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In this paper we examine in detail the QED corrections to very narrow reso- 

nances such as the ~ and T particles. We focus on the determination of their mass 

M, their total width F, and their partial width to electrons Pe °. Our objective is 

to review experimental results that were obtained in analyses with incorrect radia- 

tive corrections. Our analysis shows in fact that the errors incurred are sometimes 

bigger than the uncertainties quoted for the current world averages! 11 

In the presence of a very narrow resonance, the radiative corrections depend 

critically on the exact treatment of the infrared region, and differences in the for- 

mulae used to fit the data have an impact on many resonance parameters. A basic 

understanding of the infrared divergences associated with the vanishing photon 

mass was first achieved by Bloch and Nordsieck in 1937! 21 They stated that in 

charged particle scattering the number of photons emitted is undetermined, and 

that the cross section for the emission of zero energy and no photons is exactly 

zero. Many treatments of radiative corrections that exist in the literature violate 

this theorem by containing terms that correspond to a finite, non-zero probability 

for the emission of no photons. In particular, a result from truncated perturbation 

expansion alone produces elastic (i.e., with no photon emitted) terms which violate 

the Bloch-Nordsieck theorem. All the results which were shown to produce errors 

in the extraction of the resonance mass and width at the Z ° include such terms! 31 
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1. In i t i a l  S t a t e  R a d i a t i v e  C o r r e c t i o n s  to  N a r r o w  R e s o n a n c e s  

In e+e - collisions, the nominal collision energy, v/g = 2E, is set by E, the 

energy of the incident beams. The actual c.m. energy available for the annihilation 

is reduced by Bremsstrahlung to X/s(1 - k), where kE is the total energy of the 

emitted photons. The observed cross section, Cobs(S) at the nominal energy Vrg, 

can be written as a convolution of the cross section c0(s(1 - k)) and a dimensionless 

sampling function f(k,  s)t, 31 

and 

Cobs(S) = f f (k ,  s)co(s(1 - k)) dk. (1.1) 

2or .9 
= --~-(log ~ e  2 - 1). 

hard photon terms, and to second order in the vertex terms: 

f (k ,  s) = (1 + 6vp)(1 + K)[flk#-l(1 + 51 + 52) - fl(1 - k)]. 

/~ is the electron equivalent radiator thickness, 

(1.3) 

(1.4) 

s r 2 
co = a,  onres + Cpeak (s - M2) 2 + s r 2' (1.2) 

where M is the mass and r is the total width of the resonance. 

Expressions for f (k , s )  which attain the required precision of 1% have been 

obtained by several authors in the literature! ~-'1 It is well known that f (k ,  s) is 

dominated by inital state effects! 81 Effects of final state radiation on the cross 

section are usually ignored at the fraction of a percent level. 

We employ the following expression for f (k ,  s), truncated to first order in the 
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The 5, terms arise from the leading parts of the vertex correction diagrams of order 

n, 5,p is the vacuum polarization contribution and K is the K-factor .  All these 

terms are reported in the Appendix. 

In the past, most experimenters have fit the narrow resonances of the ~b and 

T families using a different expression for f ( k , s ) ,  based on the classic work of 

Jackson and Scharrel 9] 

f ' ( k , s )  = 5to,5(k) + 3k ~-1 - •(1 - 2k-), 5tot = 61 + ~'~, + K. (1.5) 

5(k) refers to the Dirac function. This expression has been obtained from a first 

order perturbative calculation with the inclusion of exponentiation. 

There are essential differences between the distribution functions f (k ,  s) and 

f ' (k ,  s) and the way they get convoluted according to Eq. (1.1). The differences 

occur in second order in ~. First, in the formulation by Jackson and Scharre, 

the photon vacuum polarization 51vp is approximated by the electron loop be only, 

excluding contributions from hMrons, muons, and r leptons, 5h, 5,, and 5r. Sec- 

ondly, the vertex correction, (1 + 51), should multiply the Bremsstrahlung term 

k ~-1, at least to first order, and hence should enter as an overall multiplicative 

factor to the soft term, as in our definition of f (k ,  s). The factorization of the 

virtual terms arises naturally from those semi-classical formalisms which are based 

on factorization principles! 1°111~1 This factorization of the virtual corrections can 

be checked to first order by doing an explicit second order calculation. A second 

order calculation does not, however, determine unambiguously that the 62 term 

factorizes, though it is a natural choice and it agrees with the Bloch-Nordsieck 

theorem. In the definition of f l (k ,s) ,  the virtual corrections were not properly 
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separated and the 6(k) term gives a finite probability for the electron and positron 

to annihilate without soft photon emission, in direct disagreement with the Bloch- 

Nordsieck theorem. This locally distorts the cross section by a fraction gtot ",~ 14% 

at 10 GeV and ~tot "~ 10% at 3 GeV. 

