �7� with the

backscatter-limited value

���ij�
*̂ �d

= �1 − CB����ij�
* �d. �31�

Altering the components in the momentum equation in this
manner is equivalent to backscatter-limiting the subgrid en-
ergy production field P�x , t� as in �28�.

The total energy transfer in the backscatter-limited com-
putational system is then given by

Pdisc.̂�x,t� � �
�ij�

P�ij�
forw.�x,t� + �1 − CB��

�ij�
P�ij�

back�x,t�

+ �1 − CB���x,t� . �32�

Combining �27�, �29�, and �32�, the reduction of the back-
scatter stresses gives

Pdisc.̂�x,t� = P�x,t� , �33�

with P�x , t� given by �25�, i.e., the energy transfer in the
discrete computational system equals the energy transfer in
the continuous system, and hence, the artificial backscatter
energy has been eliminated.

It is also apparent from the considerations above that the
limiter procedure could alternatively be implemented by an
analogous forward-transfer accelerator procedure, in which
the backscatter reduction factor �1−CB� in �28� is replaced
by a forward-transfer acceleration factor �1+CF� for each
�ij� in �25� for which P�ij��0. Similarly, a mixed
backscatter-limiter and forward-transfer accelerator could
also be implemented. The net effect on the subgrid energy
production P should be largely similar for all these schemes,
since it is only the net P resulting from the sum over all the
P�ij� terms in �25� that determines the local energy transfer
between the resolved and subgrid scales.

B. Effects of numerical discretization and backscatter
limiting

Backscatter limiting as described here for control of nu-
merical errors is separate from the physical model for the
subgrid scales presented in this paper, and in principle can be
applied to LES using any other subgrid model. It represents a

new numerical method to control errors arising from a dis-
crete under-resolved turbulence simulation that explicitly in-
corporates backscatter of energy into the resolved scales. The
amount of these numerical errors will vary locally, and de-
pend in part on the particulars of each discrete implementa-
tion, such as the derivative stencil, interpolation method, grid
selection, and frame of reference. As such, the net amount of
local backscatter limiting required to remove these errors
also will depend in part upon these factors.

This may be illustrated by a simple analytical example.
Let the stress tensor � be given, using arbitrary dimensions,
by

� = 	 1 − 1

− 1 − 1

 , �34�

and the strain-rate tensor S̄ be given similarly by

S̄ = 	1 1

1 − 1

 . �35�

Both tensors are symmetric and traceless. In the continuous
case, the subgrid energy production implied by �34� and �35�
is then given by

P = − �ijS̄ij = 1 + 1 − 1 − 1 = 0. �36�

Note here that each diagonal stress component produces a
contribution of “1” to the backscatter of energy into the re-
solved scales. In the discrete computational case, however,
the energy production will include the artificial contribution
� produced by the backscatter stresses. From the results of
Sec. IV C that show CB�0.15, corresponding to 
�0.18 in
�29�, the energy transfer in the discrete case is given from
�26�, with �=2�0.18��−1�=−0.36 from �27�, by

Pdisc. = − �ijS̄ij + � = 1 + 1 − 1 − 1 − 0.36 = − 0.36. �37�

Applying backscatter reduction via �32�, the backscatter-
limited subgrid energy production is then given by

Pdisc.̂ = − �i ĵS̄ij = 1 + 1 − 0.85 − 0.85 − 0.30 = 0, �38�

which demonstrates that the backscatter reduction has elimi-
nated the artificial backscatter of energy into the resolved
scales. Thus the backscatter-limited discrete energy produc-

tion Pdisc.̂ in �38� equals the energy production P of the
continuous system of �36�.

Let us now rotate the frame by � /3 radians, and use
primes to denote quantities in the rotated frame. From �34�
the rotated stress tensor �� then becomes

�� = 	− 1.366 − 0.366

− 0.366 1.366

 , �39�

and from �35� the rotated strain-rate tensor S� becomes

S� = 	 0.366 − 1.366

− 1.366 − 0.366

 . �40�

The subgrid energy production in the rotated continuous case
is now given by
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P� = − �ij�S�ij = 1
2 + 1

2 − 1
2 − 1

2 = 0, �41�

confirming that the total energy production of the continuous
system is equal in the two frames, as expected. However,
comparing �36� with �41�, it is evident that the skew stress
components in the rotated frame produce backscatter at a rate
only half that of the diagonal stresses in the unrotated frame.
Thus in the rotated discrete computational system, the result-
ing energy production is given from �26�, with ��=2�0.18�
��−1/2�=−0.18 from �27�, by

Pdisc.� = − �ij�S�ij + �� = 1
2 + 1

2 − 1
2 − 1

2 − 0.18 = − 0.18.

�42�

Comparing this with the analogous result in �37�, it is appar-
ent that the rotated frame produces approximately half as
much false backscatter as the unrotated frame, and thus re-
quires only half as much backscatter reduction. Indeed, from
�32� the backscatter-limited subgrid energy production in the
rotated frame is given by

Pdisc.�̂ = − �ij�̂S�ij = 1
2 + 1

2 − 0.43 − 0.43 − 0.15 = 0, �43�

which confirms that the backscatter limiting eliminates the
false backscatter �� and recovers the correct energy produc-
tion of the continuous field P in �36�. Consequently, as this
example demonstrates, while the amount of backscatter re-
duction necessarily varies in the two discrete implementa-
tions, the resulting backscatter-limited energy production is
the same in both cases, and is equal to that of the continuous
field, namely

Pdisc.�̂ = Pdisc.̂ = P . �44�

C. Evaluation of the backscatter limiter

To test this approach for controlling numerical errors, the
multifractal subgrid-scale model and the backscatter limiter
were implemented in a flow solver for large-eddy simula-
tions of forced homogeneous isotropic turbulence in a spa-
tially periodic domain. The solver was based on the filtered
momentum equation in �7�, using a standard pressure-
correction algorithm on a uniform Cartesian mesh with
primitive variables stored at staggered locations, following
the method of Harlow and Welch.24 The Poisson equation
was solved using standard fast Fourier transform �FFT�
methods. All spatial derivatives were evaluated with fourth-
order central differencing, while time integration was per-
formed with the third-order explicit Runge–Kutta scheme of
Spalart et al.25 The flow was forced in standard fashion in the
spectral domain at each time step by rescaling the magni-
tudes of the two lowest wave forms to maintain a constant
total energy in these scales.

