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Abstract. The two-dimensional wave-breaking of relativistic plasma waves driven 
by a ultrashort high-power lasers, is described within a framework of cold 2-D fluid 
theory. It is shown that the transverse nonlinearity of the plasma wave results in 
temporally increasing transverse plasma oscillation in the wake of the laser pulse, 
inevitably inducing wave-breaking below the 1-D threshold. A condition for wave- 
breaking is obtained and evaluated. A preformed density channel is found to partially 
cancel the effect and increase the length of wakefield that survives before wavebreaking 
OCCURS. 

I I N T R O D U C T I O N  

There has been recently much interest in the propagation of ultrashort high in- 
tensity laser pulse propagation through a plasma thanks to the proliferation of 
compact tabletop terawatt laser systems [1], and applications to laser accelerator 
of electrons, fast ignitor fusion, X-ray lasers and laboratory astrophysics. When a 
terawatt laser pulse propagates through an underdense plasma, it generates a rela- 
tivistic longitudinal plasma wave, so called wakefield, trailing behind the laser pulse. 
Considering that  the field gradient obtainable from the wakefield (>1 GeV/cm) is 
enormous in amplitude and the wakefield itself is traveling with the speed very 
close to c, the wakefield can serve as an extraordinary accelerating structure, as 
was first suggested by Tajima and Dawson [2]. Charged particles, if trapped, can 
be accelerated until they are eventually dephased with respect to the accelerating 
field gradient by outrunning the wave. 

However, it is a well-known fact that  the plasma wave breaks if the wave am- 
plitude is very large. At this electron plasma wave-breaking(epwb) amplitude, the 
excursion distance of electrons in the wave becomes comparable to the plasma 
wavelength, thus enabling those electrons to penetrate the acceleration phase of 
the wakefield, called the separatrix. Once in the separatrix, the electrons gain 
a net longitudinal momentum consuming all the wave energy and destroying the 
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wake. Thus, epwb leads to bulk production of energetic electrons and, if controlled 
[3], could serve as a useful technique for an efficient plasma cathode. However, 
due to the inherently catastrophic nature of uncontrolled epwb, it cannot provide 
the mono-energetic beam, required for FELs and colliders. For applications such as 
laser-plasma accelerators, which require quasi-static plasma wave oscillations, epwb 
sets an upper limit on the largest field gradient extractable from the wake and thus 
should be avoided in order to maintain a constant peak-amplitude wake structure 
rather than exponentially decaying one. If, as we will show, epwb inevitably occurs 
at some distance behind the laser pulse, then it is crucial to know where, since it 
may be possible to drive the wave back down before epwb occurs. This information 
is also important because the maximum length of the plasma wave that survives 
before the onset of epwb also determines the maximum electron current that can 
be usefully produced by a wakefield. 

Much theoretical work has been performed on the subject of epwb of a plasma 
wave in 1-D geometry. Work on a nonrelativistic cold epwb amplitude was 
first carried out by Dawson [4], which can be written as E~ob = mcwp/e,  where 
wp = (4rre2neo/me) 1/2 is electron plasma frequency and neo is the ambient elec- 
tron density. The correction on the amplitude including a finite temparature was 
given by Coffey [5]. It was followed by the 1-D cold relativistic epwb amplitude as 

E~,b = (mecwp/e)~/2(V¢ -- 1) [6], where ~,¢ is the relativistic factor of the plasma 
wave. Katsouleas et. al. integrated the previous results into a single theory of rel- 
ativistc warm epwb amplitude in 1-D geometry [7]. Rosenzweig claimed a different 
answer from Katsouteas' solution, which was eventually resolved, to be unified into 
a single description by Sheng [8]. All these expressions can be obtained either by 
evaluating the break point of 1-D relativistic fluid theory [6,9], or by analysis of 
plasma oscillations of a single electron around an equilibrium point [10]. In as much 
as it is solely determined by 7¢ associated only with longitudinal characteristics of 
the wakefield, we call it longitudinal wave-breaking. However, all of these works 
concern only 1-D plasmas. Accordingly, it is inadequate to apply these conditions 
to 2-D epwb phenomena. 

