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Results are presented from a new approach to modeling the subgrid-scale stresses in large-eddy
simulation of turbulent flows, based on explicit evaluation of the subgrid velocity components from
a multifractal representation of the subgrid vorticity field. The approach is motivated by prior studies
showing that the enstrophy field exhibits multifractal scale-similarity on inertial-range scales in high
Reynolds number turbulence. A scale-invariant multiplicative cascade thus gives the spatial
distribution of subgrid vorticity magnitudes within each resolved-scale cell, and an additive cascade
gives the progressively isotropic decorrelation of subgrid vorticity orientations from the resolved
scale � to the viscous scale ��. The subgrid velocities are then obtained from Biot–Savart integrals
over this subgrid vorticity field. The resulting subgrid velocity components become simple algebraic
expressions in terms of resolved-scale quantities, which then allow explicit evaluation of the subgrid
stresses �ij

* . This new multifractal subgrid-scale model is shown in a priori tests to give good
agreement for the filtered subgrid velocities, the subgrid stress components, and the subgrid energy
production at both low �Re��160� and high �Re��2550� resolved-scale Reynolds numbers.
Implementing the model is no more computationally burdensome than traditional eddy-viscosity
models. Moreover, evaluation of the subgrid stresses requires no explicit differentiation of the
resolved velocity field and is therefore comparatively unaffected by discretization errors. © 2005
American Institute of Physics. �DOI: 10.1063/1.1965058�

I. INTRODUCTION

Large-eddy simulation �LES� in principle allows for sig-
nificantly improved accuracy in simulating turbulent flows,
by calculating the large-scale features of the flow while mod-
eling the small scales. Since the large scales are unique to
each flow, representing them with any universal turbulence
model, as in traditional Reynolds-averaged modeling, is in-
herently problematic. The small scales of turbulent flows, on
the other hand, become increasingly universal with progres-
sively decreasing scale size, and are significant insofar as the
flow itself is concerned only for their cumulative effect on
the evolution of the large scales. Interactions between the
large �resolved� scales and the small �unresolved� scales are
accounted for by a subgrid-scale model.

Despite this promising framework, however, LES has
yet to fulfill the role which its original proponents had
intended.1 In the 40 years since the development of the first
practical subgrid-scale model by Smagorinsky,2 LES ap-
proaches and subgrid-scale models have been proposed with
some frequency, yet none has achieved the accuracy neces-
sary for LES to become the preferred turbulence modeling
method for the practicing engineer and scientist. While the

past 15 years have seen modest improvements in LES tech-
niques as well as application of LES to more complex flow
regimes,3 much of this apparent progress has resulted from
the use of increasingly powerful computers, rather than from
improvements to the underlying models and numerical meth-
ods. Since computer power will not increase fast enough to
permit practical direct simulation of most turbulent flows for
the foreseeable future,4 further near-term advances in turbu-
lent flow simulation must necessarily require improvements
in turbulence modeling methods. Thus, development of ac-
curate yet computationally efficient subgrid-scale models
and related numerical techniques remain one of the central
problems that must be solved to make LES a reliably accu-
rate tool for a wide range of practical turbulent flow
problems.

A. The subgrid stress tensor �ij

Large-eddy simulations commonly solve a form of the
filtered momentum equation which, under incompressibility
and commutivity of the filtering and derivative operators, can
be written as

� ūi

�t
+

�

�xj
ūiūj +

1

�

� p̄

�xi
− �

�2ūi

�xj
= −

�

�xj
�ij , �1�

with the subgrid stress tensor �ij defined as
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�ij = uiuj − ūiūj , �2�

and with the overbar representing an explicit or implicit filter
at scale � that defines the large scales of the flow. The form
of the filtered momentum equation in �1� is most widely used
because it involves material derivatives of the resolved mo-
mentum, permitting use of traditional Navier–Stokes codes.
The subgrid interactions are isolated in �ij, which must be
modeled.

While any errors in modeling �ij necessarily introduce
inaccuracies in momentum transport within the flow, simula-
tions at a minimum seek to transport kinetic energy with
reasonable accuracy in the resolved scales. The equation for
the resolved kinetic energy 1

2 ūiūi, obtained by multiplying �1�
by ūi, leads to a subgrid energy production term P�−�ijS̄ij

that accounts for the transfer of energy between the resolved
and subgrid scales due to interaction of the subgrid stress �ij

with the resolved strain rate S̄ij. A key goal in subgrid-scale
modeling of �ij is to accurately capture the resulting forward
�P�0� and backward �P�0� transfer of energy represented
by the subgrid energy production field P�x , t�.

B. Previous models for �ij

Subgrid-scale models for �ij can be broadly grouped into
“functional” and “structural” approaches.5 In general, func-
tional models seek only to reproduce the net kinetic energy
transfer from the resolved to the subgrid scales during a
simulation; they are “physical models” only in that they
mimic the average energy cascade from the large to the small
scales, as first noted by Richardson.6 The most widely used
functional models are eddy-viscosity formulations, in which
the subgrid stress is assumed proportional to the resolved

strain rate S̄ij through an eddy-viscosity modeled as �t

�Cs�
2�S̄�, as first proposed by Smagorinsky.2 A number of

modifications to the Smagorinsky model have been pro-
posed, most focused on better estimating the eddy-viscosity
parameter Cs. Germano et al.7 introduced a dynamic model
based on double-filtering of the resolved velocity field to
allow local determination of Cs throughout the simulation.
Various other adaptive8–11 as well as spectral12,13 eddy-
viscosity approaches have been explored. A hallmark of
nearly all functional models is that they cannot reproduce the
local instantaneous stress �ij�x , t� and energy-production
P�x , t� fields, but nevertheless produce stable simulations, if
the net energy is drawn out at approximately the correct rate.

