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A fractional boundary condition is used to join the Gott-Hiscock string to a Levi-
Civita vacuum. The use of a fractional derivative generates Israel boundary layers
whose density depends on the order of the fractional derivative. Variable boundary
layers for the same two bounding space–times can be studied. The string angular
deficit depends on the order of the fractional deficit. ©2005 American Institute of
Physics.fDOI: 10.1063/1.1863692g

I. INTRODUCTION

The Gott-Hiscock1,2 solution describes a constant density string matched to a vacuum Levi-
Civita space–time with angular deficit. Two of the most common boundary matching conditions
for non-null boundaries are due to Lichnerowicz and Darmois. These conditions have been dis-
cussed by Bonnor and Vickers.3 Both conditions involve matching a metric and some metric
derivatives across the boundary. The Darmois condition matches the metric and its second funda-
mental forms on the boundary while the Lichnerowicz condition matches the metric and its first
derivatives on the boundary. The resulting space–time exterior to the string has an angular deficit
related to the mass per unit length of the string interior. For general space—times, if a derivative,
or extrinsic curvature, match is not possible, the most common procedure is to use the Israel4

formalism, defining a surface boundary layer stress energy through the jump in the extrinsic
curvature between space–times on either side of the boundary. Other space–times, whose extrinsic
curvature was not continiuous across the boundary, could have been used for the exterior match,
creating an Israel layer on the string boundary.

The Israel technique provides information about the stress energy content of the bounding
surface layer. While the Israel surface layer can be used to describe the jump in the extrinsic
curvature across a space–time boundary, it will not distinguish surface layers of different densities
or structures that might bound the same two spacetimes. Within the Israel formalism, the only way
of varying the boundary layer properties is to vary the bounding space–times.

One way of modifying the boundary conditions to include different kinds of boundary sur-
faces for the same bounding space–times is to generalize the Lichnerowicz boundary conditions to
a fractional derivative matching and then to use the Israel formalism to describe the resulting
surface layer. This creates boundary layers whose stress energy content depends on the order of
the fractional derivative and allows the study of variable boundary structures between the same
two space–times. In the next section, we apply this fractional matching method to the Gott-
Hiscock string. The hallmark of string behavior, the angular deficit, also depends on the order of
the fractional derivative. The change in the angular deficit introduced by the fractional match is
discussed.

II. FRACTIONAL BOUNDARY CONDITION

A. The metrics

Consider a string oriented along thez axis with constant stress energy content

Tt
t = Tz

z = − «. s1d

From the field equations, the interior metric2 is
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ds2 = − dt2 + dr2 + dz2 + r*2 sin2S r

r* Ddw2, s2d

wherer* = s8ped−1/2 and the string is assumed to be flat atr=0.
The exterior vacuum space–time is

ds2 = − dT2 + dr2 + dZ2 + a2r2dw2. s3d

B. The nonfractional boundary match

The metric match atr=ro, r =ro provides the condition

aro = r * sinS ro

r*
D .

The extrinsic curvature is defined as5

Kij = nsa;bdei
aej

b,

where theei
a are the tangents to the boundary hypersurface with normal vectorna. Calculating the

extrinsic curvatures one finds in the interior

Kww = r* sinSro

r* DcosSro

r* D . s4d

In the exterior the extrinsic curvatures are

Ktt = 0,

Kww = a2ro, s5d

Kzz= 0.

The difference in the extrinsic curvatures across the boundary is

kKffl = Kffsvacuumd − Kffsinteriord = Sa2ro − r* sinSro

r* DcosSro

r* DD ,

kKl = Kw
wsvacuumd − Kw

wsinteriord =
1

ro
−

1

r*

cossro/r
*d

sinsro/r
*d

=
1

ro
−

1

a

cossro/r
*d

ro
.

In the Israel formalism,4 the stress energy of the boundary layer is

8pSab = − hkKabl − habkKc
clj,

8pStt = kKlhoo =
cossro/r * d − a

aro
,

8pSzz=
a − cossro/r * d

aro
,

8pSww = 0. s6d
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If the extrinsic curvatures match, there is no stress energy in the boundary. The match of the
extrinsic curvature provides the same condition as a match of thegff derivatives across the string
boundary,

a = cosS ro

r*
D .