Simulations were first conducted in which the backscat-
ter coefficient was varied between 0�CB�1 to determine
the effects of CB on the resolved flow scales and to identify
the smallest CB value that provides for sufficient backscatter

reduction to produce stable computations. Figure 3 shows the
energy spectra E�k� resulting from such large-eddy simula-
tions for several values of CB, with the corresponding E�k�
from filtered DNS of the same flow shown by the solid sym-
bols for comparison. Values of CB	0.10 were found to pro-
duce insufficient removal of spurious energy from the re-
solved scales to provide for stable long-time simulations. For
CB=0.10 stable simulations were obtained, but the corre-
sponding E�k� in Fig. 3 showed an excess of spurious energy
remaining at the intermediate and small scales. The results
show that increasing CB�0.10 removes the excess energy in
these wave modes, but also causes increasing reductions in
the total energy of the resolved scales. Figure 3 shows that
CB�0.15 represents a reasonable optimum that provides a
compromise between the competing effects of instability at
significantly smaller CB values and excessive reduction of
total resolved-scale energy for significantly larger CB values.
A natural extension of the present fixed value of CB would be
to adaptively determine a local CB�x , t� based on the resolved
flow quantities, much as the dynamic model of Germano
et al.20 has been used to adaptively determine the originally
fixed Smagorinsky constant.

Figure 4 shows spectra of each of the individual stress
components from such simulations, both with �CB=0.15� and
without �CB=0� the backscatter limiter. These show that the
limiter acts to reduce the stresses uniformly over the entire
range of wave numbers, rather than producing changes prin-
cipally at high wave numbers where most of the spurious
energy is seen in Fig. 3. The dip in the spectrum at interme-
diate wave numbers results from the use of a fixed constant
CB in the backscatter reduction. It is this fact that causes the
reduction in energy at intermediate wave numbers as CB is
successively increased to remove the spurious energy at high
wave numbers.

FIG. 3. Energy spectra resulting from 323 LES cases with the multifractal
subgrid-scale model and the present backscatter limiter for various fixed
values of the backscatter coefficient CB, compared with the corresponding
spectrum from 5123 DNS results filtered onto the same LES grid. The nomi-
nal value CB=0.15 provides for sufficient reduction of aliasing effects at
high wave numbers, with only moderate effects at intermediate and low
wave numbers.
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Various alternative backscatter reduction strategies were
also evaluated to determine if the method described in Sec.
IV A represents a reasonably optimal approach. These in-
cluded a scheme with a reduction coefficient CB=0.15 but
with the stress components randomly selected for limitation,
rather than by the P�ij�	0 criterion noted above. At each
time step approximately 45% of the components were ran-
domly chosen for reduction �the same percentage as were
reduced with the P�ij�	0 criterion� but without regard to
whether the particular stress component contributed to for-
ward transfer �P�ij��0� or backscatter �P�ij�	0� of energy.
As shown in Fig. 5, the energy spectrum E�k� resulting from
such random reduction shows a large deficit of energy at low
wave numbers and a large excess of energy at high wave

numbers that produced unstable long-time simulations. Fig-
ure 5 also shows the results obtained from leaving ūiūj in
�25� unchanged and limiting only the subgrid stress compo-
nents ��ij�

* as in �31�. For CB=0.15, and even for CB=1.00,

such simulations became unstable over long-time integration,
demonstrating that limiting only the subgrid-scale stresses
does not provide sufficient management of resolved energy
levels. Similarly, Fig. 5 also shows the effect of limiting only
ūiūj as in �30� with CB=0.15, while leaving �ij

* in �25� un-
changed. The resulting E�k� is similar to that in Fig. 3 when
limiting both ūiūj and �ij

* , with the principal difference being
slightly more energy at high wave numbers. This is consis-
tent with the earlier observation that roughly 80% of the total
subgrid energy production P in these simulations is ac-
counted for by the resolved part PR. Collectively, these re-
sults show that backscatter limiting of both ūiūj and �ij

* as in
�28�–�31� with CB=0.15 provides the most effective control
of the energy introduced in the resolved field by numerical
errors from the flow solver.

Simulations were also conducted to determine if the
backscatter limiter with reduction factor �1−CB� in �28�–�31�
could alternatively be implemented by an analogous
forward-transfer accelerator with an enhancement factor �1
+CF�, or by a mixed backscatter-limiter and forward-transfer
accelerator, to give a similar net reduction in the subgrid
energy production P. Figure 6 shows the resulting E�k� for
several combinations of backscatter reduction and forward-
transfer acceleration. The reference case corresponding to
�CB ,CF�= �0.15,0� from Fig. 3 is also shown for compari-
son, as is the filtered DNS spectrum. It is apparent that
�CB ,CF�= �0.075,0.075� and �CB ,CF�= �0,0.15� produce
roughly the same result as the reference case, though a small
increase in the energy at the smallest resolved wave modes is
evident for pure forward-transfer acceleration that did not
occur for the backscatter-only limiter.

