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Abstract .  
D.I.S. at small Bjorken x is considered within the dipole cascade formal- 

ism. The running coupling in impact parameter space is introduced in order 
to parametrize effects that arise from emission of large size dipoles. This results 
in a new evolution equation for the dipole cascade. Strong coupling effects are 
analyzed after transforming the evolution equation in Borel (b) space. The Borel 
singularities of the solution are discussed first for the universal part of the dipole 
cascade and then for the specific process of D.I.S. at small x. In the latter case 
the leading infrared renormalon is at b = l/G0 indicating the presence of 1/Q 2 
power corrections for the small-x structure functions. 

I N T R O D U C T I O N  

Small-x D.I.S. is a typical example of the class of processes known as semi- 
hard processes. They are characterized by the presence of two large scales 
ordered as f i  >> Q >> AQCD. Since the momentum transfer Q involved is 
large, these processes are amenable to perturbat ive QCD treatment .  The 
resummat ion  of leading logarithmic corrections of the energy, or ln(1/x)  for 
D.I.S., is performed by the well known BFKL equation [1]. It is also known 
tha t  for small enough x the LLA(x) result obtained ~ la BFKL, although in- 
frared finite, receives contributions from low transverse momentum regions, 
where observables become sensitive to non-perturbat ive corrections. It is this 
region of low transverse momen ta  tha t  will be considered here. 

QCD factorization in the small-x regime can be formulated either in trans- 
verse m o m e n t u m  space or in impact  parameter  space through the introduction 
of the dipole cascade in the s-channel [2], [3]. It  is the latter formulation tha t  
will be used here. Its merit ,  apar t  from the simplicity of the final results, is 
tha t  it organizes the per turbat ive  expansion in terms of sequential soft gluon 
emissions in the s-channel, which in the Coulomb gauge have a clear proba- 
bilistic interpretat ion (to be contrasted with gluon ladders exchanged in the 
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t-channel used ill the regge description). For fixed (~ this formulation has 
been shown to be equivalent to BFKL. The dipole approach is more suitable 
for introducing the running coupling because of its radiative nature. Just like 
in timelike cascades, relevant for jet evolution, the scale in the coupling will 
be assumed to be the virtuality of tile emitted gluon. Once the dipole evolu- 
tion equation with running coupling is constructed, its solutions are studied 
in Borel space and their singularities are identified. This analysis concerns the 
universal part of the dipole cascade which is independent of the external par- 
ticles involed in the process (i.e. independent of impact factors in the BFKL 
formalism). Finally, for the specific process of D.I.S. at small x it is shown 
that tile leading infrared renormalon (Borel singularity oil the positive semi- 
axis) occurs at b/~0 = 1, which indicates power corrections for the structure 
functions of O(A2QcD/Q2). 

DIPOLE EVOLUTION EQUATION WITH 
RUNNING COUPLING 

Consider small-x D.I.S. in the rest frame of tile nucleon target. The QCD 
faetorization theorem for the structure functions takes the form [2] 

FT'L(X'Q2) - 47r~,~ dz d2rO (~ (z r)a<N(Y = ln(z/x),r) T ,L  \ , (1) 

Here, (I)(T~ r) is the O(ae,~) transition probability for 3'* --+ q0 and adu(Y, r) 
is the q-q dipole-nucleon total cross section. The LLA(x) corrections in this 
formalism are generated by the sequential emission of soft gluons with strictly 
ordered rapidities. In the large .~  limit the emission of a soft gluon can be 
thought of as the production of a pair of dipoles each one of which can become 
the parent for further emissions. The whole cascade can be described in terms 
of the dipole density n(Y, r, p) [4] which satisfies the evolution equation 

o-~n(Y,r,p) = fo~~ n(Y = O, rlP) = r S ( r - p ) .  (2) 

The kernel K: is calculated in perturbation theory to O(a,)  from the qq ~ qqg 
process plus the corresponding virtual non-radiative process. In terms of the 
dipole density n, the cross section GriN becomes 

= f e2p CYdN (Y, r) J 2- p 2 (3) 

All the large ln(1/x) corrections are contained in n, which is projectile and 
target independent, whereas or0 is the cross section for absorption of dipole 
of transverse size p by the nucleon target, a0 contains information about the 
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nucleon size and it is typically beyond the reach of perturbation theory, unless 
the nucleon is simulated by a small size onium state. 

The introduction of the running coupling occurs at the level of the basic 
branching process q~l -'+ qq9 and with scale a~(k2), with k the transverse 
momentum of the emitted soft gluon. The derivation and the form of the 
kernel with running coupling are given in ref. [5]. Here it is more fruitful to 
consider the dipole evolution equation in Borel space. The Borel image/i  of 
n with respect to a.,(Q2) is defined as 

n(Y, r, p; a~ (Q2) = io ~ db 5(Y,  r, p; b) e -b/"'cQ2) . (4) 

This leads to the following evolution equation in Borel space. 