C. The fractional match

In the fractional boundary match, the metric matching conditions are the same as in the
smooth boundary match:

aro = r * sinS ro

r*
D . s7d

Instead of a match of the extrinsic curvatures, a fractional derivative match is used with the
regular partial derivative,]i replaced by ansad order Caputo fractional derivative as described in
the Appendix.

1. Fractional derivatives for the interior metric

In the interior, since the Caputo derivative of a constant is zero, the only function to consider
is f =r*2 sin2sr /r* d. Usinga as the fractional index we have that theath fractional derivative is

Dr,L
sadSr*2 sin2S r

r* DD = r*Sro
sa,r * , rod.

The form of the functionSro
sa ,r* , rod depends on the range of the fractional derivative order.

For a,1 we have

Sro
sa,r * , rod =

sr * /2d1−a

Gs1 − ad FsinS2ro

r*
DE

0

2ro/r*

z−a cosszddz− cosS2ro

r*
DE

0

2ro/r*

z−a sinszddzG .

s8d

For a.1 the function is

Sro
sa,r * , rod =

sr * /2d1−a

Gs2 − ad FsinS2ro

r*
DE

0

2ro/r*

z1−a sinszddz+ cosS2ro

r*
DE

0

2ro/r*

z1−a cosszddzG .

s9d

The two can be related by an integration by parts and the use of a gamma function recursion
relation. Fora=1, the usual first derivative is recovered.

2. Fractional derivatives for the exterior metric

In the exterior it is the right-handed derivative which should be applied. The exterior frac-
tional derivative of the metric function is

Dr,R
sadsa2r2d =

Gs3d
Gs3 − ad

a2r2−a. s10d
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3. The boundary match

The equation for the boundary match is

Gs3d
Gs3 − ad

a2ro
2−a = r*Sro

sa,r * , rod.

For a=1 the usual derivative is obtained, leading to the original derivative matching result

a = cosSro

r* D . s11d

For aÞ1 there is a boundary layer which can be described by the Israel4 formalism.

III. BOUNDARY STRESS ENERGY

The boundary stress energy, Eq.s6d, involves the function

hSa,
ro

r*
D = cosS ro

r*
D − a.

The two fractional matching equations, Eqs.s7d ands10d, can be combined to give an equation for
the parameter “a,”

a , 1:aa =
Csa,ro/r

*d
Gs1 − ad FsinS2ro

r* DE
0

2ro/r*

z−a cosszddz− cosS2ro

r* DE
0

2ro/r*

z−a sinszddzG ,

s12d

a . 1:aa =
Csa,ro/r

*d
Gs2 − ad FsinS2ro

r* DE
0

2ro/r*

z1−a sinszddz+ cosS2ro

r* DE
0

2ro/r*

z1−a cosszddzG ,

s13d

where Csa ,ro/r*d=fGs3−adsina−2sro/r*dg /22−a. For a smooth match,hsa ,ro/r* d should be
zero. Using Eq.s12d, Eq. s13d, and MAPLE,hsa ,ro/r* d was evaluated for a range ofro/r* and
fractional indices. The results are in Table I.

Examining Table I, one sees in all cases that, asa=1 is approached, the stress energy of the
layer approaches zero. Fora,1 the boundary layer has negative density and positivez-stress. As
ro/r* moves abovep /2, the values become complex. Fora.1, the boundary layer density is
positive and the stress is az-tension. Fora.1 complex values occur for values ofro/r* ,p /2.