The convolution integral of a Breit-Wigner resonance cross section with f ( k ,  s) 

can be solved analytically. We use the expression given in the Appendix, which was 

derived by CahntSlfor the Z ° resonance. We have added the photon vacuum polar- 

ization and 62 terms. We also account for the energy spread of the incident beams 

(which can be two orders of magnitude bigger than the resonance width, therefore 

forbidding direct observation of the resonance structure) by further convoluting 

the cross section with a Gaussian resolution function of the appropriate width aE. 

The error associated with Eq.(1.3)is of order 1%, mostly in the normalization due 

to vacuum polarization uncertainties. 

2. D i s t o r t i o n  of t h e  R e s o n a n c e  S h a p e  a n d  Ana lys i s  M e t h o d  

A resonance is described by its mass, M, and two of the following three pa- 

rameters: the total width, F, the cross section integral A, and the cross section at 

the peak, apeak. These three parameters are related by the equation 

A = -~ r %e,,k. (2.1) 

A can be related to the measured partial width to electrons, Fe e-p, and the branching 

ratio for this process, in our case Bhad, by 

Fhad (2.2) ~" 61r2 FexP B h a d  with B h a d  --  • A = ~ F %~,~k = ~ -~ p 
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Under the assumption that the total width is the sum of the partial width to 

hadrons and charged lepton pairs and that the leptonic widths are all equal, we 

h a v e  

p e x p  F = -had + mFe~ xp, and mBe + Bhad = 1. (2.3) 

Here m stands for the number of partial widths into lepton pairs, m = 2 for 

charmonium and m = 3 for bottomonium states. The leptonic branching ratios 

are determined experimentally, and therefore the relations above can be used to 

measure the quantities F and Fee xp. 

We note explicitly the nature of -eperP, defined in Eq. (2.3), and draw the 

• . . [ 1 2 1  
distinction with the quantity of theoretical interest, F °. ~ePe~P is the physical 

coupling of the resonance to leptons through one photon, and is obtained from the 

data by making all radiative corrections except vacuum polarization corrections. 

This is the quantity which, divided by the measured branching ratio, gives the total 

width. The value of F °, on the other hand, is drawn from the data by making all 

radiative corrections including vacuum polarization. Thus F ° reflects the coupling 

strength at tree level only. The quantity Fhad, which couples to the resonance 

mostly through three gluons, does not have QED vacuum polarization corrections, 

r ezp = rOad . and in this case had 

Historically, experimenters have generally included some level of vacuum po- 

larization in their corrections, and have therefore implicitly extracted Fe °. For the 

remainder of our discussion we follow this precedent, though at the end we include 

values for -evexP in summary tables. The relationship between the two quantities is 

rexp = (1 + 5vp)r °. (2.4) e 
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Since radiative effects in the final states are negligible, the branching ratios 

do not depend on radiative corrections. Thus differences in the formulation of the 

radiative corrections will cause changes in two parameters, the integral A and the 

partial width F °. They will scale proportionally, with a factor that depends on the 

branching ratio for the particular channel under study. If one studies simultane- 

ously the resonance cross sections into hadrons, muon pairs, and electron pairs, the 

three integrals will change by the same fraction, giving approximately the same 

change to F °, while the ratio between the three integrals (which determines the 

branching ratios) remains unchanged. 