Wave-breaking in the multi-dimensional case is much more complicated than in 
l-D, due to the coupling between the transverse and longitudinal plasma oscil- 
lation [4]. Transverse variation of the 1-D nonlinearity of a plasma wave results 
in many interesting aspects of 2-D wakefield such as horse-shoe-shaped wakefield 
phase front [11]. Due to the nonlinear plasma freqency ftp, which is smaller than wp 
on the propagation axis of the pump, the phase front of the wakefield experiences 
increasing distortion and the wake is shown to break after a number of plasma 
periods behind the laser pulse [12]. This new type of epwb is called transverse 
wave-breaking. Bulanov et. al. first presented an estimate for the number of un- 
broken wakefield "buckets" by two-dimensional analysis on the self-intersection of 
electron trajectories [12]. Their analysis was based on the study of electron fluid os- 
cillation perpendicular to the phase front of the wakefield by means of catastrophic 
theory. It however explains transverse epwb only qualitatively with the fixed ex- 
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cursion distance of an electron fluid element perpendicular to the phase front. For 
this reason, their expressions of the amplitude and the bucket where epwb takes 
place for a given plasma channel may not be accurate. The fluid description of 
the wakefield provides a more solid and quantitative analysis of the epwb condition 
for a 2-D plasma wave than does a single particle analysis. Since the 1-D epwb 
amplitude was obtained from both fluid and single particle analysis, it is expected 
that a generalized 2-D epwb condition can be arrived at with a set of relativistic 
fluid equations. 

We present here such a fluid analysis (with finite 7¢) of the 2-D epwb process in 
order to derive a criterion for the epwb condition. We then use our epwb condition 
to determine how long a 2-D wave will survive without breaking for a given wave 
amplitude. For the sake of simplicity, we neglect all competing mechanisms, such as 
the modulational instability, which can damp the wave on the timescale of several 
ion periods. Also for the sake of simplicity, the plasma wave is assumed to be 
excited by a single short-pulse laser (called pump). If the pulse width is on the order 
of the plasma wavelength, the wake is driven resonantly to very large amplitude 
prescribed by E, na,(GeV/m) ~ 3.8 x 10-Sn~/2 (cm-3)a02/(1 + a~/2) 1/2 [13], while the 
transverse extent of the channel linearly scales with the laser spot radius r0. a0 is 
the amplitude of the normalized vector potential of the pump. 

For a more quantitative characterization of epwb in 2-D fluid theory, it is cru- 
cial to understand the transverse nonlinearity of the relativistic plasma wave as 
well as the longitudinal one. It has been pointed out [12] that for an unguided 
wakefield accelerator, the change of ~p across the channel causes the reduction 
of the curvature radius of the phase front eventually breaking the wave when the 
electron displacement becomes larger than the curvature radius. In the longitu- 
dinal direction appears the nonlinearity of the sawtooth-shaped oscillation of the 
wakefield gradient, in which the maximum acceleration and deceleration phase are 
so spatially close to each other that electrons in the deceleration phase are easily 
accessible by the acceleration phase via thermal velocity fluctuations. If ro ~> Ap 
where Ap is the plasma wavelength, the excursion distance of the transverse plasma 
oscillation is small compared to the longitudinal one, and thus can be neglected. 
With this assumption, the approximation that the transverse shape of the plasma 
wave follows the transverse intensity profile of the pump can be justified. 