By contrast, structural models seek to recover actual
structures of the subgrid field that influence the evolution of
the resolved scales. As such, these methods hold the promise
of higher fidelity LES, since it has been long understood that
flow structures near the filter cut-off scale strongly influence
the transport of momentum and energy across the LES filter
boundary, and hence exert a significant influence on the evo-
lution of the resolved scales.12 The scale-similarity model of
Bardina et al.14,15 is a structural approach that calculates the
subgrid stresses by an assumed equivalence between the
smallest resolved and largest unresolved scales as �ij � ūiūj

− ūiūj. While the modeled stresses correlate well with filtered
DNS values, the average subgrid energy production P is too

low, and the model is thus typically combined with an eddy-
viscosity model to give a “mixed” model. Zang et al.16 used
a local dynamic modification of the eddy-viscosity coeffi-
cient in the mixed model. Brasseur and Wei17 proposed a
spectral model based on the dynamics of triadic interactions
among local, nonlocal and distant Fourier modes. The in-
verse approach of Guerts18 attempts to recover the subgrid
velocity field from the resolved field with an approximate
higher-order polynomial inversion of the spatial filter, and
the approximate deconvolution procedure of Stoltz and
Adams19 similarly employs an approximate inverse of the
filter to obtain a representation of the subgrid velocity field,
which is then used to calculate �ij. The velocity-estimation
approach, proposed by Domaradzki20,21 in spectral and
physical-space versions, is a two-step method involving de-
convolution and nonlinear evolution to approximate the ve-
locity field at the scale � /2, which is then used to calculate
the subgrid stress �ij directly. Scotti and Meneveau22 estimate
�ij from a subgrid velocity field constructed using fractal
interpolation, involving an iterative mapping in one dimen-
sion that interpolates velocities between points on the re-
solved grid assuming time-series traces of the velocity field
are fractal.

Also relevant to the present approach are several models
based on the subgrid vorticity field. Pullin and Saffman23

proposed a vortex-structure model that approximates
subgrid-scale turbulent structures as straight, rodlike cylin-
ders of vorticity, allowing a partly stochastic representation
of �ij, and Misra and Pullin24 have evaluated specific forms
of these stochastic functions. LES schemes for the vorticity
transport equation have been proposed by Mansfield et al.25

based on a Lagrangian eddy-viscosity approach, and by
Farge et al.26 based on a coherent-vortex method.

C. The subgrid stress tensor �ij
*

An alternative to �1� and �2� is to decompose the velocity
u�x , t� into resolved and subgrid components as u�u+usgs,
and then write the subgrid stress in �2� as

�ij = �ij
R + �ij

* , �3�

where

�ij
R � ūiūj − ūiūj , �4�

�ij
* � ūiuj

sgs + ui
sgsūj + ui

sgsuj
sgs. �5�

From �3�–�5� it is apparent that �ij includes a part �ij
R that

does not involve the subgrid velocity field at all, and a part
�ij

* that includes all the contributions from the subgrid veloc-
ity field. In principle �ij

R can be evaluated from the resolved
velocity field, however, on substituting �3� into �1� the fil-
tered momentum equation can be written as

� ūi

�t
+

�

�xj
ūiūj +

1

�

� p̄

�xi
− �

�2ūi

�xj
= −

�

�xj
�ij

* , �6�

where only the subgrid part of the stress tensor �ij
* now

appears.27–30 This form of the momentum equation avoids
the need to explicitly evaluate �ij

R in �4�, but does require
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explicit filtering of the product ūiūj in the inertial term in �6�,
as well as a subgrid-scale model for �ij

* .
With regard to energy transfer between the resolved and

subgrid scales implied in the momentum equation in �6�, the

subgrid energy production is P=P*+PR, where P*�−�ij
* S̄ij,

and PR�−ūiūjS̄ij. Note that the contribution of PR�x , t� to
the resolved-scale energetics is implicitly accounted for in
�6�, and is not directly affected by the subgrid-scale model-
ing for �ij

* . The �ij
* model instead directly contributes to en-

ergy exchange between the resolved and subgrid scales only
through P*�x , t�.

D. Present approach

Each of the terms in the subgrid stress �ij
* in �5� can be

evaluated from a structural model that provides the subgrid
velocity component fields ui

sgs throughout each grid cell from
the resolved fields. Here we propose such a model for �ij

*

based on the structure of the subgrid vorticity field �sgs over
inertial-range scales, from which the resulting subgrid veloc-
ity field can then be obtained from the Biot–Savart integral

usgs�x,t� �
1

4�
	

x�
�sgs�x�,t� 	 K�x,x��d3x�, �7�

where

K�x,x�� �
x − x�

�x − x��3
. �8�

Since much is known about the structure of the vorticity field
at intermediate and small scales in high Reynolds number
turbulent flows, this provides a rational basis for representing
the subgrid vorticity field in a model for �ij

* . Moreover, the
integral nature of the Biot–Savart law in �7� that determines
the subgrid velocity field from this subgrid vorticity field
renders the resulting velocities inherently less sensitive to the
precise details of the modeled subgrid vorticity.

The model developed here builds on many of the earlier
models noted in Sec. I B �e.g., Refs. 17, 20, and 21�, as well
as other studies31–33 which have shown that gradient fields
such as the enstrophy in turbulent flows obey multifractal
scale-similarity over inertial-range scales. This multifractal
subgrid-scale structure in the enstrophy field can thus be rep-
resented by a multiplicative cascade that distributes the total
subgrid enstrophy, determined from its equilibrium inertial-
range scaling, within each resolved-scale grid cell �. An ad-
ditive cascade gives the decorrelation of subgrid vorticity
orientations at successively smaller scales from the orienta-
tion at the grid-scale �. The Biot–Savart integral in �7� is
then evaluated from this subgrid vorticity field 
i

sgs to give
the expectation value of each of the subgrid velocity compo-
nent fields ui

sgs. These in turn allow direct evaluation of the
subgrid stress tensor �ij

* in �5� and �6�.
Here we derive this multifractal subgrid-scale model and

present results from a priori comparisons between the model
and direct numerical simulation �DNS� data for �i� the fil-
tered subgrid velocity fields ui

sgs�x , t�, �ii� the subgrid stress
components fields �ij

* �x , t�, and �iii� the subgrid-energy pro-
duction field P*�x , t� at both low and high filter-scale Rey-

nolds numbers. The resulting multifractal model is no more
computationally taxing than the dynamic eddy-viscosity
models discussed above, yet will be seen here to capture the
principal features of both momentum and energy transfer in
large-eddy simulation of turbulent flows. A companion
paper34 demonstrates that stable and accurate large-eddy
simulations can be obtained with this multifractal subgrid-
scale model for �ij

* when solving the form of the filtered
momentum equation in �6�.

II. MULTIFRACTAL FIELDS

Detailed treatments of the multifractal formalism are
given by Falconer35 and Peitgen et al.;36 here we review only
those aspects of multifractal scale-similarity that are essential
for the present subgrid-scale model.

