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Fractional boundary for the Gott-Hiscock string
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A fractional boundary condition is used to join the Gott-Hiscock string to a Levi-
Civita vacuum. The use of a fractional derivative generates Israel boundary layers
whose density depends on the order of the fractional derivative. Variable boundary
layers for the same two bounding space—times can be studied. The string angular
deficit depends on the order of the fractional deficit2@5 American Institute of
Physics.[DOI: 10.1063/1.1863692

I. INTRODUCTION

The Gott-Hiscock? solution describes a constant density string matched to a vacuum Levi-
Civita space—time with angular deficit. Two of the most common boundary matching conditions
for non-null boundaries are due to Lichnerowicz and Darmois. These conditions have been dis-
cussed by Bonnor and VicketsBoth conditions involve matching a metric and some metric
derivatives across the boundary. The Darmois condition matches the metric and its second funda-
mental forms on the boundary while the Lichnerowicz condition matches the metric and its first
derivatives on the boundary. The resulting space—time exterior to the string has an angular deficit
related to the mass per unit length of the string interior. For general space—times, if a derivative,
or extrinsic curvature, match is not possible, the most common procedure is to use tHe Israel
formalism, defining a surface boundary layer stress energy through the jump in the extrinsic
curvature between space—times on either side of the boundary. Other space—times, whose extrinsic
curvature was not continiuous across the boundary, could have been used for the exterior match,
creating an Israel layer on the string boundary.

The Israel technique provides information about the stress energy content of the bounding
surface layer. While the Israel surface layer can be used to describe the jump in the extrinsic
curvature across a space—time boundary, it will not distinguish surface layers of different densities
or structures that might bound the same two spacetimes. Within the Israel formalism, the only way
of varying the boundary layer properties is to vary the bounding space—times.

One way of modifying the boundary conditions to include different kinds of boundary sur-
faces for the same bounding space—times is to generalize the Lichnerowicz boundary conditions to
a fractional derivative matching and then to use the Israel formalism to describe the resulting
surface layer. This creates boundary layers whose stress energy content depends on the order of
the fractional derivative and allows the study of variable boundary structures between the same
two space-times. In the next section, we apply this fractional matching method to the Gott-
Hiscock string. The hallmark of string behavior, the angular deficit, also depends on the order of
the fractional derivative. The change in the angular deficit introduced by the fractional match is
discussed.

Il. FRACTIONAL BOUNDARY CONDITION
A. The metrics
Consider a string oriented along theaxis with constant stress energy content
Ti=T:=-¢. (1)

From the field equations, the interior mefris
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d&?=-d?+dp?+dZ + p™ sin2<£*)dqo2, 2)
p

wherep* = (87m¢) /2 and the string is assumed to be flatpat0.
The exterior vacuum space—-time is

ds=—dT?+dr?+ dZ? + ar?d¢?. (3

B. The nonfractional boundary match

The metric match ap=p,, r=r, provides the condition

arO:p*sin<p—2>.
p

The extrinsic curvature is defined’as
Kij = Ny p &€l

where theg are the tangents to the boundary hypersurface with normal vegt@alculating the
extrinsic curvatures one finds in the interior

* . [ Po Po
Koo =p S|n<_*)CO<_*>. (4)
et o p

In the exterior the extrinsic curvatures are

K= 8%, ©)

K,,=0.
The difference in the extrinsic curvatures across the boundary is

(Kgg) = Kgg(vacuum - K 4 4(interion) = <a2r0 -p sin(%)cos(%)),

1 1co ) 1 1co :
(K) = K¢(vacuum — K¥(interion) = — - —*M =—- —M.
o p*sinlpdp) 1, @ l'o
In the Israel formalisnf,the stress energy of the boundary layer is

87Sup =~ {(Kan) — han( KD},

8rS, = (K)o = 2232027 ) 22 °; : ")-a
_a-codp/p*)
87S,,= —aro ,

87S,,=0. (6)

(23
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If the extrinsic curvatures match, there is no stress energy in the boundary. The match of the
extrinsic curvature provides the same condition as a match d theerivatives across the string
boundary,

C. The fractional match

In the fractional boundary match, the metric matching conditions are the same as in the
smooth boundary match:

arozp*sin<p—f>. (7)
p

Instead of a match of the extrinsic curvatures, a fractional derivative match is used with the
regular partial derivative; replaced by arfa) order Caputo fractional derivative as described in
the Appendix.

