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A fractional Lie derivative, valid in the thin shell limit, is developed. The nonlocal
nature of the fractional derivative allows the inclusion of shell thickness in the
stress energy description of zero thickness Israel layers. The method is applied to
several examples. © 2006 American Institute of Physics.
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I. INTRODUCTION

Derivatives of fractional order, first described in 1695 by Leibnitz,1,2 have been successful in
modeling transport processes with anomalous microscopic time and/or spatial structures.3–6

Among the transport applications are diffusion equations fractional in both time and spatial
coordinates7–9 and fractional Schrödinger equations;10,11 there are applications in biophysics and
thermodynamics12 as well as texts13,14 on solving the fractional differential equations arising in
transport. Other areas of application are the inclusion of dissipative processes in a Lagrangian
formalism by introducing fractional derivatives as generalized coordinates15,16 and the use of a
fractional derivative in the metric match over a boundary layer17,18 in general relativity.

The field equations of general relativity are not easily fractionally generalized because of the
covariance requirement on derivatives. The general relativity �GR� applications in Refs. 17 and 18
did not modify the field equations or any of the usual GR tensors in any way; the fractional match
simply provided a broader set of metric relations across a boundary. It was used to create a family
of Israel layers parametrized by the noninteger order of the fractional derivative. There are,
however, geometric objects used in general relativity, which can be fractionalized without altering
the basic covariant structure of the theory. One of these is the Lie derivative, defined only with
partial derivatives. The Lie derivatives take into account the difference between a tensor that is
Taylor transported to a point and coordinate transformed at the same point. It is a local derivative.
Fractional derivatives are intrinsically nonlocal, involving an integral over some region of space
time. A fractional Lie derivative, while it also evaluates functional differences at a point, since it
is nonlocal in its definition, could be a useful way of including nonlocal effects in single layer
calculations. For example, the Israel formalism calculates the stress energy content of a single
layer in terms of the jump in extrinsic curvatures across a boundary. Using a fractional Lie
derivative to define a fractional extrinsic curvature would allow the inclusion of shell thickness in
the standard Israel formalism. In the next section we develop a fractional Lie derivative valid to
first order in a thin shell thickness. The formalism is used to describe the stress energy content of
some simple fractional layers. A brief list of notation is included in the Appendix.

II. LIE DERIVATIVE

A. The integer Lie derivative

The Lie derivative compares the value of a function under transport from x to x� and under a
coordinate transform from a system of coordinates �x� to a primed system �x��. The difference
Vi�x��−V�i�x�� defines the Lie derivative. Consider a vector Vi at a point x. Under a coordinate
transform, xi�=xi+�id�, its value transforms as

a�Electronic mail: jkrisch@umich.edu

JOURNAL OF MATHEMATICAL PHYSICS 47, 122501 �2006�

47, 122501-10022-2488/2006/47�12�/122501/12/$23.00 © 2006 American Institute of Physics

http://dx.doi.org/10.1063/1.2390660
http://dx.doi.org/10.1063/1.2390660


V�i�x�� =
�x�i

�xa Va�x� = ��a
i +

��i

�xad��Va�x� , �1�

where �i is the tangent to the transport path. The vector is assumed to be analytic and we have

Vi�x�� = Vi�x� + � �Vi

�x�a�
x
�x�a − xa� + ¯ . �2�

Using Eq. �1�, the Lie derivative to first order in �i is

�L�V
i� = lim

d�→0

Vi�x�� − Vi��x��
d�

,

�L�V
i� = � �Vi

�x�a�
x
�a − � ��i

�x�a�
x
Va�x� .

Similar expressions exist for covariant vectors and tensors of higher order. For a scalar func-
tion, F, the Lie derivative is a simple directional derivative.

�L�F� = �a� �F

�x�a�
x
.