~ ~ ( v '  r' io ]o ~ p; b) -- o~ dr' db'IC(r, r'; b') ~(Y, r', p; b - b'), (5) 

with boundary condition 

~(y  = o,,-, p; b) = ,- ~(,- - p) ~(b). (6) 

The evolution kernel in Borel space is 

IC(r,r';b) = 

• 

N< 2 2.b~o r(-bZ0) ~( , - -r ' )  
( -Q-u ) r(1 + b~0) 

1( )  s01 
r, ~1/~(1 _ ~),/~ r(1 + ~bl3o) r(1 + (1 - ~)b;3o) 

{ (r2>) b~~ ( 1 -  bfl0, bt30; 1; r2<) 

(7) 

where r< = min(r,r') and 7"> = max(r , / )  and /30 = (1/4~r)[(ll/3)_h�89 + 
( 2 /3 )N  A. The first term in (7) comes from virtual corrections where no new 
dipole is emitted. The rest comes from real emission. Note that in the infrared 
limit, where there is emission of dipoles of large s i z e , / =  r> >> r = r<, the 
hypergeometric functions are analytic. This makes K suitable for studying 
the infrared limit analytically and numerically. 
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BOREL SINGULARITIES A N D  P O W E R  
CORRECTIONS 

Inspecting the kernel (7) it is seen that, for fixed parent dipole size r there 
is a potential singularity at b = 0. However, using the properties of the 
hypergeometric fnnetions it can be shown that  the b = 0 singularity is of 
ultraviolet origin and cancels between the real and the virtual part. Near 
b = 0 the kernel is analytic. To exhibit the singularity structure, the kernel is 
convoluted with test functions (r2) "~. These are known to be eigenfimctions of 
the kernel in the fixed coupling ease. After defining the function X(% b) as 

,t,,.' s ,.'; b)(<'V = V > ~ ,  b) (~.~),, (8) 

the expression of X(7, b) turns out to be 

r(-bgo) 
x(~, b) - r ( i  + bgo) 

+ r ( - 7  - b~o) 1 f l  da) ['(1 - cob#o) ['(1 - (1 - co)b)?o) 

['-(i 7:~:u t5-70)~ Jo ~w2(1-- ~)'/2 p(1 + wb~0)r(1 + ( 1 -  w)b#0) 

[ F ( 1 + 7 )  F(b#o) _ 2 F (  l + 7 + ( 1 - c o ) b ~ o  ) r ( l + w b # o ) ]  
x [ F--(_--.)7) V(-i-_~b--~0 ) ['(1 - 7 - (1 - w)b/3o) ['(1 - wb#0)] ' (9) 

where tile first term comes from virtual correction and the second from real 
emission. The virtual contribution to X(7, b) contains a series of poles at 
b#o = 1, 2, 3 ... which are identified with the IR renornlalons and correspond 
to power corrections of 2 2 ,, O((mN/Q ) ), n = 1,2, ... Note that these poles are 
independent of the specific form of the test function. This set of (familiar) 
poles result from the exponentiation of soft radiation. In addition, there is 
a series of poles at b/io = n - 7, n = 0, 1, 2... generated by the ['(-~, - b3o) 
dependence of the real contribution to X(7, b). For Re(7) >_ m these poles 
correspond to IR renormalons for n > m. Their IR origin is established by 
observing that  these singularities arise from the r' > r integration region of 
eq. (5), where the offspring dipole is emitted with size larger than the parent 
dipole. Taken at face value tile "pdependent poles indicate the presence of 
O( (rn~ /Q2) '~-'~) power corrections. 

Scale invarianee is manifestly broken by the introduction of the running 
coupling and (r'2) .t are not eigenfuetions of the kernel. It is worth noting 
though that  ~((7, b) admits power series expansion around the eonformal point 
b = 0 of the form 

X(7, b) = X(7) + b#oXO)(7) + (-9(b2/3g), (10) 

1 ~ l j, 
X(')("Y) = - - -X( " / )  -- 2@(1)~((7) + X('-Y) 2 + ~X ('T)- (11) 

"T 
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The O(1/b) singular terms have cancelled as anticipated and the O(b ~ term 
is the BFKL spectral function X(7) = 2~(1) - ~(7) - ~(1 - 7). 

Eq. (5) is an integral equation in b of the Volterra type, hence for bounded 
kernel there are no eigenfunctions. However it can be solved formally by 
iteration. It can then  be shown [6] that  for fixed 7 and (say) 0 < 7 < 1 
subsequent iterations of the kernel do not change the position of the leading 
IR renormalon, which is a branch cut at b = "Y/~0. This would signal the 
presence of 7-dependent power corrections of O(m~/Q27), and for 7 = 1/2, 
the saddle point in the conformal (BFKL) limit, this results in 1/Q corrections 
[7] 

However, as eqs. (1) and (3) indicate, the small-x structure functions are 
determined by the convolution of the dipole density n with if(0) and a0. Test 
functions of the form (r2) 7, "y > 0, do not have an IR cutoff for r --+ oc, 
whereas both if(0) and a0 do. Specifically, convolution with a0 will constrain 
the emission of arbitrarily large dipoles down to scale RN '~ m~r 1 , where RN is 
the characteristic length scale or size of the nucleon. Even though a0 cannot be 
calculated in perturbation theory, to study its effect on the Borel singularities 
of adN it is enough to model a0(p, my) by a function that  regularizes it in 
the infrared through the scale Ry.  A simple choice would be to approximate 
the nucleon by an onium state of size RN. Then, via numerical integration 
of eq. (5), it can be seen that  the leading IR renormalon is a branch cut 
at bflo = 1, signaling the presence of O(m2/Q 2) power corrections for the 
structure functions at small x [6]. This is consistent with the expectation 
from Wilson OPE. We expect this formalism to yield information about the 
effect of the IR region on the perturbative pomeron intercept. 
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