II WAVEBREAKING T H R E S H O L D  

We start from considering the self-consistent set of 2-D relativistic cold fluid 
equations coupled to Maxwell's equations with the choice of Gaussian gauge V. a = 
0, 

1 0 2 ~ 0¢ 
V~_ + ~ ~ ]  a = k~rl~u - f i g V ~ ,  (1) 
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+ ¢ = - 0 , ) ,  (2) 

/3 0"u - g ~ - - ~ ( - a ) - V ( ¢ - 7 ) ,  (3) 

0 
-/3g0-~(r],7) + V .  (r/eU) = 0. (4) 

For our convenience, we denote the perpendicular direction by r and the longitu- 
dinal direction by ft. Therefore, Vr ~- ~7_L. Normalized scalar and vector potential 
are, a = ( m e c 2 / e ) A  and ¢ = ( m e c 2 / e ) ¢ .  The group velocity of the laser pulse is 
% = (1 -/32) -1/2 .~ ,/¢, kp = w p / e ,  and 7mec 2 the electron energy, u = 7/3 is the 
normalized momentum of the electron, 7/e -- n e / T n ~ o  normalized electron density, 
and rli = n i / n i o  the normailized ion density of the channel where hi0 = ne0 for 
a singly-ionized plasma. In order to obtain Eqs. 1-4, the slowly varying envelope 
approximation, the two-variable expansion, and the quasistatic approximation are 
used [14]. Cylindrical geometry is also implicitly assumed. With  the coordinate 
transformation ~ = z - ~gct ,  Eqs. 1-4 become 

u< = [7 - (1 + %b)]/•, (5) 

/ 3 g V ± ~ - . + ~  + V ± V ± .  a± , (6) u]_=~ 

where 7 = y / l + u ~ + u ~ + a ~ ' a L / 2 ,  ¢ = ¢ -- /3ga~, and 6 = 
2 2 - 1  (kp/3gTg) (V 2 + 02/0ff 2) az. u¢ and u]_ are the longitudinal and transverse mo- 

mentum of the electron fluid element respectively, aL is the oscillating com- 
ponent of a at the laser frequency. Plugging Eq. 5 and Eq. 6 in 7 yields 7 -- 
(1 + ¢)72 { 1 -  v /1-SG},  where 

G - (1 + 0)27~ + (1 + u~_ + ½a~-aL)(3'~ -- 1) 
(1 + ¢)2.yg4 

It is noted that all of the above equations converge to the well-known 2-D relativistic 
fluid equations obtained with the assumption/39 = 1 [14]. If G > 1, the energy 
of the electron fluid, 7, becomes imaginary and the fluid theory breaks, i.e., epwb 
occurs. Physically, the condition G = 1, where 7 = (1 + ¢).y2, corresponds to 
infinite electron density in Eq. 7. The description of 2-D epwb is thus very similar 
to the procedures used in the 1-D case. Inside the wakefield after the pump, aL --~ 0. 
Therefore, the generalized epwb condition of a relativistic plasma wave in 2-D can 
be written as G = 1, which is equivalent to 

1 + ¢ _ ,/T_ + (7) 
% 
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where u±0 = (1 + ¢)V±(O¢/O¢)/k~(~h + V~_¢/k2). The terms in the order of 1/72 
are neglected in the calculation of u±0 whereas % >> 1 is assumed. 

Eq. 8 takes a rather simple form to elucidate both longitudinal and trans- 
verse epwb in terms of ¢ and U±o. As 7g goes to infinity, 7 asymptotes to 

{1 + u~ + la~ • aL + (1 + ¢ )2} /2 (1  + ¢), which is identical to the previous cal- 

culation by Feit [14]. Also, if u±0 = 0, which represents a 1-D plasma wave, Eq. 8 
states ¢ = 7~ 1 - 1 ~ - 1  for % >> 1. On account that  epwb takes place where ¢ is 
near the minimum value ¢,,~in, the expression properly describes longitudinal epwb 
by a large-amplitude plasma wave. In addition to this, u~0 in the numerator of G 
is related to transverse epwb. 

Since u±0 involves the cross derivative with respect to r and (, it is proportional 
to the increase of the curvature of the phase front. As ¢ becomes close to era,n, 
the increase of u20 as well as (1 + ¢)-2 stimulates the break of the wave. It is 
also remarked that the epwb threshold in 2-D should be smaller than that of the 
1-D case; In a 1-D plasma, the threshold is given by ~)max,wb = (27~ - 1)/Tg - 1, 

which is equal to ¢~nin,wb = 7g -1 - 1. As 7~ -1 > 7~-lVfi-+ u20, the expression for 
the threshold for 2-D plasma wave is turned out to be (¢,~,~,wb)2d = (27~ -- 1 -- 

u20)/TgV/1 + u20 - 1. For example, if u±0 "-~ 1, then the threshold is decreased 

by a factor of l /v/2.  This suggests that a 2-D plasma wave has the longitudinally 
varying threshold, which decreases as (1 + U2o) -1/2 along the channel axis. 