B. Fractional generalization

1. Fractional derivative

There are several choices to make in developing a fractional Lie derivative. The first is to
choose the type of fractional derivative from among the many available. We will use the Caputo
form of the fractional derivative. The Caputo fractional derivative integrates the derivative of the
function while other forms take the derivative of the function integral. Among the many fractional
derivative operators, the Caputo form is the closest generalization of the classical derivative.13 We
generalize the usual form by using partial derivatives. With q as the fractional parameter, the
Caputo derivative is defined for 0�q�1 as

Dx
qVi�x�� =

�qVi�x��
��x� − x�q =

1

��1 − q��x

x�
dy

�Vi�y�
�y

�x� − y�−q. �3�

The derivative can be extended to values of q�1; this is discussed in the Appendix. The
indices, �q ,x�, on Dx

q are not tensor indices. q is the fractional parameter and x is the lower limit
in the integral definition. The choice of limits depends on the application being made. Our devel-
opment will be for applications to thin layers of thickness �. The coordinates near the shell are
�t ,	 ,x3 ,x4�. The spatial coordinates in the layer are �x3 ,x4�. The radial coordinate, 	, is measured
to the outer shell boundary, 	=Ro. The integration will run from the bottom of the layer, x=	
−�, to the top, x�=	, with 	=Ro when the outer boundary size is set. With these choices, the
fractional derivative definition that will be used is

D	−�
q Vi�	� =

1

��1 − q��	−�

	

dy
�Vi�y�

�y
�	 − y�−q. �4�

The other parts of the fractional generalization to consider are the tensor transformation rule
and the first terms of a fractional expansion of the tensor. These parts depend on the fractional
replacement for the partial derivative.
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2. Partial derivative and fractional derivative

A relation between a partial derivative and a fractional derivative can be obtained by integrat-
ing Eq. �3� by parts. We have

Dx
qVi�x�� =

�x� − x�1−q

��2 − q�
� �Vi�y�

�y
�

x
+

�x� − x�2−q

��3 − q�
� �2Vi�y�

�y2 �
x

+ ¯ �5�

In the limit, x�−x
1��
1�, the first term will dominate and we have the relation between
the fractional derivative and the partial derivative to lowest order in shell thickness.

���1−q

��2 − q�
� �Vi�y�

�y
�

	−�

→ D	−�
q Vi�	� . �6�

For convenience, we define a fractional operator Ðx
q,

Dx
q� � =

�x� − x�1−q

��2 − q�
Ðx

q� � . �7�

In the q=1 limit, the usual derivative is obtained. The Ðx
q derivative used over a nonthin shell

region, for some functions, can divide out much of the usual fractional behavior and will be used
to provide the direct replacement for the partial derivative for layer examples.

3. The first order fractional expansion

For analytic Vi, the regular Taylor expansion is

Vi�x�� = Vi�x� + � �Vi�y�
�y

�
x
�x� − x� + ¯ �8�

Using the fractional replacement the expansion can be written to first order as

Vi�x�� = Vi�x� + Ðx
q�Vi��x� − x� + ¯ �9�

Note that this is not a replacement for the regular Taylor expansion, complete to all orders. It
will be used only to first order in the shell thickness. A complete fractional expansion was
developed by Taylor and Riemann.19 Their expansion, including both fractional integrals and
derivatives, is difficult to implement. Kolwankar20 have also developed a local fractional expan-
sion.

4. A notation addition

The general fractional derivative

Dx
qVi�x�� =

�qVi�x��
��x� − x�q =

1

��1 − q��x

x�
dy

�Vi�y�
�y

�x� − y�−q

is not written with tensor functions in mind. For example, if Vi�x��=x�i we have

Dx
qx�i =

�qx�i

��x� − x�q =
1

��1 − q��x

x�
dy

�yi

�y
�x� − y�−q,

where i has the usual coordinate index range �1, 2, 3, 4� but the coordinate identification of x� and
its integral counterpart, y, is not clear. To clarify this an index k is added to the fractional
derivative notation, allowing the partial derivative to be written in index notation

Dx,k
q x�i =

�qx�i

��x�k − xk�q =
1

��1 − q��x

x�
dy

�yi

�yk �x� − y�−q. �10�
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A similar notation is used by Samko et al.2 With this notation and using the incomplete beta
function, the integral in Eq. �10� is

Dx,k
q x�i =

�qx�i

��x�k − xk�q =
�k

i

��1 − q��x

x�
dy�x� − y�−q =

�k
i �x� − x�1−q

��2 − q�
. �11�

5. The coordinate transformation

The remaining step is to consider the transport as a coordinate transformation. The usual
tensor transformation rule can be written as

Vi�x� =
��xi − xo

i �
��x�k − xo�

k�
V�k�x�� , �12�

where xo
i and xo�

i are the initial points in the two systems. The partial derivative in the transfor-
mation rule generalizes to