TABLE I. Values of the functionhsa ,ro/r* d=cossro/r* d−a as a and
ro/r* vary. ro is the radius of the string in the internal metric.r*

=s8peds−1/2d wheree is the constant internal energy density of the string.
Complex values are indicated by C. Whena=1, hsa ,ro/r* d=0, providing
the usual derivative matching condition.

a

ro/r* 0.1 0.3 0.7 0.9 1.1 1.2

0.1p 20.013 20.011 20.006 20.002 0.002 0.005
0.2p 20.051 20.043 20.023 20.008 0.010 0.021
0.3p 20.113 20.097 20.052 20.02 0.023 0.05
0.4p 20.199 20.172 20.095 20.038 0.047 0.107
0.45p 20.25 20.218 20.125 20.051 0.069 C
0.5p 20.31 20.272 20.163 20.071 C C
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The string angular deficit, the cut in the range of thef coordinate due to the presence of the
parameter “a” in the exterior metric, is a hallmark of cosmic string behavior. The angular deficit
depends on the energy density of the string.2 When a fractional boundary condition is used, the
internal stress energy of the string does not change but the energy density of the boundary layer
affects the angular deficit since it must be included in the total energy density of the string. The
angular deficit can be defined by

dw = 2pf1 − ag. s14d

The values of “a” for variousa andro/r* were calculated and are found in Table II. In Table
II, the a=1 column values are calculated from the standard nonfractional match. The linear
density of the string is not affected by the boundary layer but the angular deficit is, increasing in
value asa increases. Fora,1, the angular deficit is less than the zero-boundary-layer,a=1,
value because the negative boundary layer density is decreasing the overall mass density of the
string. For a.1 the deficit is larger than the zero-boundary-layer value because the positive
boundary layer mass increases the string density.

One possible way to interpret the variation of the parameter “a” and the surface energy
density is through a packing fraction. The packing fraction is normally defined as the ratio of the
area covered by a tiling to the total area being tiled. Adapting this to the surface layer we can
consider the ratio of theaÞ1 surface area to thea=1 surface area which is just the ratio of the
“a” values in each row of Table II to the “a” value for a=1:

pfsad =
2pasa Þ 1dLro

2pasa = 1dLro
=

asa Þ 1d
asa = 1d

.

For a,1, the layer with its negative density matter seems overpacked. Fora.1 this ratio can
be used to make some qualitative comments about the energy distribution. From Table II, gener-
ally one notes that the packing fraction decreases asa increases for a givenro/r* and that the
packing fraction decreases as thero/r* increases. The latter effect can be simply explained by
examining cylinders of constant radius and varying internal energy density. As the internal energy
density decreases and the ratioro/r* goes up, the packing fraction decreases as there is less
energy to distribute over the surface. The first effect is more difficult to motivate. One possible
explanation comes from assuming a specific tiling mechanism for the boundary layer and then
using the packing fraction variation to motivate differences within the tiling. For example, if the
surface layer is tiled with an Apollonian packing,6,7 circles with increasing smaller circles packed
in the interstitial regions, the packing fraction is given roughly by

pf = 1 − srsmind/rsmaxdd2−d

wherersmaxd is the radius of the largest circle in the packing,rsmind is the smallest circle in the
tiling, andd,1.3 is the fractal dimension8 of the tiling in flat space. Using this, the variation in

TABLE II. Values of the angular deficit factor “a” as a function ofa and
ro/r*. ro is the radius of the string in the internal metric.r* =s8peds−1/2d

wheree is the constant internal energy density of the string. Complex values
are indicated by C.

a

ro/r* 0.1 0.3 0.7 1 1.1 1.2

0.1p 0.964 0.962 0.957 0.951 0.949 0.946
0.2p 0.86 0.852 0.832 0.809 0.799 0.788
0.3p 0.701 0.684 0.639 0.588 0.565 0.538
0.4p 0.507 0.48 0.404 0.309 0.263 0.202
0.5p 0.308 0.272 0.163 0 C C

042506-5 Fractional boundary J. Math. Phys. 46, 042506 ~2005!



the packing fraction as a function ofa can be explained as a variation in the range of granule sizes
making up the surface layer.

IV. DISCUSSION

In this note, we have suggested using a Caputo space fractional derivative to generate variable
density Israel surface layers on the Gott-Hiscock string bounded by a Levi-Civita vacuum. The
method generates, fora.1, a family of positive energy, increasingly dense boundary layers
between the constant density string interior and the vacuum exterior. Fora,1, the energy density
is negative. The Caputo derivatives can be more restrictive than the Riemann-Liouville forms
since the derivatives of the matching metric functions must exist to use the Caputo definition. The
Riemann-Liouville form would give an additional nonzero matching condition for the constant
metric functions which would identifyro andro.