FIG. 4. Spectra of individual inertial stress components
obtained from the multifractal subgrid-scale model
without the backscatter limiter �solid symbols�, corre-
sponding to CB=0.0, and with the backscatter limiter
�open symbols�, corresponding to CB=0.15. Results
verify that the present limiter acts over all wave num-
bers to produce the reduced energy at intermediate and
low wave numbers seen for CB=0.15 in Fig. 3.

FIG. 5. Energy spectra from 323 LES with multifractal subgrid-scale model
and backscatter limiter for various alternative limiter strategies discussed in
Sec. IV C, verifying the proposed backscatter limiting of both subgrid stress
and resolved stress as indicated in �30� and �31�, only for �ij� values that
correspond to terms P�ij��0 in �25�, which contribute to backscatter in
P�x , t�.

075112-8 G. C. Burton and W. J. A. Dahm Phys. Fluids 17, 075112 �2005�



D. Effect of the backscatter limiter on model
performance

The effect of the backscatter limiter with �CB ,CF�
= �0.15,0� on the accuracy of the multifractal subgrid-scale
model was determined in tests that compared model values
for the stress components and the subgrid energy production
against corresponding filtered DNS results. The original 5123

DNS velocity fields were first spatially filtered onto a 323

grid to provide resolved velocities that served as inputs to the
subgrid model. The multifractal subgrid-scale model then
predicted stress component fields �ij

* �x , t� and ūiūj�x , t� and
the subgrid energy production field P�x , t�, first without any
backscatter limiting �CB=0� and then again with the back-
scatter constant at the nominal value �CB=0.15�. Figure 7
shows the subgrid energy production field P�x , t�, including
the backscatter limiter with CB=0.15, in the same two-
dimensional intersection and with the same color scale as for
CB=0.15 in Fig. 2. It is apparent by comparing with Fig. 2
that the change in the detailed spatial structure of P�x , t� due
to the backscatter limiter is exceedingly small. Table I gives
the resulting correlations between model values and filtered
DNS values for the normal and shear stress components of
ūiūj and �ij

* , as well as for PR, P*, and the combined subgrid
energy production P. It is apparent from these results that, in
contrast to earlier efforts26 to limit backscatter which re-
ported significant degradation in accuracy, use of the present
backscatter limiter with the multifractal subgrid-scale model
produces virtually no reduction in the accuracy seen in the
P�x , t� field in Figs. 1 and 2 and in Part I.

V. A POSTERIORI TESTS OF THE MULTIFRACTAL
MODEL: STATIONARY CASE

To determine the stability and evaluate the accuracy of
the multifractal subgrid-scale model with the backscatter
limiter in actual large-eddy simulations, a series of a post-
eriori tests were conducted based on LES of forced, homo-

geneous, isotropic turbulence in a spatially periodic domain.
These tests were conducted with the same flow solver de-
scribed in Sec. IV B on a 323 grid for values of the cell
Reynolds number Re� ranging from 160�Re��106. The
latter value is clearly high enough that any further increase
will not produce any changes in the resolved scales. These
simulations were conducted both to verify that stable long-
time integrations are feasible with the multifractal model and
the backscatter limiter at these Reynolds numbers, and to
assess how closely the resulting resolved velocity fields from
these large-eddy simulations reproduce various aspects of the
structure and dynamics of high Reynolds number turbulence.
These large-eddy simulations were initialized with DNS ve-
locity fields for forced, homogeneous, isotropic turbulence
on a 5123 grid that had been filtered onto the same 323 LES
grid. All these simulations were conducted with the backscat-
ter limiter coefficients set to the nominal values �CB ,CF�
= �0.15,0� from Sec. IV C. For the lowest Re� simulation,
the viscosity � was the same as in the DNS data, allowing

FIG. 6. Energy spectra from 323 LES with multifractal subgrid-scale model
and various combinations of backscatter reduction with coefficient CB and
forward-scatter acceleration with coefficient CF, verifying largely similar
results for the same net reduction in the subgrid energy production P. Note
slightly better results obtained for backscatter-only limiting.

FIG. 7. �Color�. Same two-dimensional intersection from the energy pro-
duction field illustrated in Fig. 2, but calculated using the multifractal
subgrid-scale model and a backscatter reduction coefficient CB=0.15. Com-
parison with DNS and nonlimited model values in Fig. 2 indicates that the
operation of the backscatter limiter does not significantly affect the accuracy

of the limited energy production field P�x , t�̂.

TABLE I. Comparisons with and without backscatter limiter of correlation
for 323 LES with multifractal model at Re��160 and corresponding DNS
results filtered onto same grid, for various fields contributing to total subgrid
energy production field P�x , t�.

�

Statistic Without limiter With limiter

�ūiūj�normal 0.9980 0.9962

�ūiūj�shear 0.9981 0.9959

�normal
* 0.8600 0.8608

�shear
* 0.8608 0.8611

PR 0.9970 0.9949

P* 0.8518 0.8570

P 0.9945 0.9914
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direct comparisons with the filtered DNS data after long-time
LES calculations of the resolved velocity fields ūi�x , t�.

Such comparisons with filtered DNS data are of central
interest in evaluating the efficacy of any LES modeling ap-
proach. As long as the scales from the full velocity field u
that are of interest to a particular application, are preserved
in the flow simulation, the resolved velocity field ū and sta-
tistics associated with it, such as resolved velocity gradients
�ūi /�xj, retain a clear physical meaning and hence relevance
for the practicing engineer or scientist. Statistics of the sub-
grid field, such as the subgrid contribution to the total kinetic
energy, are quantities not traditionally sought from LES,
even though they may be important to certain applications,
and will not be highlighted in the following evaluation.