��xi�
��x�k − xk�

→ Ðx,k
q �xi� �13�

and we have

Vi�x� = Dx,k
q �xi�V�k�x�� =

��2 − q�
�x� − x�1−q

�q�xi�
��x�k − xk�qV�k�x�� . �14�

Substituting from the coordinate transformation one obtains

Vi�x� =
��2 − q�

�x� − x�1−q� �q�x�i�
��x�k − xk�q −

�q��id��
��x�k − xk�q	V�k�x�� . �15�

The first integral is evaluated above giving

Vi�x� = V�i�x�� − Ðx,k
q ��i�d�V�k�x�� .

For the layer application this becomes

Vi�	 − �� = V�i�	� − Ð	−�,k
q ��i�d�V�k�	� . �16�

A fractional coordinate transformation has been considered by Cotrill-Shepherd and Naber.21

Their transformation takes a fractional coordinate differential dqxi to another dqyi in n dimensions.
For q�1 their transformation can be written as

dxq,k = 

i=1

n

dyq,i 1

��1 + q�
1

�
p=1p�k

n

�xp − xo
p�q−1

�� �
j=1j�k

n

�xj − xo
j �q−1�xk − xo

k�q	
��yi − xo�

i�q , �17�

where xo
i and xo�

i are the initial points for the coordinate systems. In addition to the obvious term
differences, this transformation is not an approximation but an exact transformation for a frac-
tional differential defined on a fractional tangent space. The transformation used to develop the
fractional Lie derivative in this paper is the fractional derivative of a regular function; it is not
complete but only considers the first order terms in the shell thickness.
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6. The fractional Lie derivative

Using Eqs. �8� and �16� and equating Vi�x� we have

Vi�x�� − Ðx,k
q �Vi��x�k − xk� = V�i�x�� − Ðx,k

q ��i�d�V�k�x�� . �18�

The Lie derivative comes from the difference Vi�x��−Vi��x��. Forming the difference we have

Vi�x�� − V�i�x�� = d��Ðx,k
q �Vi��k − Ðx,k

q ��i�Vk
 . �19�

The fractional Lie derivative qL��V
i� is

qL�V
i = Ðx,k

q �Vi��k − Ðx,k
q ��i�Vk. �20�

Similar development results in the fractional Lie derivative forms for covariant vectors and higher
order tensors. The fractional Lie derivative of Vi is

qL�Vi = Ðx,k
q �Vi��k + Ðx,i

q ��k�Vk. �21�

The simplest case, a scalar function, has fractional Lie derivative

qL�f = �kÐx,k
q �f� . �22�

Some properties of the fractional Lie derivative are discussed in the Appendix.

III. A FRACTIONAL THIN LAYER

A. Describing the layer

Many of the thin shell examples considered in the literature22–34 are descriptions of a bound-
ary layer between two space times, M±. Boundary layers are often treated in the Israel formalism35

which models a thin shell as a layer of zero thickness. The basic input into this description is the
extrinsic curvature of the boundary layer as seen by the bounding space times.

Kcd
± =

1

2
LN�gij

±�hc
±ihd

±j , �23�

where c ,d range over the coordinates of the boundary layer, Ni is the normal to the layer, and hij

is the projection operator onto the layer,

hij
± = gij

± − Ni
±Nj

±. �24�

The jump in the extrinsic curvatures, �Kab�=Kcd
+ −Kcd

− , and their trace �K�=K+−K− are related
to the stress energy of the single boundary layer.35

− 8�Sab = �Kab� − �K�hab. �25�

The fractional extrinsic curvature is defined in terms of the fractional Lie derivative.

qKcd =
1

2
qLN�gij�hc

i hd
j , �26�

where

qLN�gij� = NkÐx,k
q �gij� + gkjÐx,i

q �Nk� + gikÐx,j
q �Nk� �27�

and Eq. �7� relates Ðx,k
q to the fractional derivative form. The fractional stress energy is defined

through jumps in the fractional extrinsic curvature,

− 8�qSab = �qKab� − �qK�hab. �28�
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B. Using the fractional extrinsic curvature

The fractional extrinsic curvature is defined as an integral over a shell of thickness �. Because
of this nonlocal integral structure, one might assume that the usual Israel jump in extrinsic cur-
vature could be replaced by a single extrinsic curvature calculation. However, just as for the
regular Lie derivative, the fractional Lie derivative, while it includes a thickness component, only
provides the value of the derivative at a single space-time point. For example, consider a shell
bounded by two Minkowski space times. We would expect no jump discontinuities across such a
boundary.