III C H A N N E L  LENGTH C A L C U L A T I O N  

It will take several or more plasma periods for U±o to grow until the wave breaks 
by this type of epwb. Estimation of the number of plasma wave oscillations behind 
the pump, N~b, is of particular importance to many applications such as laser 
plasma accelerators considering that the length of the plasma wave train driven by 
a laser pulse cannot be greater than Nwb. To acquire a simple expression for Nwb, 
only the case of r0 >> Ap is considered, allowing us to depict the 2-D wakefield by a 
solution to 02x/O( 2 = (k~/2)(7~/x ~- 1) [15], where ~_ = 1 + a  2 and x = 1 + ¢(~, r). 
The formal solution [15] of the differential equation by Esarey et. al. is kp(~- L) = 

2(xo)l/2E(a,p), where cr sin - t  [ ( x o -  x ) / ( xo -  x~l)] 1/2 = , p = ( 1 -  1/Xo) 1/2, and 

E(a ,  p) is the incomplete Legendre elliptic integral of second kind. L denotes the 
pulse length of the pump. In this equation, the transverse profile of the maximum 
potential, xo, is assumed to be small compared to % but  larger than unity. By 
defining a transverse shape function S(r) of the pump, it is further assumed that  
xo(r) = 1 + CmaxS(r), where ¢,na~ is the maximum value of the potential on 
the propagation axis and a constant. For example, if the pump is Gaussian in 
the transverse dimension, the perturbation on the wake potential approximately 
follows the shape of the pump, i.e., S(r) = exp(-r2/r2). To validify this premise, 
1-D and 2-D particle-in-cell (PIC) simulations (TRISTAN) [16] are used. Both 
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FIGURE 1. Example plot of V±(0¢/0() versus ~ in units of Ap. At z ~ %1, where the 
plasma density has reached maximum, the transverse oscillation also peaks, with an amplitude 
that increases with (. This growth contributes to epwb below the 1-D threshold. 

simulations were previously benchmarked with the analytic expression for the 1-D 
wakefield amplitude and proven to work properly. With a0 ~" 2 and r0 ~> 2Ap, a 
very good agreement on the amplitude of the wakefield is achieved betwen 1-D and 
2-D PIC simulations, which justifies the use of the solution to model a moderately 
two-dimensional plasma wave. 

As can be seen from Eq. 8, 2-D epwb critically depends on u±0 which is the cause 
of transverse break of the wave. Hence, for a given value of ¢ and a wave-breaking 
coordinate P = (~, r),  V±(0¢ /0~)  can be expressed as an explicit function of 
and r, to be plugged into u±0. Denoting x' = Ox/O~, differentiation of kp(~ - L) = 
2(xo) l /2E(a ,  p) with respect to r gives V ±x = (F  - (~ - L)x ' /2Xo) V±x0, where 
F is a polynomial funtion of x and x0. Integrating the differential equation for 
the wake potential  with respect to ~ and then differentiating it with respect to r, 
V ± x ' ( _  = V±(0¢ /0~) )  is calculated to be 

v±x' = k~ [(1 - 1 / x ~ )  - ( 1  - 1/x2)r] v±x0 
2x ~ 

+ (1 -- 1/x2)((  -- L)VlX0. (8) 

Wave-breaking occurs near x ~ %1 where the electron density is maximum. Hence, 
the evaluation of Eq. 9 at x = %1 yields Vzx '  = - ( k ~ ¢ , , ~ , / 4 ) ( x o - x o l ) ( ( -  L)V.LS.  