A. Multiplier distribution P„M…

Multifractal fields result from the repeated application of
a scale-invariant multiplicative process to an initial field. In
turbulent flows, such a multiplicative process is provided by
the continual stretching and folding action of the time-
varying strain rate and vorticity fields, with the required
scale-invariance being naturally satisfied for scales suffi-
ciently removed from boundaries. Such scale-invariant mul-
tiplicative processes can be represented by deterministic or
stochastic multiplicative cascades, in which a scale-invariant
distribution of multipliers M maps the field of interest from
one iteration to the next as the cascade proceeds. In one-
dimensional stochastic binomial cascades, for example, at
each stage of the construction the quantity of interest � con-
tained in any given cell is distributed over two cells, each
half the size of the previous stage, with the multiplier M that
determines the division between the cells determined ran-
domly from a scale-invariant distribution P�M�. After a suf-
ficient number N of such repetitions, the resulting one-
dimensional field ��x� given by

��x� = �0�x�2N

n=1

N

Mn�x� �9�

becomes highly intermittent and displays multifractal scaling
properties.

The multiplier distribution P�M� which underlies a mul-
tifractal field can be used to generate synthetic fields that,
over the range of scales at which the scale-invariant similar-
ity applies, are statistically indistinguishable from the origi-
nal field. It is this fact that forms the basis for the multifractal
subgrid-scale model developed in Sec. III. Owing to the sto-
chastic nature of the cascade process, arbitrarily many differ-
ent realizations of the field ��x , t� can be produced from the
same P�M�. Each such field differs in detail, but has the
same multiplicative scale-similarity properties. The scale-
invariance in the underlying multiplier distribution leads to
power-law scalings in partition functions associated with the
field, and moments of the resulting fields are determined en-
tirely by the multiplier distribution P�M�.
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B. Multifractal structure in turbulent flows

Fundamental considerations suggest that gradient-
magnitude fields in turbulent flows, such as the enstrophy,
the kinetic energy dissipation rate, and the scalar energy dis-
sipation, will display multifractal scale-similarity as a result
of the repeatedly applied stretching and folding action of the
space- and time-varying strain rate and vorticity fields. Ex-
perimental studies by Meneveau and Sreenivasan31,32 have
indeed shown that the energy dissipation rate field exhibits
multifractal scaling, and Meneveau37 subsequently also
found results consistent with multifractal scaling from wave-
let analyses of the dissipation field. Sreenivasan and
Stolovitzky38 further examined scale similarity in turbulent
flows and suggested the possibility of correlations in the cas-
cade process. Similarly, experimental investigations by
Prasad et al.,39 Sreenivasan and Prasad,40 and Frederiksen et
al.41,42 have further verified that scalar energy dissipation
rate fields in turbulent flows display multifractal scale simi-
larity as well.

The scale-invariant cascade process that leads to multi-
fractal fields can also be applied “in reverse” to test for mul-

tifractal scale-similarity based on scale-invariance in the
multiplier distribution, as first proposed by Sreenivasan33 and
Chhabra and Sreenivasan.43 The original field is used to ob-
tain a multiplier distribution P�M�� at each scale � by com-
puting the multipliers M� between successive scales at every
point. If the field is multifractal, then the resulting P�M�� at
each scale � will be scale invariant. Frederiksen et al.41,42

have used this procedure to establish within rigorous statis-
tical bounds that scalar gradient fields in turbulent flows dis-
play multifractal scale similarity. This procedure was also
used to investigate enstrophy and dissipation fields for mul-
tifractal scale invariance in DNS of homogeneous, isotropic
turbulence by Burton44 and in direct experimental measure-
ments of enstrophy and dissipation in turbulent shear flows
by Mullin and Dahm.45 Of particular relevance to the present
subgrid-scale model, those studies have both directly con-
firmed multifractal structure in the enstrophy field over
inertial-range scales. Collectively, these experimental and
computational results provide the basis for a multifractal
subgrid-scale model for �ij

* .

III. MULTIFRACTAL MODELING OF �ij
*

The subgrid-scale model for �ij
* presented here is based

on constructing a subgrid-vorticity field 
i
sgs within each

resolved-scale grid cell via a multiplicative cascade of the
type in Sec. II, beginning at the grid scale � and continuing
down to the inner �viscous� length scale ��, as indicated in
Fig. 1. Separate cascades distribute the vorticity magnitudes
��sgs� and orientations êsgs to each of the inner-scale cells. A
multiplicative cascade based on the scale-invariant multiplier
distribution P�M� for the enstrophy field determines the vor-
ticity magnitude ��sgs� in each such cell as in �9�. An additive
cascade similarly determines the spatial distribution of the
subgrid vorticity orientations êsgs in each inner-scale cell.
Both cascades remain sensitive to the filter-scale Reynolds
number Re�, since the number of iterations

N � log2��/��� �10�

in each cascade is determined by the grid-scale to inner-scale
ratio �� /����Re�

3/4. This is illustrated in Fig. 2, which sche-
matically shows one-dimensional intersections through the

FIG. 1. Schematic representation of the N��� /���3 inner-scale cells of size
�� comprising the subgrid vorticity field �sgs within each resolved-scale grid
cell of size �; separate cascades distribute values for the subgrid enstrophy
and subgrid vorticity orientation to each inner-scale cell.

FIG. 2. Effect of increasing Re� on the enstrophy cas-
cade, showing enstrophy fields ��sgs�x , t��2 at three suc-
cessively higher Re� values �top to bottom� for the
same total subgrid enstrophy Qsgs; note reduction in in-
ner scale �� and increasing intermittency as Re�

increases.
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subgrid enstrophy field on the filter scale � at three succes-
sively higher Re� values. The reduction in inner-scale cell
size �� with increasing Re�, as well as the increasing inter-
mittency in the subgrid enstrophy as the number N of cas-
cade steps increases with Re�, is readily apparent. Both of
these characteristics result naturally from the multifractal
cascade in �9�.

With the subgrid vorticity �sgs modeled throughout each
resolved-scale grid cell in this manner, the subgrid velocity
components ui

sgs appearing in �ij
* are then obtained from

Biot–Savart integrals over the subgrid-vorticity field in �7�.
The resulting subgrid velocity components ui

sgs are then used
to directly formulate �ij

* via �5�.