1. Fractional derivatives for the interior metric

In the interior, since the Caputo derivative of a constant is zero, the only function to consider
is f=p" sirf(p/p* ). Using a as the fractional index we have that thth fractional derivative is

e i

The form of the functiorSpO(a,p* , o) depends on the range of the fractional derivative order.
For a<1 we have

* [D 1-a 2 2po/p* 2 2po/p*
S, (a,p*,po) = u[sin(%’)J Z “coq2)dz- cos(%’)] Z “sin(z)dz]|.
° 0 p 0

I'l-oa) p
(8)
For a>1 the function is
(p*/2)| <2po>f"°/”* 1 i <2po>f2p°”’* }
S , *' = =7 @ =Fo « d + —IFo 1-a d .
po(ap 0o) r2-a sin o)) Z*sin(z)dz+ co ) z *coqz)dz
9

The two can be related by an integration by parts and the use of a gamma function recursion
relation. Fora=1, the usual first derivative is recovered.

2. Fractional derivatives for the exterior metric

In the exterior it is the right-handed derivative which should be applied. The exterior frac-
tional derivative of the metric function is

)= 1® a’r?e, (10)

D(a) 2
RAT)= 32,
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TABLE |. Values of the functionh(«,p,/p*)=cos(p,/p*)—a as a and
polp* vary. p, is the radius of the string in the internal metrip.
=(87e) "2 where € is the constant internal energy density of the string.
Complex values are indicated by C. Wher 1, h(«, p,/p*)=0, providing
the usual derivative matching condition.

a

polp* 0.1 0.3 0.7 0.9 11 1.2
01w  —0.013 -0011 -0.006 ~—0.002  0.002 0.005
02r  —0.051 —0.043 —0023 —0.008 0010 0.021
037  —0113 -0097 -0.052 -0.02  0.023 0.05
047  —0199 -0.172 —0.095 -0.038  0.047 0.107
0457 —025 -0218 -0125 —0.051 0069 C
057 -031 -0.272 -0.163 -0.071 c c

3. The boundary match
The equation for the boundary match is

F(s) 2-a *
Ta-a? o =P S@p” po).

For =1 the usual derivative is obtained, leading to the original derivative matching result

a:co<p—3>. (11
p

For a# 1 there is a boundary layer which can be described by the fsiarehalism.

Ill. BOUNDARY STRESS ENERGY

The boundary stress energy, Ef), involves the function

h(a,p—:> = cos(p—f) -a.
p p

The two fractional matching equations, EG#). and(10), can be combined to give an equation for
the parameterd,”

V(a, * 2 2po/p* ) 2po/p*
a<la®= M{sin(%")[ zZ “coqz)dz- cos( ’Z°)f Z“sin(z)dz|,
p

F(l - a) P 0 0
(12
* 2 0/ * 2 0/ *
a> 1:a‘1:w{sin(2—€°>f o 2 sin(z)dz+ c05<2€°)f o i coS(Z)dZ},
I'2-a) p 0 p 0
(13

where W(a, p,/p)=[T'(3-a)sin®%(p,/p')]/2°7. For a smooth match(a,p,/p*) should be
zero. Using Eq(12), Eq. (13), and MAPLE,h(«,p,/p*) was evaluated for a range p§/ p* and
fractional indices. The results are in Table I.