The difference between our treatment of the radiative corrections and the for- 

mulation by Jackson and Scharre is illustrated in Figure 1. We plot the difference 

between the cross section for the T(9460) calculated with f(k, s) and f'(k, s) using 

the same input parameters, f'(k, s) overestimates the cross section on the reso- 

nance and below it, and underestimates the cross section above the resonance. We 

illustrate in this figure both the case where the vacuum polarization in ft(k, s) in- 

cludes all terms, 6~p = ~e + 6 g + ~ + 6 h ,  and where it is reduced to the electron loop, 

6'vp = 6e. This latter case is, in fact, the formulation that most previous experi- 

ments had used to fit narrow resonances. It is evident that the use of the electron 

loop alone in the vacuum polarization reduces the difference in the predicted cross 

section at the peak resulting from the incorrect treatment of the virtual terms in 

The magnitudes of the shifts in the parameters obtained by the fit to the 

resonance enhancement will depend on details that will vary from experiment to 

experiment, such as the ratio of resonant to non-resonant cross section, the amount 
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of integrated luminosity taken on the peak, and the energy spread of the machine. 

To correctly reproduce the complicated interplay of the fit parameters and to 

study the dependence and correlations among them, we resort to a technique of 

simulating the data obtained by various experiments to measure the ¢ and T reso- 

nances. We generate data points by calculating the cross section at a given energy 

v ~ using our definition f(k, s) and errors proportional to ~ .  Subsequently, 

the generated data points are fit by functions based on both f(k, s) and f '(k, s). 

We study the changes to the fitted resonance parameters using the hadronic cross 

sections only. The four free parameters of the fit are M, F, aE and O'nonres. Be, 

the branching ratio into electrons, is fixed at the world average value! 11 

For a compact presentation of the results in the following section we find it 

convenient to introduce the ratio 

C = 6] + 6vp + 62 + K '  (2.5) 

with the term ~tot as defined in f~(k, 8). The denominator is the factor multiplying 

the soft term in f (k ,s)  when we expand the product with a0 and assume the 

virtual terms are small. In the denominator, we take ~vp = 8e + ~, + ~r + 5h, while 

the value of ~;p implicitly contained in ~tot may be reduced to 6e as in the Jackson 

and Scharre ansatz. Using this ansatz we obtain C = 0.85 and C = 0.70 at 3.1 

GeV and 10 GeV, respectively. Using full vacuum polarization in 6tot we obtain 

C = 1.03. 
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3. Analysis of Simulated Data 

In this section, we show how we apply corrections to published experimental 

results on the parameters of narrow resonances based on fits to our simulated 

data. We deliberately consider only experiments listed in the 1986 Review of 

Particle Properties!llIn changing values of the resonance parameters derived from 

previously applied radiative corrections to new values derived with our definition of 

the sampling function f(k, s), we strictly use information contained in the original 

experimental t131 and theoretical E41t~lll*l papers. 

In correcting published values of the resonance parameters, we take account 

of the fact that experiments differ from one another in several significant ways. 

First, e+e - storage rings differ in their energy resolution. Second, in different 

experiments, the percentage of the total luminosity collected on the resonance 

peak, as compared to below or above the peak, can vary substantially. These effects 

introduce small (~ .5 - 1%) differences in the corrections to different experiments 

which have been taken into account. Finally, most of the measurements have 

been radiatively corrected based on the prescription by Jackson and Scharre!91For 

those, we typically derive changes in F ° of 2% at the T(9460) by fits to simulated 

data. Adding the full and correct vacuum polarization to f'(k, s), results in a 

large correction to F ° of ~ 9%. Other experiments derived resonance parameters 

using algorithms t*l I~*lwhich are identical to ours, except for the vacuum polarization 

terms, and the 62 term. 

In summary, the fact that the changes to the resonance parameters vary from 

experiment to experiment is almost completely due to the differences in the ra- 
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diative corrections (which in turn differ either in normalization or in the value of 

V). 

The dependence of the correction to M and F ° versus C will generate correc- 

tions to the leptonic width and mass as displayed in Figures 2 and 3. The shift in 

the mass A M  is normalized to the energy resolution aE, because we find empiri- 

cally that for a fixed ratio C the mass shift is proportional to ~E. This behaviour 

can be understood, because the equivalent radiator thickness/3 is the same at the 

¢ and T to within 10%. These curves can be used to correct experimental results 

which are not listed here. 