A. The vorticity magnitude cascade

Specifying the vorticity magnitude in each inner-scale
cell first requires determining the total subgrid enstrophy that
the multiplicative cascade must distribute within each LES
grid cell in terms of the average subgrid enstrophy Qsgs over
the grid cell. This can be obtained from classical equilibrium
inertial-range scaling arguments when the grid scale � lies in
the inertial range, as indicated in Fig. 3.

To find the average subgrid enstrophy Qsgs, we first de-
termine the average enstrophy Q� in the resolved field be-
tween the filter scale � and any larger inertial-range scale

�. This is obtained from the contribution ui

� to the resolved
velocity from this scale range, namely

ui
� � ūi − �ūi�
�, �11�

where �ūi�
� denotes the velocity obtained by filtering the
resolved field ūi at scale 
�. The curl of u� then gives the
resolved vorticity �� associated with this same scale range,
from which the corresponding enstrophy Q��
i

�
i
� may be

defined. The vorticity field therefore consists of the sum of
the subgrid part �sgs, the �-scale part ��, and the remainder
of the resolved field �+. The enstrophy field Q�
i
i thus is
the sum of the three square terms resulting from the subgrid
part Qsgs�
i

sgs
i
sgs, the �-scale part Q��
i

�
i
�, and the re-

mainder Q+�
i
+
i

+, and the three cross terms 2�
i
sgs
i

��,
2�
i

sgs
i
+� and 2�
i

+
i
��. Averages over the cross terms will

be small, since widely disparate scale ranges in the vorticity
field are essentially uncorrelated.

The total enstrophy field is thus Q�Qsgs+Q�+Q+, and
its spectrum Q�k� is thus the sum of Qsgs ,Q�, and Q+, as
indicated in Fig. 3�a�. The tails of each part on either side of
k� and k
� result from the nonlinear nature of the enstrophy,
even for spectrally sharp filtering of the velocity field. How-
ever, owing to the near symmetry of these tails as indicated
in Fig. 3�a�, for sufficiently small 
 the area under Q�k�
between k� and k
� approaches the total area Q� over all k.
As a result, the enstrophy Q� allows determination of Qsgs as
indicated in Fig. 3�b� by integrating the enstrophy spectrum
Q�k� from the filter-scale wave number k� to the inner-scale
wave number k�. On dimensional grounds, the enstrophy
spectrum Q�k� in the inertial range scales with the wave
number k and mean dissipation rate � as Q�k���2/3k1/3,
giving

Qsgs = 	
k�

k�

Q�k�dk = � Q��� k�

k�

4/3

− 1� , �12�

where

� � �1 − 
−4/3�−1. �13�

For 
=2 as will be used in Secs. IV and V, ��1.66.
The subgrid enstrophy Qsgs in �12� is distributed over

each grid-scale cell by a three-dimensional stochastic multi-
plicative cascade to give the subgrid vorticity magnitude in
each inner-scale cell as

��sgs��x,t� = �Qsgs�2N�3

n=1

N

Mn�x,t��1/2

, �14�

where N from �10� is the number of cascade steps, and the
multipliers Mn correspond to random samples from the
scale-invariant distribution P�M� for the enstrophy field
�e.g., Refs. 44 and 45�. This leads naturally to a multifractal
subgrid enstrophy field.

B. The vorticity orientation cascade

Experimental and computational evidence14,15,20,46 indi-
cates that the orientations of the subgrid velocity field are
highly correlated with the u� orientations. The present model
builds on these results in deriving the orientation cascade.
Specifically, the orientations in the subgrid vorticity field
�sgs are taken to decorrelate at successively smaller scales
from the local orientation of �� at the smallest resolved

FIG. 3. Log-log schematic showing �top� enstrophy spectrum composed of
subgrid part, �-scale part, and contribution from remainder of resolved-
scale vorticity field, and �bottom� inertial-range scaling used to determine
total subgrid enstrophy Qsgs between scales � and �� from enstrophy Q� in
resolved field between scales � and 
�.
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scale, here denoted by the unit vector ê��x , t�. Between any
two successive stages �n� and �n+1� in the cascade, the cor-
responding vorticity orientations �ê�n+1 and �ê�n thus deviate
by stochastic spherical decorrelation angles � and �, as in-
dicated in Fig. 4. Each component of the orientation unit-
vector at stage �n+1� is therefore determined as

�êi�n+1 = �êi�n + f i��,��n+1, �15�

where f
�� ,��=sin � cos �, f��� ,��=sin � sin � and
f��� ,��=cos �−1.

The local strain rate tensor in the resolved scales can be
expected to influence the local distribution of angles in at
least the first few steps of the orientation cascade. With the
framework of the present modeling approach, this would
manifest itself in the form of correlations between the angle
distribution and the multiplier values M. In particular, while
the distribution in Fig. 4 would be expected to be uniform,
the � distribution would be strongly correlated with the mul-
tiplier values M. This can be seen in the conditional prob-
ability distributions P�cos � ;M� shown in Fig. 5, obtained
from present analyses of DNS data. It is apparent that at low

multiplier values M there is only a weak correlation be-
tween vorticity orientations at two successive scales in the
cascade, while at large multiplier values the corresponding
unit vectors �ê�n and �ê�n+1 become nearly identical, since
cos �→1. This is consistent with the observed tendency of
the strongest vortical structures, which correspond to high
multiplier values, to maintain a preferred alignment with the
local strain rate tensor over a relatively large range of length
scales.

Based on the above considerations, the intermittency
factor I can be defined from a correlation between �sgs and
�� as

I = 	
x�

�sgs · ��d3x��	
x�

��sgs�����d3x�. �16�

The subgrid vorticity field �sgs after N cascade steps can
then be expressed in terms of I�N� as

�sgs�x,t� = ��sgs��I�N�ê��x,t� + �1 − I��
n=1

N

�n
 , �17�

where �n are the decorrelation increments in the orientation
cascade. Owing to the stochastic nature of both the multiplier
values Mn in the magnitude cascade and the decorrelation
increments �n in the orientation cascade, the subgrid vortic-
ity �sgs�x , t� is a stochastic field. From �17� its expectation
value ��sgs� involves correlations between the multipliers
Mn and the increments �n. In principle, the effect of these
correlations could be incorporated within the framework of
the present model, in a somewhat similar spirit as the various
approaches for conditional averaging done in “optimal LES”
of Langford and Moser.47 If, however, the net effect of the
correlations on the expectation value of the subgrid vorticity
is taken to be sufficiently weak, then

FIG. 4. Spherical angles �� ,�� and unit-vector increments ��i ,� j ,�k� de-
scribing decorrelation of vorticity orientation �ê�n+1 at stage �n+1� from �ê�n

at stage �n�.