When joining many hypersurfaces, it is common practice to match extrinsic curvatures. Since
the extrinsic curvature is a Lie derivative, it can be calculated from simple partial derivatives and
can be fractionally generalized. Because the string boundary, as defined in the bounding space–
time, had a well-defined unit normal and derivatives, a simple fractional extrinsic curvature match-
ing would have given the same result as the fractional derivative matching. However, null sur-
faces, for example, do not have a well-defined extrinsic curvature and junction conditions outside
of an extrinsic curvature matching have been developed.9–11 Mars and Senovilla12 have discussed
junction conditions using a rigged metric connection for general hypersurfaces. Hayward13 has
discussed an action for nonsmooth boundaries. Using fractional derivatives as a method for gen-
erating variable density boundary layers apart from the second fundamental form might instead be
a way of giving physical meaning to possible fractional extrinsic curvature definitions.

A smooth boundary with well-defined derivatives is not a necessary condition for the use of a
fractional derivative matching. The Riemann-Liouville derivatives can be applied to functions
which themselves do not have a well defined derivatives. For example, using the Riemann-
Liouville form, Rocco and West14 showed that the continuous but nondifferentiable Wierstrass
function had a well-defined fractional derivative. Kolwankar and Gangal15 also discussed the
fractional derivatives of the Weierstrass function. Fractional derivatives have seen increasing use
in the development of fractional kinetics,16 particularly in discussions of anomalous transport
processes.17 While the method presented in this note generates a family of surface layers of
varying densities between the same two bounding static space–times, the use of fractional deriva-
tives in boundary matching could reflect an underlying boundary matter structure that was built by
an anomalous transport process. A single tiling was used as an example of the relation between
possible matter distributions and the order of the fractional derivative. The results from other
tilings or sums over tilings is an interesting question for investigation.

APPENDIX: FRACTIONAL OPERATIONS

The idea of a fractional derivative arose in 1695 when L’Hopital18 asked Leibniz about the
meaning ofdny/dxn for n= 1

2. The ideas of fractional calculus have attracted the attention of many
of the same people that are associated with the development of physics: Lagrange, Laplace,
Fourier, Liouville, Riemann, and Weyl, among others.19 Since the first conference on fractional
calculus in 1974, the applications to physics have grown enormously, describing phenomena such
as the modeling of viscoelastic phenomena20 and fractional matter transport.17 There have been
many definitions of fractional operations because of the diverse array of applications. Some of the
fractional differentiation definitions aresad the left-handed Riemann-Liouville form,18

Da
nfsxd =

dm

dxmH 1

Gsm− ndEa

x

fsydsx − ydm−n−1dyJ ,

and sbd the right-handed Riemann-Liouville form,18
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bD
nfsxd =

dm

dxmH s− 1dm

Gsm− ndEx

b

fsydsy − xdm−n−1dyJ ,

where, in both cases,m is the smallest integer bigger thann. One very interesting thing about this
form of the fractional derivative is that the derivative of a constant is not zero. For example, the
left-handed derivative of “1” is

Da
nf1g =

d2

dx2H 1

Gs2 − ndE0

x

sx − yd1−ndyJ =
x−nGs1d
Gs1 − nd

,

where the definition of the beta function,

Bsz,wd =E
0

1

xz−1s1 − xdw−1dx=
GszdGswd
Gsz+ wd

,

and the recursion relation for the gamma function have been used. There are other fractional
forms, with modified definitions. The Caputo19 fractional derivatives are similar to the Riemann-
Liouville derivatives except that the derivative appears inside of the integral;f smdsyd is the mth
derivative of fsxd. The left-hand Caputo19 derivative is

CDn
affsxdg =

1

Gsm− ndEa

x

sx − ydm−n−1f smdsyddy.

The right-hand derivative is similar. Butzer and Westphal21 credit Liouville with the definition. In
this paper we shall use the Caputo form.

The notation that we will use is

]i − . DiL
snd,

]i − . DiR
snd,

wheren the fractional order, has been placed in parentheses to distinguish it from a tensor index,
i is the index of the coordinate derivative, andL, R denote the left- or right-hand derivatives.
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