A. Integrated quantities

For the Re�=160 case, Fig. 8 shows the resulting time-
evolution of the total kinetic energy 
 in the resolved scales
over the entire domain, the rate of change d
 /dt, the total
subgrid energy production P over the entire domain, and the
resulting cell Reynolds number Re���2
�1/2� /�. Analo-
gous results are shown in Fig. 9 for the highest cell-Reynolds
number case, corresponding to Re��106. In both cases an
initial transient is apparent in the first eddy-turnover time to

during which the flow solver and the limiter adjust to the
imposed initial conditions. Both Figs. 8 and 9 show the ap-
proach to a statistically stationary state over about one eddy-
turnover time to, after which the energy 
 and its rate of
change d
 /dt demonstrate stable long-time simulations as a
result of the subgrid energy transfer P�x , t� produced by the
multifractal subgrid model and the backscatter limiter. In ad-
dition, the simulations at both these Re� values show slight
time-variations in several integrated flow characteristics, par-

ticularly in the total subgrid energy transfer P. These time-
variations, however, remain stable and maintain a roughly
constant amplitude and frequency throughout the simula-
tions, suggesting that they reflect actual time-variations in
the energy transfer between the resolved scales and the
subgrid-scale turbulence. Similar characteristics and stability
were found for the simulations at the two intermediate Re�

values.

B. Energy spectra

The resulting energy spectra E�k� from all four cases,
corresponding to 160�Re��106 are shown in Fig. 10. As
expected for these relatively large cell Reynolds numbers, all
four cases produce nearly identical energy spectra that follow
the k−5/3 inertial-range scaling. The deviations from this scal-
ing are consistent with the effect of the backscatter limiter
seen in Figs. 3 and 4. At these Reynolds numbers, the vis-
cous dissipation D does not contribute significantly to the
drain of energy from the resolved scales, and the flow solver
must rely almost entirely on the stresses ūiūj and �ij

* in P�x , t�
to transfer energy to and from the resolved field. The energy
transfer is thus essentially unaffected by further reduction in
the viscosity, which merely reduces the inner �viscous� scale
�� deep within the subgrid-scale turbulence.

C. Probability densities of velocity gradients

The accuracy of these large-eddy simulations was further
evaluated by examining probability densities of the velocity
gradient components �ūi /�xj. Owing to the Re�-
independence of the resolved scales demonstrated in Fig. 10,
these probability distributions will be essentially the same

FIG. 8. Time-evolution of resolved-
scale flow quantities from long-time
323 LES at Re��160 for multifractal
subgrid-scale model and backscatter
limiter with CB=0.15. Simulation
reaches statistically stationary state af-
ter initial transient in which flow-
solver and limiter adjust to imposed
initial condition.
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for all four Re� cases. The distributions for the Re��160
case were therefore compared with the corresponding filtered
DNS results. Figure 11 shows the resulting comparisons for
all nine velocity gradients �ūi /�xj, with the model and DNS
results given, respectively, by the dashed and solid lines. The
Re��160 value is sufficiently large to produce significant
departures from Gaussian statistics due to internal intermit-
tency in the resolved scales. This corresponds to the expo-
nential scaling at large gradient magnitudes that is identifi-
able by the straight-line tails of these distributions in the
semi-logarithmic axes shown in Fig. 11. It is apparent that

the model results, for both the on- and off-diagonal compo-
nents of the velocity gradients, are in good agreement with
the distributions obtained from the filtered DNS fields. It is
especially noteworthy that the multifractal subgrid-scale
model accurately predicts the probability of even compara-
tively rare large-gradient features of the flow, some of which
occur with a frequency three orders of magnitude lower than
the mean.

It is also apparent in Fig. 11 that the LES results recover
the negative skewness in the on-diagonal components of the
velocity gradient, as well as the much lower skewness in the
off-diagonal components. This can be verified in Table II,
where the variance �2, the skewness S3, and the kurtosis K4

values obtained from the model are shown. Table III further
compares the model results with the corresponding DNS re-
sults. The average variance �2 of the three on-diagonal com-
ponents and the six off-diagonal components of the velocity
gradient fields from the model are both within 6% of the
values from the filtered DNS values, with at least some of
even this small difference being attributable to limits of sta-
tistical uncertainty that result from the fact that these values
are obtained from statistics over the 323 LES grid at a single
instant of time �t / to�12�. Moreover, in Table III the ratio of
the rms values of the on- and off-diagonal velocity gradient
components can be seen to be within about 5% of the 
2
value for homogeneous isotropic turbulence, with at least
some of this small difference again being due to the statisti-
cal uncertainty limits. Similarly, the average skewness value
S3 of the on-diagonal velocity gradients can be seen to be
within 3% of the corresponding DNS value. There are larger
differences in the kurtosis values, but these increasingly
higher-order moments of the velocity gradient distributions
necessarily have correspondingly larger statistical uncertain-

FIG. 9. Time-evolution of resolved-
scale flow quantities demonstrating
stable long-time 323 LES at Re�

�106 for multifractal model and back-
scatter limiter with CB=0.15. The
simulation again reaches statistically
stationary state after initial transient.
Further increases in Re� are unlikely
to produce significant changes in ener-
getics of resolved scales.

FIG. 10. Energy spectra from long time-integrations of 323 LES at succes-
sively increasing cell Reynolds numbers 160�Re��106, from multifractal
model and backscatter limiter with CB=0.15, verifying essentially
Reynolds-number independent energetics in resolved scales at these Re�

values.
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ties associated with them. In general, the distributions in Fig.
11 and the moments in Tables II and III show remarkably
good agreement between the model values and the corre-
sponding DNS values.