FIG. 5. Probability distribution of decorrelation angle �
in Fig. 4, conditioned on multiplier values M from the
DNS data and showing strong correlation in alignment
between successive stages in cascade when M is large.

075111-6 G. C. Burton and W. J. A. Dahm Phys. Fluids 17, 075111 �2005�



��sgs� = I�N����sgs��ê� + �1 − I����sgs���
n=1

N

��n� . �18�

Furthermore, if as noted above the decorrelation cascade is
taken to be fully isotropic, then the expectation value of the
increments in �18� vanishes, giving from �14�

��sgs� = I�N��2N�3/2��M1 ¯ MN�1/2�Qsgs
1/2ê�, �19�

where Qsgs comes from �12�. While the correlations between
the multipliers and the angles in the orientation cascade have
in �19� been taken to be negligible, the results in Sec. V and
in Part II �Ref. 34� will show that the effect of this appears to
be comparatively small.

C. Biot–Savart evaluation of the subgrid velocities

The expectation value of the subgrid velocities �usgs� is
obtained from the corresponding subgrid vorticity ��sgs� in
�19� via the Biot–Savart integral in �7� as

�usgs� �
1

4�
	

x�
��sgs� 	 K d3x�. �20�

Since the distribution P�M� of the multipliers in ��sgs� is the
same everywhere, from �19� and �20� the expectation value
becomes

�usgs� = I�N��2N�3/2��M1 ¯ MN�1/2�

	�Qsgs

Q�

1/2 1

4�
	

x�
Q�

1/2ê� 	 K d3x�. �21�

The Biot–Savart integral in �21� is simply u�, giving with
�10� and �12�

�usgs� = I�N�23/2N�M1/2�N�24/3N − 1�1/2�� u�, �22�

where we have also made use of the fact that the multipliers
are statistically independent.

D. The subgrid stress tensor �ij
*

From �22� the subgrid velocity component values ui
sgs

can be written as

ui
sgs�x,t� � I�N�A�N���ui

��x,t� , �23�

where

A � 2�3/2�N�M1/2�N�2�4/3�N − 1�1/2. �24�

The intermittency factor I from �16� that appears in �23� is
implied by the required Re� independence of ui

sgs as Re�

→�. As correspondingly N→� this requires

I�N� � CI2−�2/3+3/2�N�M1/2�−N. �25�

The associated proportionality constant CI should be univer-
sal, and can be obtained from a priori testing as done in Sec.
V, with the result that CI�0.37. This gives the subgrid stress
�ij

* as

�ij
* � B�ūiuj

� + ūjui
�� + B2ui

�uj
�, �26�

where

B � 0.47 2−�2/3�N�2�4/3�N − 1�1/2, �27�

and where N is from �10� and ui
� is from �11�. This involves

only quantities available from the resolved scales of the flow,
thus closing the subgrid-stress term in the momentum equa-
tion in �6�.

IV. EXPLICIT FILTERING IN �ij
* AND ūiūj

Each of the terms in �26� as well as the nonlinear inertial
term in �6� involves an explicit filter at scale �, denoted by
the long overbar. As regards the inertial term, previous
studies30,48,49 have shown that the choice of explicit filter
affects both the resolved velocity field and the implied sub-
grid energy transfer field. Here this filter is taken as an ex-
plicit three-dimensional Legendre box average over each
grid-scale cell. Note that the fields u and u� in these filtered
product terms vary continuously over each grid cell. Thus the
component fields ūi�x� and ui

��x� that must be filtered over
each grid cell are approximated by second-order three-
dimensional Legendre expansions of the form

ūi�x� � �
l,m,n

almn�l�x��m�y��n�z� � Gi�x� , �28�

where �k are the Legendre basis functions in each of the
three coordinate directions. The second-order Legendre basis
is compact, since it uses only the 26 immediately adjacent
grid-cell values, is well-conditioned, and exactly recovers the
original cell-centered field values, as indicated in Fig. 6.
Moreover as indicated in Fig. 7, for 
=2 the resulting �ūi�2�

in �11� at the cell center is simply the resolved velocity field
in �28� filtered over the cubic volume �2��3. This corre-
sponds in the mapped Legendre coordinates to a filter over
the entire cubic Legendre interval. Thus �ūi�2� has already
been evaluated as the coefficient a000 in the Legendre expan-
sion of ūi in �28�, thereby allowing rapid calculation of the
cell-centered velocities ui

� in �11� as

ui
� � ūi − a000. �29�

From �29� the resulting cell-centered ui
� values give the cor-

responding Legendre expansion for the continuous compo-
nent fields ui

��x� throughout each grid cell as

FIG. 6. Schematic representation of Legendre interpolation in �28� and �30�
of continuous resolved velocity fields ūi�x� and ui

��x� from cell-centered
values on resolved grid, used to evaluate filtered product terms �31� and �32�
appearing in subgrid stress �ij

* in �26�.
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ui
��x� � �

l,m,n
blmn�l�x��m�y��n�z� � Hi�x� . �30�

The filtered products in the subgrid stress �ij
* in �26� are then

explicitly evaluated by integrating over the grid-cell volume
as

ūiuj
� �

1

�3	
�3

Gi�x�H j�x�d3x , �31�

ui
�uj

� �
1

�3	
�3

Hi�x�H j�x�d3x , �32�

and similarly the explicit filter on the inertial term in �6� is
evaluated as

ūiūj �
1

�3	
�3

Gi�x�G j�x�d3x . �33�

Equations �26�–�33� allow evaluation of the deviatoric
part of �ij

* and the nonlinear term ūiūj in �6�, and together
provide a complete statement of the multifractal subgrid-
scale model for large-eddy simulation.

V. A PRIORI TESTS OF THE MULTIFRACTAL MODEL

The accuracy of the multifractal model for the subgrid-
scale stresses �ij

* can be assessed in a priori tests using fil-
tered DNS data to simulate the resolved scales of a large-
eddy simulation, and comparing quantities obtained from the
model with corresponding quantities obtained from the sub-
grid scales in the DNS data. While there are known limita-
tions inherent in comparisons of modeling approaches
against DNS data, such testing provides valuable information
about subgrid model accuracy, especially for structural mod-
els like the present, which recover the actual instantaneous
structure of the subgrid field. High-fidelity recovery of the

subgrid field should correlate with reduced dynamical error
in the deterministic evolution of the resolved scales, as dis-
cussed in the “ideal LES” formalism of Langford and
Moser.47 This, in turn, should correlate with higher-fidelity
recovery of the resolved scales in an actual LES calculation.