Examining Table I, one sees in all cases thatead is approached, the stress energy of the
layer approaches zero. Fax 1 the boundary layer has negative density and posiistess. As
po/ p* moves abover/2, the values become complex. Fer>1, the boundary layer density is
positive and the stress iszetension. Forae>1 complex values occur for values pf/ p* <r/2.
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TABLE II. Values of the angular deficit factora” as a function ofa and
pol p*. po is the radius of the string in the internal metrj€.=(8me) "2
wheree is the constant internal energy density of the string. Complex values
are indicated by C.

pol p* 0.1 0.3 0.7 1 1.1 1.2
0.1 0.964 0962 0957 0951  0.949  0.946
0.2 0.86 0.852 0.832  0.809  0.799  0.788
0.3m 0701 0684 0639 0588 0565  0.538
0.4 0.507 0.48 0.404 0309 0263  0.202
0.5m 0308 0272  0.163 0 c c

The string angular deficit, the cut in the range of theoordinate due to the presence of the
parameter &” in the exterior metric, is a hallmark of cosmic string behavior. The angular deficit
depends on the energy density of the stfiniyhen a fractional boundary condition is used, the
internal stress energy of the string does not change but the energy density of the boundary layer
affects the angular deficit since it must be included in the total energy density of the string. The
angular deficit can be defined by

Sp=2m1-a]. (14)

The values of &” for various &« and p,/ p* were calculated and are found in Table Il. In Table
II, the =1 column values are calculated from the standard nonfractional match. The linear
density of the string is not affected by the boundary layer but the angular deficit is, increasing in
value asa increases. For<1, the angular deficit is less than the zero-boundary-layer],
value because the negative boundary layer density is decreasing the overall mass density of the
string. Fora>1 the deficit is larger than the zero-boundary-layer value because the positive
boundary layer mass increases the string density.

One possible way to interpret the variation of the parametérahd the surface energy
density is through a packing fraction. The packing fraction is normally defined as the ratio of the
area covered by a tiling to the total area being tiled. Adapting this to the surface layer we can
consider the ratio of the# 1 surface area to the=1 surface area which is just the ratio of the
“a” values in each row of Table Il to thea" value for a=1:

2mala # Lr, ala# 1)
2ma(a=1)Lr, ala=1)"

pfla) =

For a<1, the layer with its negative density matter seems overpackedr ¥drthis ratio can
be used to make some qualitative comments about the energy distribution. From Table I, gener-
ally one notes that the packing fraction decreasesa axreases for a givep,/p* and that the
packing fraction decreases as i p* increases. The latter effect can be simply explained by
examining cylinders of constant radius and varying internal energy density. As the internal energy
density decreases and the ratigf p* goes up, the packing fraction decreases as there is less
energy to distribute over the surface. The first effect is more difficult to motivate. One possible
explanation comes from assuming a specific tiling mechanism for the boundary layer and then
using the packing fraction variation to motivate differences within the tiling. For example, if the
surface layer is tiled with an Apollonian packiﬁ‘é,circles with increasing smaller circles packed
in the interstitial regions, the packing fraction is given roughly by

pf=1-(r(min)/r(max)?™

wherer(max is the radius of the largest circle in the packingnin) is the smallest circle in the
tiling, andd~1.3 is the fractal dimensiérof the tiling in flat space. Using this, the variation in
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the packing fraction as a function afcan be explained as a variation in the range of granule sizes
making up the surface layer.

IV. DISCUSSION

In this note, we have suggested using a Caputo space fractional derivative to generate variable
density Israel surface layers on the Gott-Hiscock string bounded by a Levi-Civita vacuum. The
method generates, far>1, a family of positive energy, increasingly dense boundary layers
between the constant density string interior and the vacuum exteriow €dr, the energy density
is negative. The Caputo derivatives can be more restrictive than the Riemann-Liouville forms
since the derivatives of the matching metric functions must exist to use the Caputo definition. The
Riemann-Liouville form would give an additional nonzero matching condition for the constant
metric functions which would identify, and p,,.