D. Probability densities of stress components

Similar comparisons of the probability densities for all
six stress component values ūiūj are shown in Fig. 12, with
the model and DNS results again given, respectively, by the
dashed and solid lines. Generally excellent agreement is seen
in both the on- and off-diagonal components of these
stresses, including accurate predictions by the model of

FIG. 11. Comparisons of 323 LES at Re��160 with DNS results filtered onto same grid, showing probability densities of all nine components of the resolved
velocity gradients �ūi /�xj obtained at �t / to��12 from long time-integrations with multifractal model and backscatter limiter with CB=0.15. Note excellent
agreement of LES/MF model results �dashed line� with filtered DNS �solid line�, despite strongly non-Gaussian statistics. Corresponding moments are
compared in Tables II and III.

TABLE II. Moments of resolved velocity gradient distributions in Fig. 11
from 323 LES results for forced homogeneous isotropic turbulence using
multifractal model at Re��160, showing variance �2, skewness S3, and
kurtosis K4.

Statistic �2 S3 K4

�u /�x 49.65 −0.346 5.951

�v /�y 55.38 −0.578 6.060

�w /�z 51.96 −0.255 5.672

�u /�y 101.38 0.273 5.909

�u /�z 98.15 −0.083 5.214

�v /�x 85.79 0.187 6.007

�v /�z 95.96 0.067 4.672

�w /�x 85.98 −0.135 6.336

�w /�y 96.76 −0.157 5.705

TABLE III. Comparisons of average variance �2, skewness S3, and kurtosis
K4 for on- and off-diagonal components of resolved velocity gradient dis-
tributions in Fig. 11 from 323 LES of forced homogeneous isotropic turbu-
lence obtained with the multifractal model at Re��160 and DNS results
filtered onto same grid, with differences approaching the limits of statistical
uncertainty.

Statistic �2 S3 K4

��u /�x�LES 52.332 −0.393 5.894

��u /�x�DNS 55.450 −0.406 3.713

��u /�y�LES 94.004 0.025 5.641

��u /�y�DNS 100.073 −0.042 4.108
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events having frequencies-of-occurrence three to four orders
of magnitude lower than the mean. Figure 13 additionally
shows corresponding probability densities of the viscous dis-
sipation rate D and the enstrophy in the resolved scales of
the flow, with the model and filtered DNS results again
given, respectively, by the dashed and solid lines. It is appar-
ent for both of these quantities that the model and DNS
results are in good agreement.

VI. A POSTERIORI TESTS OF THE MULTIFRACTAL
MODEL: DECAYING CASE

To further evaluate the accuracy of the multifractal
subgrid-scale model and the backscatter limiter in large-eddy
simulations, another series of a posteriori tests was con-
ducted, in this case involving LES of decaying, homoge-
neous, isotropic turbulence. These tests extend the results in
the previous section for stationary, homogeneous, isotropic
turbulence by examining the ability of the multifractal sub-
grid model in Part I, as well as the backscatter limiter for
numerical error control in Sec. IV, to adapt to changing sub-
grid turbulence conditions over the course of the simulation.

A. Effects of varying subgrid conditions

The present a posteriori tests are similar to those con-
ducted by Hughes et al.27 to evaluate the Smagorinsky
model, the dynamic Smagorinsky model, and their varia-
tional multiscale method; this permits comparisons with their
results obtained for those subgrid-scale models. The tests
were based on 2563 DNS of decaying, homogeneous, isotro-
pic turbulence with initial Re��90 and final Re��61. Fol-
lowing Ref. 27, the DNS was first forced during 0	 t / to

�4.16 to provide an initial field of stationary, homogeneous,
isotropic turbulence. For t / to�4.16 the forcing was stopped
and the simulation continued through t / to�13 to provide
DNS of decaying, homogeneous, isotropic turbulence. The
DNS field at the initial decay time t / to=4.16 was also fil-
tered onto a 643 LES grid. A large-eddy simulation with the
multifractal subgrid-scale model and the backscatter limiter
was then carried out over the same 4.16	 t / to	13 decay
period, allowing direct comparison of the flow characteristics
with the decaying DNS results filtered onto the same LES
grid.

The resulting decay of the kinetic energy in the subgrid

FIG. 12. Similar to Fig. 11 but comparing probability densities of six inertial stress components at �t / to��12 from 323 LES at Re��160 with DNS filtered
onto same grid.
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velocity field, together with the relatively low initial grid-
scale Reynolds number Re�, leads to relatively large changes
in the subgrid characteristics over the course of the tests.
This creates a particularly challenging case for LES, since
both the subgrid-scale model and the method used to control
numerical error in the simulation must adapt to these
changes. In particular, the dissipation rate in the DNS results
decreases by a factor of 12 over the 4.16	 t / to	13 time
span of the tests, and as a result the viscous scale �� in Part
I increases by a factor of 1.8. Moreover, since the initial
condition for the LES was obtained by filtering the 2563

DNS field to a 643 LES grid, from �16� there are at most
N�2 steps in the subgrid cascade at the initial time t / to

=4.16, and only about N�1 steps at the final time t / to

�13. This alone would lead to a significant decrease in B in
�15�, from 0.43 to 0.36, over the course of the simulation. By
comparison, for the stationary case in Sec. V, in which a 5123

DNS field was filtered onto a 323 LES grid, �16� indicates
N�4 steps in the cascade, for which �15� gives B�0.47.
The smaller initial B value in the present decaying case, as
well as the further reduction in B over the course of the
simulation, reflects the significantly lower levels of kinetic
energy in the subgrid field.