M±:ds2 = − dt2 + dr2 + r2d�2. �29�

The unit normal to the shell is Ni= �0,1 ,0 ,0�. qK

 and qK�� will be nonzero for each of
Minkowski boundaries. Using Eqs. �7�, �26�, and �27�, with 	=r, the fractional extrinsic curvature
is

qKcd =
��2 − q�
2���1−q NrDr−�,r

q �gij�hc
i hd

j . �30�

For Minkowski we have

qK


M =

��2 − q�
2��1 − q����1−q�

r−�

r

dy2y�r − y�−q,

�31�
qK



M =
��2 − q�2Ro

2−q

2��1 − q����1−qB�/Ro
�1 − q,2� ,

where B�/R�1−q ,2� is the incomplete beta function and r was set equal to the boundary value, Ro.

Bx�a,b� = �
0

x

ta−1�1 − t�b−1.

Using the beta function expansion36

Bx�a,b� = xa�1

a
+

1 − b

a + 1
x +

�1 − b��2 − b�
2!�a + 2�

x2 + ¯ � , �32�

we have

qK


M =

��2 − q�2Ro
2−q

2��1 − q����1−q� �

Ro
�1−q� 1

1 − q
−

1

2 − q

�

Ro
+ ¯ � ,

qK


M � Ro�1 −

1 − q

2 − q

�

Ro
+ ¯ � . �33�

Because of the integral over the shell, this single extrinsic curvature might be regarded as the
entire jump contribution. However, if there were no boundary layer between the two space times,
one would expect the jump in the extrinsic curvatures to be zero. Instead, the fractional extrinsic
curvature, in the �− �0 limit, is simply the regular extrinsic curvature evaluated over the outer
bounding surface. The expression above is only the extrinsic curvature evaluated with one of the
bounding space times. In order to use the fractional extrinsic curvature in an Israel layer calcula-
tion, it has to be calculated for both interior and exterior boundaries, just as in the nonfractional
case. In this example, there is no jump in the extrinsic curvatures across the boundary as expected.
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IV. TWO EXAMPLES

In this section two examples of fractional shells are considered. One layer has cylindrical
symmetry and is bounded by Levi-Civita and Minkowski. The second layer has spherical sym-
metry and separates Schwarzschild and Minkowski. Dynamic shells have broad applications as
reflected by the large literature dealing with their evolution.22–34 The two examples considered in
this section are static and are presented as examples of the use of the fractional Lie derivative in
the Israel formalism. Dynamic fractional shells will be considered elsewhere.

A. A layer between Minkowski and Levi-Civita

A simple cylindrical example is a layer separating an interior Minkowski and a vacuum
Levi-Civita with angular deficit factor �,

M+:ds2 = − dt2 + dr2 + �2r2d�2 + dz2, �34�

M−:ds2 = − dt2 + d�2 + �2d�2 + dz2. �35�

Using the result from the previous section, Eq. �33�, the nonzero fractional extrinsic curvatures are
qK

,

qK


M− � Ro�1 −

1 − q

2 − q

�

Ro
+ ¯ � , �36�

qK


M+ � �Ro�1 −

1 − q

2 − q

�

Ro
+ ¯ � . �37�

Calculating the jumps we find

�qK� � Ro�� − 1��1 −
1 − q

2 − q

�

Ro
+ ¯ � , �38�

�qK


� � Ro�� − 1��1 −

1 − q

2 − q

�

Ro
+ ¯ � , �39�

− 8�Sj
i = �qKj

i� − �qK�hj
i ,

�40�

8�St
t � − Ro�1 − ���1 −

1 − q

2 − q

�

Ro
+ ¯ � .

The stress energy in the layer has positive density and no pressure. In a perfect fluid model
this could be dust. The method of including a fractional parameter in the regular Israel layer17,18 by
matching fractional derivatives across the boundary would require no angular deficit, �=1, for
these two space times. In this example, the stress energy of the layer only includes a thin layer
contribution for q�1, the fractional case. The � dependence was included by using the nonlocal-
ity of the fractional derivative. In the q− �1 limit, the fractional derivative becomes a regular
local derivative and the effect vanishes.