When joining many hypersurfaces, it is common practice to match extrinsic curvatures. Since
the extrinsic curvature is a Lie derivative, it can be calculated from simple partial derivatives and
can be fractionally generalized. Because the string boundary, as defined in the bounding space—
time, had a well-defined unit normal and derivatives, a simple fractional extrinsic curvature match-
ing would have given the same result as the fractional derivative matching. However, null sur-
faces, for example, do not have a well-defined extrinsic curvature and junction conditions outside
of an extrinsic curvature matching have been develdpedviars and Senovil£ have discussed
junction conditions using a rigged metric connection for general hypersurfaces. Hé?/\haml
discussed an action for nonsmooth boundaries. Using fractional derivatives as a method for gen-
erating variable density boundary layers apart from the second fundamental form might instead be
a way of giving physical meaning to possible fractional extrinsic curvature definitions.

A smooth boundary with well-defined derivatives is not a necessary condition for the use of a
fractional derivative matching. The Riemann-Liouville derivatives can be applied to functions
which themselves do not have a well defined derivatives. For example, using the Riemann-
Liouville form, Rocco and We&t showed that the continuous but nondifferentiable Wierstrass
function had a well-defined fractional derivative. Kolwankar and G&ﬁ@to discussed the
fractional derivatives of the Weierstrass function. Fractional derivatives have seen increasing use
in the development of fractional kineti&g,particularly in discussions of anomalous transport
processey. While the method presented in this note generates a family of surface layers of
varying densities between the same two bounding static space—times, the use of fractional deriva-
tives in boundary matching could reflect an underlying boundary matter structure that was built by
an anomalous transport process. A single tiling was used as an example of the relation between
possible matter distributions and the order of the fractional derivative. The results from other
tilings or sums over tilings is an interesting question for investigation.

APPENDIX: FRACTIONAL OPERATIONS

The idea of a fractional derivative arose in 1695 when L’Hoﬂﬁtabked Leibniz about the
meaning ofd"y/dx" for n=%. The ideas of fractional calculus have attracted the attention of many
of the same people that are associated with the development of physics: Lagrange, Laplace,
Fourier, Liouville, Riemann, and Weyl, among oth&tsSince the first conference on fractional
calculus in 1974, the applications to physics have grown enormously, describing phenomena such
as the modeling of viscoelastic phenonfé’mmd fractional matter transpd‘?t.There have been
many definitions of fractional operations because of the diverse array of applications. Some of the
fractional differentiation definitions ar@) the left-handed Riemann-Liouville formf,

v — d_m 1 * _ m-v-1
Daf(x) = dxm{—l"(m—v)fa fly)(x-y) dy},

and(b) the right-handed Riemann-Liouville forff,
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m

oD 0 =35 F(

) f fly)(y=x)"™" "y,

where, in both cases) is the smallest integer bigger thanOne very interesting thing about this
form of the fractional derivative is that the derivative of a constant is not zero. For example, the
left-handed derivative of “1” is

g @ 1 LX)
Dalll= e r(z—y)fo =yay = pa )

where the definition of the beta function,

v . T@T W)
— z-1/1 _ y\W-1 —
B(z,w)—f0 X H1 =-x)VHdx = Tzrw)

and the recursion relation for the gamma function have been used. There are other fractional
forms, with modified definitions. The Capﬁ?o‘ractional derivatives are similar to the Riemann-
Liouville derivatives except that the derivative appears inside of the intefjf&ly) is the mth
derivative off(x). The left-hand CapuilB derivative is

v — 1 g —\\Mr=1¢(m)
cD a[f(x)]—r(m_y)fa (x=y)™ " (y)dy.

The right-hand derivative is similar. Butzer and Westffnatedit Liouville with the definition. In
this paper we shall use the Caputo form.
The notation that we will use is

g~ >DY,

g - >DY,

wherewv the fractional order, has been placed in parentheses to distinguish it from a tensor index,
i is the index of the coordinate derivative, abdR denote the left- or right-hand derivatives.
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