Such assessments are here based on a 5123 direct nu-
merical simulation of forced, homogeneous, isotropic turbu-
lence in a cubic, periodic domain at Re��170 by Jimenez
et al.50 The filtered velocity fields were obtained from the
DNS data by spatial averaging using three-dimensional box
filters of size �=m�x, where m sets the filter scale, and �x
�L /512 with L the length scale of the computational do-
main. Tests were conducted with m=16 corresponding to
resolved-scale Reynolds number Re��160, and with m
=128 corresponding to Re��2550. The smaller of these fil-
ter scales is in the range where multifractal scaling has been
verified44 in the subgrid enstrophy field, while the larger lies
outside this range and thereby provides an indirect test of the
robustness of the model.

A. The filtered subgrid velocities ui
sgs

The filtered velocity fields ūi supplied to the subgrid-
scale model were first used to construct the subgrid velocity
field from �11� and �23�, and the resulting fields then filtered
at the scale � using the explicit Legendre box filter to give
the filtered subgrid velocity component fields ui

sgs. Typical
one-dimensional intersections through these fields for the
Re��160 case, for which there are 32 points defining the
fields in each intersection, are shown by the dashed lines and
crosses in Fig. 8. These model results were then compared
with the filtered residual velocity fields obtained by subtract-
ing the filtered velocity fields ūi from the original DNS ve-
locities and applying the Legendre box filter at the same
scale �. Corresponding intersections through these fields are
also shown by the solid lines for comparison. If the subgrid
model were ideal, these fields would be identical, and it is
apparent that there is overall good agreement between them.
In general the model accurately captures both the magnitude
of the local filtered subgrid velocity field and its orientation,
with the latter being evident from the fact that generally all
three component fields simultaneously agree well with the
residual fields from the DNS data.

In the Re��2550 case there are only four points in these
filtered fields in each coordinate direction, so one-
dimensional intersections of the type in Fig. 8 provide little
indication of the structure in these fields. However, correla-
tions between the filtered subgrid velocity component fields
from the multifractal model and from the DNS data can be
readily computed for both the Re��160 and Re��2550
cases, and are shown in Fig. 9. The model is seen to produce
correlations exceeding 0.91 at the lower Re�, and slightly
higher values at the larger Re�, indicating good agreement
between the model and DNS values. In all of these results,
CI from �25� has been set to optimize the agreement at both
Re��160 and Re��2550, giving the value CI�0.37.

FIG. 7. Two-dimensional schematic indicating local Legendre interpolation
of ūi in given grid cell at scale �; when mapped into canonical Legendre
interval the coefficient a000 from �28� is equivalent to �ūi�2� needed to evalu-
ate u� in �11�, as indicated in �29�.
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B. The subgrid stress tensor �ij
*

The subgrid stress tensor component fields �ij
* implied by

the multifractal model were evaluated from �26� and com-
pared with the corresponding fields obtained from the DNS
data via �5�. Typical 32-point intersections through all six of
these component fields for the Re��160 case are shown in
Fig. 10, with dashed lines with crosses and solid lines again
giving results from the model and the DNS data, respec-
tively. Generally good magnitude and phase agreement is

seen between the modeled and actual values, indicating rela-
tively accurate representation of momentum exchange be-
tween the resolved and subgrid scales in the multifractal sub-
grid model.

Figures 11 and 12 show the resulting correlations be-
tween results from the multifractal model and from the DNS
data for, respectively, the normal and shear components of
the subgrid stress fields. For the normal stress component
fields in Fig. 11, the resulting correlation coefficients are

FIG. 8. Typical one-dimensional intersections through
filtered subgrid velocity component fields ui

sgs�x , t� from
a priori tests of �23� at Re��160, comparing DNS
�solid� and model �dashed with crosses� fields and
showing good agreement of results from present multi-
fractal model; correlation coefficient between DNS and
model values exceeds 0.91.

FIG. 9. Correlations between DNS and model values
for filtered subgrid velocity component fields ui

sgs�x , t�
from a priori testing of �23� at Re��160 �left� and
Re��2550 �right�, yielding correlation coefficients ex-
ceeding 0.91 at both Re� values.
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about 0.86 in the Re��160 case, and range from 0.65–0.80
in the Re��2550 case. For the shear stress component fields
in Fig. 12, the correlation coefficients are again about 0.86 in
the Re��160 case, and range from 0.57–0.70 in the Re�

�2550 case.
The origin of the lower correlations for the subgrid stress

component fields noted above can be traced to the correla-
tions between subgrid velocity components that have, for the
present, been neglected in evaluating the Biot–Savart inte-
grals. This can be seen in Fig. 13, which shows typical 32-

point one-dimensional intersections for the individual terms
in the decomposition of �ij

* for the Re��160 case, with
dashed lines with crosses and solid lines again giving the
model and DNS results, respectively. Note that the two
“resolved-subgrid” interaction terms in �5� are relatively ac-
curately represented by the model, but the “subgrid-subgrid”
term is essentially zero. Corresponding correlations between
model and DNS results for each of these fields are shown in
Fig. 14 for both the Re��160 and 2550 cases. Correlation
coefficients for the “resolved-subgrid” interaction terms are

FIG. 10. Typical one-dimensional intersections through
subgrid stress component fields �ij

* �x , t� from a priori
tests of �26� at Re��160, comparing DNS �solid� and
model �dashed with crosses� fields and showing gener-
ally good agreement of results from present multifractal
model; correlation coefficient between DNS and model
values is 0.86.

FIG. 11. Correlations between DNS and model values
for normal components of subgrid stress fields �ij

* �x , t�
from a priori testing of �26� at Re��160 �left� and
Re��2550 �right�, yielding correlation coefficients as
shown.
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about 0.88 at the lower Re� and 0.75 at the higher Re�. For
the “subgrid-subgrid” term, the correlation coefficients are
only 0.38 and 0.32 at the lower and higher Re� values. Note
that it may be possible to incorporate correlations between
subgrid velocity component fields in evaluation of the Biot–
Savart integrals in Sec. III C and thereby better model the
“subgrid-subgrid” term in �26�, however, in the results pre-
sented here these correlations are being neglected entirely.