Additionally, the result in �15� for B was obtained in Part
I for an LES grid scale � in the inertial range, so that the
subgrid field is dominated by inertial-range scalings. In this
decaying case, following Hughes et al.,27 the 2563 DNS field
was filtered onto a 643 LES grid, and thus � is in the cross-
over between the inertial and dissipative ranges. As a result,
the factor 0.47 in �15� for B must be reduced to 0.12 to
reflect the lower total subgrid enstrophy Qsgs in Part I over
the corresponding inertial range value. The higher initial
resolution of the 643 LES in this decaying case, relative to
the 323 LES in Sec. V, also leads to half as many wave
modes being aliased into the resolved scales by the flow
solver. To reflect this reduced level of aliasing, the backscat-
ter constant CB must be correspondingly reduced by half,
from 0.15 to 0.075. The LES resolution increases even fur-
ther over the course of the decaying simulation, due to the
reduction in subgrid energy, and this leads to a further reduc-
tion in the number of wave modes being aliased into the
resolved scales. Accordingly, CB must decrease over the
course of the simulation to reflect the increasing resolution.
Since B in �15� reflects the decrease in the total energy in the
subgrid field, taking CB�t��B�t� appropriately decreases the
amount of backscatter limiting needed to control the decreas-
ing numerical error as the resolution increases.

B. Results from LES of decaying turbulence

The total kinetic energy 
�t� in the resolved scales from
the resulting LES simulation of decaying, homogeneous, iso-
tropic turbulence is shown in Fig. 14. It is apparent in the top
panel in Fig. 14 that the simulation accurately determines the
energy decay with time. Moreover, the bottom panel in Fig.
14 compares the corresponding results from Ref. 27 for the
original and dynamic versions of the Smagorinsky model
with the present results from the multifractal model with the
backscatter limiter. It can be seen that the errors in the
present results relative to the filtered DNS are only about
1 /10 as large as those from the original Smagorinsky model,
and are about 1 /4 as large as those resulting from the dy-
namic model.

Figure 15 shows the energy spectra E�k� in the resolved
scales at four different times in the simulation, obtained from
the present LES with the multifractal subgrid model. The
spectra show an inertial range with an overall reduction in
the total kinetic energy. These spectra may be compared with
corresponding experimentally measured spectra in active-
grid-generated decaying turbulence, at much higher Rey-
nolds number, by Kang, Chester, and Meneveau;28 the four
times shown in Fig. 15 have been chosen to match the rela-
tive energy levels at the four downstream locations in their
experiments. Figure 16 additionally compares the energy
spectrum in the resolved scales at t / to=6.47 from the present
LES with the result from the filtered DNS at the same time.
The relatively lower energy levels at intermediate wave num-
bers noted in Fig. 6 are evident; roughly similar features can
be seen in the corresponding results for the Smagorinsky and
dynamic Smagorinsky models in Fig. 7 of Hughes et al.27

Figure 17 shows results for the decay in the total energy
dissipation, including the subgrid energy production P�x , t�

FIG. 13. Comparisons of probability densities for viscous dissipation rate
�top� and enstrophy �bottom� in resolved scales at �t / to��12 from 323 LES
at Re��160 and DNS results filtered onto same grid.
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as well as the resolved-scale viscous dissipation D�x , t� from
�4�. It is apparent that the present results track the DNS de-
cay reasonably well. Also shown for comparison are the cor-
responding results for the Smagorinsky and dynamic Smago-
rinsky models from Fig. 11 of Ref. 27. The LES results from
the three SGS models are compared with the DNS result
during the initial period of decay in the top panel of Fig. 18,
as each of the LES simulations adjust from the imposed ini-
tial conditions, as well as at intermediate times during the
decay in the bottom panel in Fig. 18. It is evident that the
present results for P�x , t� rapidly adjust from the imposed
initial condition to the proper value of the subgrid energy
transfer, and then follow the DNS results closely thereafter.

While both the present multifractal model and the dy-
namic Smagorinsky model can be seen in Fig. 17 to perform
reasonably well in terms of the integrated energy transfer
from the resolved scales, there are fundamental differences
between the two models in their ability to accurately repre-
sent the subgrid energy production field P�x , t�. This can be

seen in Fig. 19, which illustrates the distribution of subgrid
energy production values P�x , t� taken from filtered DNS
data �solid�, and compares it with the dynamic Smagorinsky
estimate �dashed-dotted� and that of the multifractal model
�dashed�. The dynamic Smagorinsky model recovers almost
none of the true distribution of forward transfer and back-
scatter of energy of the actual turbulent flow, and only cap-
tures the net positive transfer of energy to the subgrid scales.
By contrast, it is apparent that the multifractal model cap-
tures most of the distribution of forward and backscatter of
energy, with the distribution of the multifractal P�x , t� differ-
ing from the DNS values by only a few percent.

The multifractal model also captures the detailed spatial
structure of the energy transfer field P�x , t�. This can be seen
by comparing the top panel in Fig. 20, which shows P�x , t�

FIG. 14. Total resolved kinetic energy from decaying test case in Sec. VI,
comparing filtered DNS result �solid� with LES results using multifractal
subgrid-scale model �dashed�, dynamic Smagorinsky model �dashed-dotted�
and conventional Smagorinsky model �dotted�. Shown are energy over en-
tire simulation �top� and detail at intermediate stage �bottom�, with errors
from multifractal model approximately 1/10 as large as from Smagorinsky
model and 1/4 as large as from dynamic model.