Table 1 lists the values previously measured along with our refitted ones for 

the experiments that determine the mass and widths of the ¢ and T resonances 

and that are referenced in the 1986 Review of Particle Properties!llWe would like to 

point out that our method is one of simulation; it shows fluctuations of typically 

2-3% in the fitted parameters when cross sections are assigned errors that are 

comparable to those in published experiments. The overall error of our method, 

based on much smaller point to point errors, is conservatively estimated to be 1%. 

Using the corrections to F °, we have derived the corrections to F taking into 

account the error on the branching ratio. We decouple the measurement of F ° and 

F by consistently using the world average branching ratio1151 and not the particular 

value as measured by a given experiment. 

Table 2 contains the summary of our results, presented in the form of new 

world averages for the resonance parameters that change significantly with our new 

analysis. Quantities which do not change the world average by at least 50% of a 
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standard deviation are not listed here. The corrections to resonances above open 

flavor threshold resemble the corrections discussed for the Z°131and they are small. 

4. Conclusions and Discussion 

In conclusion, we have reviewed prescriptions for QED radiative corrections 

to resonance production by e+e - annihilation, and present a formula for QED 

corrections to narrow resonances (convoluted with a Gaussian resolution function 

to account for the spread in the beam energy) which has an estimated uncertainty 

of 1.0% in the 3-10 GeV energy region. 

Recently two other papers tl*l tlr] have dealt with the subject of radiative correc- 

tions to narrow resonances. Both use a formulation that is consistent with f(k, s). 

Buchm~iller and Coopert'lrescale the results for the T states using only the peaks 

of the resonances, thereby obtaining changes to world averages which are slightly 

T . - -  • [ 1 8 1  • larger than ours. The correction method of r~omgsmann gives results for the T 

resonances which are nearly identical to those of Ref. 17. However, his results for 

the ¢ states differ substantially from ours, arid we believe that this is because our 

method of simulating cross section data correctly accounts for the various nontriv- 

ial effects arising from a resonance fit. As discussed in Section 2, the J/¢ and ¢~ 

resonance data are more sensitive to these effects than are the T data. 

We have applied our prescription to correct existing measurements of the mass, 

total width, and electron partial width for the ¢ and T resonances. The observed 

shifts are small, but when we combine the new values for all experiments and form 

new world averages, the changes are significant. The values of several quantities 
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change as a result of our reevaluation of the radiative corrections by up to one 

standard deviation. The implications of our analysis for quarkonium potential 

models have been discussed elsewhere !161 tin 

Authors of this analysis are J. Alexander, G. Bonvicini, P.Drell, R. Frey and V. 

L~ith. We would like to thank L. Trentadue for useful discussions, and S. Cooper 

and K. KSnigsmann for helpful suggestions. 
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APPENDIX 

We use in our analysis the form of the distribution function f ( k ,  s) convoluted 

with a Gaussian beam energy spread according to Cahn [5]. We add, however, the 

62 term: 

g(s)  = apeak(l+61+62)-F2 + M2 a~-2@(cos O,/3) - a ~-a 1 + 

The quantities a, cos 0, and @(cos 0,/3) are defined as follows: 

b 2 c u M b + r c ,  c~cos~ rflsin((1-fl)O) a 2 -  + cos0= 0 , 3 ) =  
d ' ad sin 1r/3 sin 0 

where b = M ( s / M  2 - 1), c = F s / M  and d = F 2 + M 2. The terms 61, 62 are 

61 = 3 / 3 ,  
8 2 

62 = 24" 3 

The K - f a c t o r  and 6.p terms are 

a.~r 2 1 6 
g = -~(y - -~), ~p = 61 + 6h with 6t = 6e + 6~, + 6T. 

The vacuum polarization contribution of charged leptons of mass mi is 

2a 5 1.  m/2. 
6t = - ~ - ; - (~  + ~ log - 7 7 .  

$ 

The hadronic part of the vacuum polarization, 6h, is calculated numerically ['81 and 

is 6/, = 1.1 4- 0.5% at 3 GeV and 3.4 4- 1.0% at 10 GeV. The quoted uncertainties 

are our estimates. 
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TABLE CAPTIONS 

1: Summary of the corrections to the parameters of ¢ and T resonances, by 

experiment, as listed in Ref. 1, Meson Full Listing. 