C. The subgrid energy production field

As noted in the Introduction, while errors in representing
the subgrid stresses in large-eddy simulations will introduce
inaccuracies in momentum transport in the flow, simulations
typically seek at a minimum to transport kinetic energy be-
tween the resolved and subgrid scales with reasonable accu-
racy. Accordingly, Fig. 15 shows six typical one-dimensional

FIG. 12. Correlations between DNS and model values
for shear components of subgrid stress fields �ij

* �x , t�
from a priori testing of �26� at Re��160 �left� and
Re��2550 �right�, yielding correlation coefficients as
shown.

FIG. 13. Typical one-dimensional intersections through
“resolved-subgrid” interaction fields ui

Ruj
sgs�x , t� �top

and middle rows� and “subgrid-subgrid” interaction
fields ui

sgsuj
sgs�x , t� �bottom row� from a priori tests of

�26� at Re��160, comparing DNS values �solid� and
model values �dashed with crosses�. Note that subgrid-
subgrid interaction is not well accounted for in model
due to present neglect of correlations in cascade.
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intersections through the subgrid energy production field

P*�x , t��−�ij
* S̄ij obtained from the subgrid stress tensor field

�ij
* �x , t� for the Re��160 case, with dashed lines with

crosses and solid lines giving results from the model and the
DNS data, respectively. It is apparent that, despite the errors
noted above in the “subgrid-subgrid” term of the stress ten-
sor �ij

* , the subgrid energy production field is relatively well
reproduced by the model, including both the forward and
backscatter of energy from the resolved scales. Figure 16
shows the correlations between subgrid energy production
fields from the multifractal model and from the DNS data for

both the Re��160 and 2550 cases. The resulting correlation
coefficients are 0.85 in the Re��160 case, and 0.61 in the
Re��2550 case.

D. Analysis of model errors

Previous studies51–55 have examined the effect of nu-
merical errors on the performance of subgrid models.
Ghosal51 in particular has examined these errors in the con-
text of large-eddy simulations with the dynamic Smagorin-
sky model, in which the constant Cs is locally determined

FIG. 14. Correlations between DNS and model values
for “resolved-subgrid” interaction fields ui

Ruj
sgs�x , t� �top

and middle rows� and “subgrid-subgrid” interaction
fields ui

sgsuj
sgs�x , t� �bottom row� obtained from a priori

testing of �26� at Re��160 �left� and Re��2550
�right�, yielding correlation coefficients as shown.

FIG. 15. Typical one-dimensional intersections through
subgrid energy production field P*�x , t� from a priori
tests of �26� at Re��160, comparing DNS �solid� and
model �dashed with crosses� fields and showing gener-
ally good agreement of both forward �P*�0� and back-
ward �P*�0� transfer of energy between resolved and
subgrid scales.
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from the resolved-scale strain rate field Sij
�, requiring differ-

entiation of the smallest-scale components ui
� in the resolved

velocity field. That study found errors arising from the dis-
cretization of the required derivatives which can exceed the
magnitude of the subgrid stress �ij. This has been confirmed
in other studies,53 and has led to the use of very high-order
finite-difference methods to reduce these truncation errors.
By contrast, the multifractal subgrid-scale model derived
here requires no explicit differentiation to evaluate the sub-
grid stress �ij

* , and thus will be comparatively less affected by
discretization error.

While the present multifractal model does not require
any such explicit differentiation, it does require the subtrac-
tion in �29� to determine the ui

��x , t� fields needed in �26�. It
is thus of interest to assess the numerical errors which this
difference operation introduces in the model results. Power
spectra were therefore calculated for the ui

� and �ij
* fields

obtained from the DNS data, and compared with correspond-
ing spectra for their respective errors from the multifractal
model.

Figure 17�a� shows the spectrum for the true ui
� field

calculated from the DNS data via �11� for 
=2, and the
spectrum for the difference between this field and that ob-
tained via �29�. As is evident from these respective power
spectra, the numerical errors made in calculating ui

� are uni-
formly at least an order of magnitude smaller than the field
values themselves over essentially the entire resolved range
of scales. The result for �ij

* in �26� from the multifractal
subgrid-scale model involves a rescaling of the ui

� field to
estimate ui

sgs, and it is apparent from Fig. 17�a� that the un-
derlying ui

� field is relatively free of numerical errors.
Figure 17�b� shows an analogous comparison of the �ij

*

spectrum obtained from the DNS data, and the corresponding

spectrum of the error in �ij
* obtained from the multifractal

model. Here it is apparent that the relative error magnitudes
are much larger, indicating that most of the errors in �ij

* from
the multifractal model are due to the model itself, and not
due to numerical errors in the ui

� field supplied to the model
from the resolved scales. Moreover, only at the largest re-
solved wave modes �k�5� do the errors approach the �ij

*

values themselves. These low wave number modes approach
the scales at which the forcing of the turbulence in the simu-
lation dominates the flow, and thus would not be captured by
a subgrid-scale model based on inertial-range scalings.

Together these results suggest that the multifractal model
is relatively insensitive to numerical errors introduced by the
required difference in �29�. This is further supported by
results34 from a posteriori evaluation of this approach to
subgrid-scale modeling and large-eddy simulation, where the
present subgrid-scale model is combined with a flow solver
and used to assess the effect of numerical errors on the re-
sulting filtered velocity field ūi�x , t�.

FIG. 16. Correlations between DNS and model values for subgrid energy
production fields P*�x , t� from a priori testing of �26� at Re��160 �top� and
Re��2550 �bottom�, yielding correlation coefficients as shown. Accounting
for subgrid-subgrid interactions in Figs. 13 and 14 due to correlations in the
cascade, which are presently neglected, will lead to higher correlation
coefficients.