B. A layer between Minkowski and Schwarzschild

1. The fractional extrinsic curvature

Consider a shell bounded by the an exterior Schwarzschild space time and an interior
Minkowski at r=Ro,
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M+:ds2 = − �1 −
2m

r
�dt2 +

dr2

1 − �2m/r�
+ r2d�2, �41�

M−:ds2 = − �1 −
2m

Ro
�dt2 + dr2 + r2d�2. �42�

For this calculation the normal vectors have only radial components and we have

qLN�gij� = NrÐr−�,r
q �gij� + grjÐr−�,i

q �Nr� + girÐr−�,j
q �Nr�

with

Ðr−�,r
q �gij� =

��2 − q�
��1 − q����1−q�

r−�

r �gij�w�
�w

�r − w�−qdw

and q�1, r− �Ro on the boundary. For the interior Minkowski space time, Ni= �0,1 ,0 ,0� and
only qK

 and qK�� will contribute and the result has been calculated above. From Eq. �33� we
have

qK


 = qK�

� =
1

Ro
�1 −

1 − q

2 − q

�

Ro
+ ¯ � . �43�

For the exterior Schwarzschild �SC� space time, Ni= �0,�1− �2m /r� ,0 ,0� and qK

, qK��, and
qKtt will contribute. Except for the structure of the normal, the angular extrinsic curvatures will be
the same as in Minkowski and we have at the boundary

qK


 = qK�

� =
�1 − �2m/Ro�

Ro
�1 −

1 − q

2 − q

�

Ro
+ ¯ � . �44�

Calculating qKtt and letting r− �Ro we have

qKtt =
Nr

2
Ðr−�,r

q �gtt� = 2m
�1 − �2m/Ro�

2
Ðr−�,r

q �r−1� ,

qKtt = − 2m
�1 − �2m/Ro�

2

��2 − q�Ro
−1−q

��1 − q��1−q B�/Ro
�1 − q,− 1� .

The negative one beta function parameter is permitted for � /Ro�1.36 This expression is most
easily expanded in terms of the hypergeometric function 2F1�a ,b ,c ;x�,

B�/Ro
�1 − q,− 1� =

��/R0�1−q

1 − q 2F1�1 − q,2,2 − q;
�

Ro
� =

��/Ro�1−q

1 − q
�1 +

1 − q

2 − q
2

�

Ro
+ ¯ �

and we have

qKt
t =

m
�1 − �2m/Ro�Ro

2�1 +
1 − q

2 − q
2

�

Ro
+ ¯ � . �45�
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2. The layer stress energy

Using the qKab calculated in the previous section, the jumps are

�qK


� = �qK�

�� =
��1 − �2m/Ro� − 1�

Ro
�1 −

1 − q

2 − q

�

Ro
+ ¯ �

�46�

�qKt
t� =

m
�1 − �2m/Ro�Ro

2�1 + 2
1 − q

2 − q

�

Ro
+ ¯ � .

With these jumps, the layer energy density, �, and stress, P, are

8�St
t = − 8�� = − �qK



 + qK�
�� ,

8�S


 = 8�P = �qKt

t + qK�
�� .

Substituting we have

8�� = 2
�1 − �1 − �2m/Ro��

Ro
�1 −

1 − q

2 − q

�

Ro
+ ¯ � , �47�

8�P =
1

Ro
�1 − �2m/Ro�

�+ 1 −
m

Ro
−�1 −

2m

Ro
+

1 − q

2 − q

�

Ro
�4m

Ro
− 1 +�1 −

2m

Ro
�¯ 	 .

�48�

In the m
Ro limit the stress energy becomes

� �
m

4�Ro
2�1 −

1 − q

2 − q

�

Ro
� ,

�49�

P �
3m

8�Ro
2

1 − q

2 − q

1

Ro
.