FIG. 15. Evolution of the resolved-scale energy spectrum E�k� from LES
with multifractal subgrid-scale model for decaying test case in Sec. VI.
Times shown are at t / to=4.66, 6.67 8.50, and 9.65 to match relative energy
levels at the four downstream locations reported in Kang et al. �2003�.

FIG. 16. Energy spectra at t / to=6.47 from LES with multifractal subgrid-
scale model �circles� compared with filtered DNS of Hughes et al. �2001�
�dots�, showing similar energy deficit in intermediate wave modes and ex-
cess in high wave modes as seen in Fig. 6 due to fixed backscatter reduction
factor CB.
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obtained from the dynamic Smagorinsky model, with the
same two-dimensional intersection shown in Figs. 2 and 7.
Figures 2, 7, and 20 thus allow direct comparisons of the
filtered DNS result for P�x , t�, the corresponding P�x , t�
from the present multifractal model, and the P�x , t� from the
dynamic Smagorinsky model. While the dynamic Smagorin-
sky model provides sufficient total dissipation to allow the
overall energy in the flow in Fig. 14 to be simulated, it pro-
vides a very poor representation of the spatial structure in the
energy exchange between the resolved and subgrid scales.
The same is true in the bottom panel in Fig. 20 for the cor-
responding P�x , t� from the scale-similarity model of Bar-
dina et al.18 While that model allows for backscatter that
gives phase correlations of roughly 0.65 with corresponding
DNS fields, the resulting average subgrid energy transfer
�P�x , t�� is far too low. When used in a “mixed” model with
an eddy-viscosity part like the Smagorinsky model to give
the correct �P�, it provides essentially no fidelity in repre-
senting the spatial structure in the energy exchange between
the resolved and subgrid scales. By comparison, P�x , t� from
the multifractal model in Fig. 2, even with the backscatter
limiting shown in Fig. 7, provides excellent agreement with
the filtered DNS result for P�x , t� in Fig. 2.

These simulations of decaying turbulence show that the
multifractal subgrid-scale model and the backscatter limiter
are capable of providing accurate large-eddy simulations of
flows in which the subgrid properties undergo significant
change. In such cases, the subgrid model that provides for
exchange of momentum and energy between the resolved
and subgrid scales, as well as the method used to remove any
unphysical energy to maintain stability of the solver, must
correctly adjust to these changes in the subgrid turbulence
properties. In most approaches for subgrid-scale modeling,
these two aspects of LES have been lumped together, with
the consequence that fidelity in P�x , t� is largely abandoned
in order to obtain stability in the solver. Consequently, most
attention to date has focused on global properties of the en-

ergetics associated with various SGS models. The present
results show that, even in a decaying flow with large changes
in the subgrid properties, it is possible for physically-based
approaches like the multifractal model with the backscatter
limiter to provide stability via removal of the unphysical
energy, while at the same time providing high fidelity in
representing the detailed spatial structure of the momentum
and energy exchange between the resolved and subgrid
scales.

VII. CONCLUDING REMARKS

This study has conducted a posteriori evaluations of the
multifractal subgrid-scale model developed in Part I which
show that stable and accurate large-eddy simulations can be
obtained when this model is used to represent the subgrid-
scale turbulence physics, and when the present backscatter
limiter is used to remove the spurious energy introduced in
the resolved scales by the numerics of the flow solver. This
contrasts with previous approaches in which the subgrid tur-
bulence model has been used principally to stabilize the

FIG. 17. Total resolved-scale energy dissipation, including total subgrid
energy production and resolved-scale viscous dissipation, from decaying test
case in Sec. VI, comparing filtered DNS result �solid� with LES results
using multifractal subgrid-scale model �dashed�, dynamic Smagorinsky
model �dashed-dotted� and conventional Smagorinsky model �dotted�.

FIG. 18. Details of energy dissipation profile in Fig. 17 at start of decay
�top� and at intermediate stage �bottom�, showing comparisons of filtered
DNS result �solid� with LES results using multifractal subgrid-scale model
�dashed�, dynamic Smagorinsky model �dashed-dotted� and conventional
Smagorinsky model �dotted�. Note multifractal model adjusts rapidly from
initial condition and subsequently follows DNS result closely.
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computations by dissipating this spurious energy or merely
to represent the average net flux of energy to the subgrid
scales, rather than as a means for representing the subgrid
production field P�x , t� with any significant degree of fidel-
ity. Here the physical subgrid-scale model provides a high-
fidelity representation of the detailed spatial and temporal
structure in the momentum and energy transfer between the
subgrid and resolved scales, while the backscatter limiter
controls the numerical errors separately in a manner that
does not sacrifice the fidelity in the �ij�x , t� and P�x , t� fields.
The multifractal subgrid-scale model and the backscatter
limiter allow these two aspects of any accurate large-eddy
simulation to be accomplished without incurring a substan-
tially greater computational burden than do widely used dy-
namic eddy-viscosity approaches, in which these two func-
tions are tightly coupled and which therefore provide much
lower fidelity in representing �ij�x , t� and P�x , t�.

Large-eddy simulations with the multifractal subgrid-
scale model are based on the momentum equation in �7�,
which involves both the subgrid stress �ij

* in �8� and the re-

solved stress ūiūj. The subgrid stress �ij
* �x , t� is evaluated

from �14�–�22�, obtained as described in Part I from a mul-
tifractal representation of the subgrid vorticity field. This was
shown by a priori tests in Part I to provide remarkably ac-
curate representations for the filtered subgrid velocities
ui

sgs�x , t�, the associated subgrid stress components �ij
* �x , t�,

and the subgrid part P*�x , t� of the subgrid energy produc-
tion field. The resolved stress ūiūj�x , t� is evaluated from �19�
with the same explicit filter used in the evaluation of �ij

* . This
was here shown to provide highly accurate representations
for the resolved part PR�x , t� of the subgrid energy produc-
tion field P�x , t�, with resulting correlations between model
values and filtered DNS values in Table I exceeding 99%.