FIG. 17. Typical power spectra for �top� DNS value for ui
� �solid� from �11�

and �ui
��error �open� from difference between model and DNS values in �29�

and �11�, and �bottom� DNS value for �ij
* �solid� from �5� and ��ij

* �error �open�
from difference between model and DNS values in �26� and �5�. Note that
relative error in ui

� due to subtraction is much smaller than relative error in
�ij

* due to model approximations, suggesting that model errors are dominated
by present neglect of subgrid-subgrid correlations and not by numerical
errors.
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VI. DISCUSSION AND CONCLUSIONS

This study has introduced a multifractal model for the
subgrid-scale stresses in large-eddy simulation, and has
evaluated the resulting model in a priori tests with filtered
DNS data. For the subgrid-scale model developed here, the
subgrid vorticity field is represented by a stochastic multi-
fractal cascade in �14� that distributes the total subgrid en-
strophy from the resolved scale � to the inner scale �� by a
scale-invariant multiplier distribution P�M�. This approach
is motivated by experimental and computational evidence
that has verified such multifractal scale-similarity over
inertial-range length scales in gradient fields associated with
turbulent flows. Consistent with this multiplicative cascade
in the subgrid enstrophy field, the vorticity orientation in
each of the inner-scale cells that comprise the subgrid vor-
ticity field is related to the orientation of the vorticity at the
resolved scale � by an additive cascade that produces in-
creasingly isotropic decorrelation of the orientations from the
resolved scale to the inner scale ��. Note that correlations in
both the subgrid enstrophy and orientation fields among the
inner-scale cells within each resolved grid cell are implied by
their respective cascades. For instance, half of all inner-scale
cells share the same M1, one-quarter share the same M2,
etc. In principle such correlations in the subgrid enstrophy
field, as well as those in the subgrid orientation field, could
be accounted for in evaluating the Biot–Savart integrals,
which represent an obvious area for further improvement in
the model. Assuming these correlations to be negligible leads
to the expression in �23� for the expectation value of the
subgrid velocities, and for the associated subgrid stresses in
�26�. The results in Figs. 8 and 9 suggest that neglecting
these correlations still produces good representations for the
filtered subgrid velocity components. The effect of these cor-
relations becomes apparent, however, in Figs. 13 and 14,
where it is evident that both of the resolved-subgrid interac-
tions are accurately modeled but the subgrid-subgrid contri-
bution is essentially zero. This in turn becomes the main
contributor to the remaining errors in the subgrid stresses,
though the subgrid energy production in Figs. 15 and 16 is
nevertheless reasonably represented. An obvious path for ex-
tending the present subgrid-scale model is to account for the
correlations produced by the cascades in the subgrid vorticity
field to provide a better representation of the subgrid-subgrid
interaction in �5�.

Note that the result for �ij
* in �26� from the present mul-

tifractal subgrid-scale model is in practice no more compu-
tationally burdensome to implement than are corresponding
forms for �ij from simple eddy-viscosity models. Unlike such
eddy-viscosity models, however, the present model is based
on a specific physical representation of the subgrid vorticity
field that is strongly supported by theoretical, experimental,
and computational evidence. In view of this physical basis, it
is not surprising that in a priori tests the multifractal model
produces correlations with the actual subgrid stresses and
subgrid energy production that exceed the values commonly
reported for eddy-viscosity models. It also provides similarly
high correlations as have been reported for the scale-
similarity model of Bardina et al.14,15 commonly used in

“mixed models” in conjunction with eddy-viscosity
representations,16 while at the same time providing much
higher correlations for the subgrid energy production field
P�x , t�. Furthermore, unlike dynamic eddy-viscosity models,
the present multifractal subgrid-scale model does not require
explicit differentiation of the smallest-scale components in
the resolved velocity field, and thus is relatively less affected
by discretization errors, which in some models can lead to
errors exceeding the subgrid stresses themselves.

The present multifractal subgrid-scale model is most
closely related to the broad class of subgrid estimation ap-
proaches, since it is fundamentally based on estimation of a
subgrid-scale field. Other models in this class include the
velocity-estimation approach of Domaradzki and Loh21 and
the fractal-interpolation approach of Scotti and Meneveau.22

The latter, however, is based on a specific assumed rule for
estimating the subgrid velocity field, while the former is
based on estimating the subgrid velocities using truncated
Navier–Stokes dynamics on a finer grid. Unlike these direct
estimates of the subgrid velocity field, the present multifrac-
tal subgrid-scale approach is based on estimation of the sub-
grid vorticity field, which makes use of the approach to iso-
tropy at increasingly smaller scales and the multifractal
scale-similarity of the subgrid enstrophy field.

The multifractal subgrid-scale model as formulated here
requires, at least in principle, that the resolved-scale calcula-
tions reach at least into the large-scale end of the inertial
range of scales, so that the inertial-range scaling that implic-
itly determines the total subgrid enstrophy remains valid. Re-
lated to this, since here equilibrium inertial-range scaling
laws have been used to determine the total subgrid enstrophy
via �12�, the resulting momentum and energy transfer be-
tween resolved and subgrid scales might be expected to show
increasing inaccuracy where local equilibrium departures are
significant, as would be the case for all subgrid-scale models
that make use of equilibrium inertial-range scalings. How-
ever, the present results at Re��2550, for which the re-
solved scale � coincides with the scales at which forcing is
introduced in the DNS field, nevertheless show good agree-
ment in the a priori tests, suggesting that the model may be
more robust than the inertial-range assumption might sug-
gest.

At low values of Re�, the multifractal subgrid-scale
model depends weakly on the number of cascade steps N in
�10�, and thus in principle requires knowing the local strain-
limited viscous diffusion scale ��.56,57 This could be dynami-
cally related to the local instantaneous magnitude of the

resolved-scale strain rate S��S̄ijS̄ij�1/2 and the viscosity �.
For Re��1, where Re��S�2 /�, significant self-induced
stretching occurs within the subgrid vorticity field, and thus
the strain rate at the smallest scale will be S�=S�� /���2/3,
with the resulting inner length scale ����� /S��1/2 giving the
correct Kolmogorov-like scaling �� /��Re�

−3/4. The propor-
tionality constant, denoted c�, will then be universal and al-
lows �� to be determined locally from the resolved strain rate
S. Similarly the model as formulated here could in principle
be extended to account for near-wall effects. In particular,
the reduction in Re� leads to a decrease in the number of
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cascade steps, and thereby to a higher degree of residual
correlation in both the enstrophy and orientation fields. The
strong anisotropy in near-wall turbulence will also lead to
stronger correlations in the subgrid vorticity orientations.
Such near-wall extensions of the present multifractal model
are beyond the scope of this paper, but represent obvious
areas for further development of this modeling approach.

A companion paper �Ref. 34� demonstrates the imple-
mentation of this multifractal subgrid-scale model in an LES
flow solver, and examines the characteristics of the resolved-
scale turbulence that result in a posteriori tests of the model
and the flow solver.
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