In Fig. 1, V ± ( 0 ¢ / 0 ( )  is plotted and the peaks where x = Xo I are shown to linearly 
increase with 4- 

Plugging Eq. 9 into ux0, we rewrite Eq. 8 into 

~ = ~ [1 + (~b- L)21V~x012 ] j ,  (9) 
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FIGURE 2. N~b in Eq. 11 is plotted versus xo, varying 7g, where ro = 2~p and r/i = 1 are used. 
Decreasing % reduces N,~b, effectively limiting the plasma channel length. 

where ~ b  is the if-coordinate of P. In Eq. 10, the contribution from V~_x is ne- 
glected since r0 >> ~p and ~i >> V ~ x / k ~  are assumed. Solving Eq. 10 for ~b,  we 
obtain an expression for N~b as 

N~b ~ (¢wb - L) /A  = a/2 , (10) 
x o E¢ (p ) IV±xo l  

where kpA = 4v/~Ec(p)  and Ec(p) is the complete elliptic integral of the second 
kind. Since it is observed that  the maximization of u±0 occurs at r ~ ro/2, the 
estimation of IV±x0l as x0/r0 states tha t  N~b is approximately proportional to 

1/2 -5/2 r/i rox o . For instance, the parameters  ¢,~ax = 3, r/i = 1, r0 = 6)~p and "yg = 10 
yield N~b ~ 7.5. However, the same parameters  with r0 = 2Ap will give N~b ~ 2.5, 
which represents a case of more t ightly focused pump. Eq. 11 is plotted in Fig.2, 

with r0 = 2Ap. Since Nwb scales with Xo 5/2, the drastic decrease of Nwb is an 
unavoidable consequence as Xo increases. 

Note that  rh = r/i(r). Variation of r/i as a function of r in a preformed density 
channel used for channel-guiding of the  pump, could alter the value of Nwb, which 
suggests that  the channel guiding can control the number of surviving buckets 
against epwb. As can be seen in U±o and Nwb, a strong ion density depression 
across the plasma channel can be a preventive measure to suppress the transverse 
break of the wake and extend the length of the plasma wave significantly. The 
increase of N~b with v ~  can be interpreted in terms of density-dependent % of 
the wave. 7¢ = w/wp and wp o< v/~e = v/~ .  Subsequently, 3'¢ is proportional 

to rh -U2. It means that  the plasma wave propagates faster on the axis than the 
peripheral region of the channel, thus effectively reducing the phase front distortion 
of the plasma wave for large ¢. In Fig. 3, N ~  is shown as a function of the depth 
of density depression Ar/a of a preformed plasma density channel. The transverse 
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FIGURE 3. N~b is plotted v e r s u s  A~Td, varying "yg, where ro = 2Ap and x0 = 7. It is shown 
that for larger Aqd and %, the length of a plasma wave train increases. 

ion density profile ~]i = 1 + AT]d(r2/r~) is assumed for 0 < r < r0. 

Because Nwb scales with v ~ ,  larger values of A~?d are preferred in order to in- 
crease Nwb. Conversely, for a given index j for the epwb bucket, the minimum depth 

• 2 5  2 2 2  2 of density depression Aqwb can be calculated to be 4 {3 xoEc/rok~(7~ - x ~ ) -  1}, 
assuming r = ro/2. Furthermore, a certain level of depression depth is also required 
for a channel-guiding and it is found to be AT/ch = mec2/Tre2r~neo [17]. Therefore, 
if Aqa > max(AT/~b, A~eh), it is possible to simultaneously guide the pump in the 
channel and acquire a plasma wave of which length is approximately j~p. 

IV C O N C L U S I O N  

We showed that transverse wave-breaking can be analyzed by standard 2-D cold 
relativistic fluid theory. It is shown that the transverse nonlinearity of the plasma 
wave channel results in transverse wave-breaking, which cooperates with longitu- 
dinal wave-breaking to break the wave, lowering the break threshold below the 
1-D limit. The effect can be at least partially mitigated by use of a density chan- 
nel. Complete cancellation may be possible, which will be the subject of a future 
publication. 
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