The backscatter limiter developed here, which removes
the spurious energy introduced by numerical errors, makes
only small reductions to the backscatter components

P�ij��x , t� in �25� where gradients in the resolved field are
large, and thus where the spurious energy is presumably also
largest. This is readily implemented in �7� by reducing the
corresponding components ��ij�

* and ū�i�ū�j� by the factor CB
as in �30� and �31�. While the backscatter coefficient CB has
here been taken as spatially uniform, the amount of reduction
of the backscatter components in �28� depends on the mag-
nitude of each component, and thus varies throughout the
flow.

When this backscatter limiter was combined with the
multifractal subgrid-scale model in a flow solver and used
for a posteriori evaluations, the resulting large-eddy simula-
tions were found to provide stable and accurate results in
long time-integrations of forced homogeneous isotropic tur-
bulence simulations on a 323 grid with cell Reynolds num-
bers ranging from 160�Re��106. For the Re��160 case,
the availability of filtered DNS results on the same 323 grid
allowed for detailed comparisons to assess the accuracy of

FIG. 19. Distribution of subgrid energy production P�x , t� from filtered
DNS data �solid� compared with multifractal model �dashed� and dynamic
Smagorinsky model �dashed-dotted�. Note dynamic Smagorinsky model
only approximates net transfer of energy to the subgrid scales; multifractal
model additionally provides local forward and backward energy transfer
between resolved and subgrid scales.

FIG. 20. �Color�. Subgrid energy production fields P�x , t� from dynamic
Smagorinsky model �top� and Bardina scale-similarity model �bottom�,
showing same intersection as in Fig. 2 �top and bottom� to allow direct
comparison with corresponding result from multifractal model and with ac-
tual P�x , t� from filtered DNS. Note only multifractal subgrid-scale model
provides any significant fidelity in representing detailed spatial structure of
momentum and energy exchange between resolved and subgrid scales.
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these LES calculations with the multifractal subgrid-scale
model. Comparisons of probability densities for the velocity
gradient components �ūi /�xj showed good agreement of the
LES results with corresponding filtered DNS results. Even
the intermittent large-gradient features in the resolved fields,
produced by the nonlinear steepening of resolved-scale gra-
dient quantities into concentrated structures by locally high
strain rates in both the resolved and subgrid fields, were ac-
curately reproduced in these LES results with the multifrac-
tal subgrid-scale model. Various statistical moments of these
probability densities were found to agree to within a few
percent with the corresponding filtered DNS values and with
theoretical values for homogeneous isotropic turbulence, ap-
proaching the limits of statistical uncertainty in such com-
parisons. Similar comparisons of resolved-scale stress com-
ponents ūiūj, resolved-scale enstrophy values, and viscous
dissipation rates in the resolved scales showed good agree-
ment with corresponding filtered DNS results. Additionally,
the present LES results for the decaying homogeneous iso-
tropic turbulence case show that, even under conditions for
which the subgrid properties undergo significant changes
over the course of the simulation, the multifractal subgrid
model and the backscatter limiter provide accurate results.
Collectively the results from these a posteriori assessments
support the conclusion that the multifractal subgrid-scale
model developed in Part I and the backscatter limiter devel-
oped here allow for stable and accurate large-eddy simula-
tions of turbulent flows.

Obvious extensions of this multifractal subgrid-scale
model include the development of corresponding subgrid
models for conserved scalar transport, using an analogous
procedure based on the multifractal structure in scalar
gradient-magnitude fields29,30 at inertial-range scales of high
Reynolds number turbulent flows. In this case, an analogous
multiplicative cascade would provide the multifractal repre-
sentation for the subgrid scalar-gradient magnitude, and an
analogous additive cascade would provide a corresponding
representation for the progressively isotropic decorrelation of
the scalar-gradient orientation as the cascade proceeds from
the grid-scale � to the corresponding inner �diffusion� scale
�D in the subgrid scalar field. The resulting subgrid scalar-
gradient field would then be related to the subgrid scalar field
via a Green’s function integral that allows for an evaluation
similar to that used in Part I for the Biot–Savart integral that
relates the subgrid velocity to the subgrid vorticity. The simi-
larity between the multifractal model for the subgrid vortic-
ity field developed in Part I and a corresponding multifractal
model for the subgrid scalar-gradient field to give the subgrid
scalar field and the associated subgrid scalar flux compo-
nents needed for LES of scalar mixing problems suggests
that this extension should be largely straightforward.

A further obvious extension of the present multifractal
subgrid-scale model is to wall-bounded turbulent flows, for
which the cell Reynolds number Re� decreases as the wall is
approached and the underlying vorticity field becomes highly
anisotropic in the near-wall region. Both of these factors will
affect the evaluation of the Biot–Savart integral. The former
decreases the number N= �� /���3 of inner-scale cells of size
�� within each resolved-scale grid cell of size �, and the

latter will introduce strong correlations in the orientation of
the subgrid vorticity within the grid cells. However, precisely
these considerations naturally suggest specific ways in which
the derivation in Part I may be modified to provide a rational
approach to developing such a near-wall limit of the present
modeling approach, in place of the various ad hoc wall func-
tions that are customarily introduced to modify traditional
eddy-viscosity models for use in the near-wall region. Exten-
sions of the present multifractal subgrid-scale model to per-
mit such use in near-wall turbulence may thus also be rela-
tively straightforward.
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