2: New world averages for those resonance parameters which change by more 

than 50% of a standard deviation. Also given are the percentage change in 

the experimental quantities, and the statistical significance of the change in 

units of overall experimental error. 
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FIGURE CAPTIONS 

1) The difference between the cross section for the T (9460) calculated with 

f(k,s) from Eq. (1.3) and with f'(k,s) from Eq. (1.5) using the same 

input parameters. The solid line represents the difference for the full vacuum 

polarization terms in fl(k, s), while the broken line gives the difference for 

only the electron contribution the vacuum polarization. C is defined later in 

the text. 

2) Corrections to Fe ° versus C for the five narrow resonances of the ¢ and T 

families. The corrections to the T(10023), are roughly equal for a E = 8 MeV 

and for aE = 4 MeV. 

3) Corrections to the mass M as a function of the ratio C. A M  is given in units 

of the machine resolution aE. 
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Table 1 

Quantity Reference New value New value l Old value 

r ° 

Pe, J/¢(3097) Boyarski 4.6 keV 4.8 keV 4.8 keV 

F~, J/¢(3097) Baldini 4.5 keV 4.7 keV 4.6 keV 

Fe, J/¢(3097) Esposito 4.5 keV 4.7 keV 4.6 keV 

re, J/¢(3097) Brandelik 4.5 keV 4.6 keV 4.4 keV 

Fe, ¢(3685) L/ith 2.0 keV 2.1 keV 2.1 keV 

Fe, ¢(3685) Brandelik 2.1 keV 2.2 keV 2.0 keV 

Fe, T(9460) Berger 1.36 keV 1.46 keV 1.33 keV 

Fe, T(9460) Bock 1.10 keV 1.18 keV 1.08 keV 

P~, T(9460) Albrecht 1.25 keV 1.34 keV 1.23 keV 

Fe, T(9460) ]Niczyporuk 1.15 keV 1.24 keV 1.13 keV 

Fe, T(9460) Tuts 1.18 keV 1.27 keV 1.15 keV 

Fe, T(9460) Giles 1.42 keV 1.53 keV 1.30 keV 

F~, T(10023) Bock 0.40 keV .43 keV 0.39 keV 

F~, T(10023) Niczyporuk 0.58 keV .62 keV 0.56 keV 

Fe, T(10023) Albrecht 0.60 keV .65 keV 0.58 keV 

F~, T(10023) Tuts 0.58 keV .62 keV 0.56 keV 

Fe, T(10023) Giles 0.57 keV .61 keV 0.52 keV 

Fe, T(10355) Tuts 0.40 keV .43 keV 0.39 keV 

Fe, T(10355) Giles 0.46 keV .49 keV 0.42 keV 

M, T(9460) Artamonov 9460.5 MeV 9460.6 MeV 

9459.87 MeV 9459.97 MeV M, T(9460) Mac Kay 
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Table 2 

Quantity New world 

average 

re °, J/¢(3097) 4.574- 0.51 keY 

re °, ¢(3685) 

r °, T (9460) 

r~, T(10023) 

T(10355) 
reap J/¢(3097) e 

rexp ¢(3685) e 

4.774- 0.51 keV 

New world Fractional Statistical 

average,re = ru change change 

4.534- 0.35 keV -4.0 % 0.5 a 

2.05 4- 0.21 keV 0 0 

1.279 + 0.050 keV 4.5 % 1.1 a 

0.569 4- 0.033 keV 

0.423 4- 0.031 keV 

4.724- 0.35 keV 

6.0 % 

5.2 % 

+0.4 % 

1.0 

0.7 a 

0.1 

2.14 4- 0.21 keV 4.4 % .4 a 

F expe , T(9460) 1.376 4- 0.050 key 12.4 % 3.0 a 

Fe~p T(10023) 0.612 4- 0.033 key 14.0 % 2.3 a C 

I "~pe , T(10355) 0.455 4- 0.031 key 13.2 % 1.7 a 

48.5 4- 3.2 keV 12.6 % 1.7 o- 

34.2 4- 7.3 keV 14.0 % 0.6 ~r 

0.001% M, T(9460) 

F,T(9460) 

F, T(10023) 

9459.934-0.19 MeV 0.5 a 
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