For q=1, the density is simply the SC mass parameter over the surface area of the sphere and
the fluid is dust. For q�1 the reduction in density, for the same mass, means the same mass is
distributed over a larger region. Since the size of the sphere is set, the reduction in the areal
density is possible if the mass is being distributed in an annular volume rather than totally over an
area. In addition, the appearance of the fractional correction factor suggests that the thickness of
the shell is parametrized by q. One could define a parametrized shell thickness,

�q =
1 − q

2 − q
� . �50�

With this parametrization, a family of shells is created with the thickest shells occurring for q
close to zero.

V. DISCUSSION

The Israel formalism models a thin shell of matter as a zero thickness layer. The stress energy
of the layer is related to jumps in the extrinsic curvature across the single boundary. In this paper,
a fractional Lie derivative was developed and used to calculate a fractional extrinsic curvature
which was input into the Israel formalism. The layer being described still has zero thickness; a
single coordinate boundary is used to calculate the curvature jumps, but the nonlocal fractional
derivative used to define the fractional extrinsic curvature allows the inclusion of a contribution
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from a thin layer thickness as well as a fractional parameter, q, in the layer stress energy. The
fractional parameter can be used to parametrize the shell thickness, creating a family of shells of
varying thickness. The development is for q�1 but can be extended to higher values of the
fractional parameter. As an example of the use of the fractional Lie derivative within the Israel
formalism, the method was applied to a cylindrical layer between a Minkowski interior and a
Levi-Civita exterior and a spherical Schwarschild-Minkowski shell. The inclusion of the shell
thickness is a fractional effect and vanishes as the fractional parameter approaches one.

There are choices to be made in the development of fractional formalisms applicable in
general relativity. There are many fractional derivative definitions, Caputo, Riesz, Riemann-
Liouville, etc., and the choice of derivative will depend on the application. The layers discussed
here involve one-dimensional fractional Lie transport in a spatial variable but multidimensional
transport processes will be important in the dynamics of fractional layers. Fractional derivatives
have successfully described random walk processes that are heavy tailed in either jump size or
jump timing and this has provided avenues for higher dimensional generalizations of the fractional
derivative. Umarov and Gorenflo37 have discussed a multispace dimension random walk model
that is related to diffusion that is fractional in its spatial derivatives. Gorenflo and Mainardi have
presented some random walk models discrete in both space and time.38 Meerschaert and
co-workers,39,40 have begun to develop a fractional derivative operator that may be used when
space and time variables are linked. Generalizing the formalism to describe the dynamic fractional
layers with plane and spherical symmetries in general relativity41–43 would be both useful and
interesting.

APPENDIX: FRACTIONAL DETAILS

1. The Caputo derivative

The Caputo derivative of a scalar function can generally be written as4

Dx
qf�x�� =

1

��m − q��x

x�
f �m��z��x� − z�m−1−qdz ,

where m−1�q�m, m integer. f �m�=dmf /dzm. The development in the text was for m=1. The
fractional derivative is an interpolator between regular integer derivatives. To move to q�1 would
require m=2 and we would have

Dx
qf�x�� =

1

��2 − q��x

x� d2f�z�
dz2 �x� − z�1−qdz .

Integrating by parts we have

Dx
qf�x�� = − �df

dz
�

x
�x� − x�1−q +

1

��1 − q��x

x� df�x�
dz

�x� − z�−qdz . �A1�

Remembering that for m=2, q�1, one can see the interpolating term.

2. Notation

This section contains a list of the notations used. The starting point is the Caputo derivative
discussed in the previous section, Dx

q� � with an additional index, k, to define the coordinate partial
occurring in the definition.

Dx,k
q Vi�x�� =

�qx�i

��x�k − xk�q =
1

��1 − q��x

x�
dy

�Vi�y�
�yk �x� − y�−q. �A2�

The integral is over the thickness of the layer with x=	−�, x�=	. The Ðx
q derivative is defined in

terms of the Caputo derivative,
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Dx,k
q �� =

�x� − x�1−q

��2 − q�
Ðx,k

q �� . �A3�

An example of its use are found in the next section. The fractional Lie derivative is defined in
terms of Ðx,k

q � �,

qL�V
i = Ðx,k

q �Vi��k − Ðx,k
q ��i�Vk, �A4�

qL�Vi = Ðx,k
q �Vi���k� + VkÐx,i

q ��k� , �A5�

qL�f = �kÐx,k
q �f� . �A6�

The fractional extrinsic curvature is defined in terms of the fractional Lie derivative generated
by the normal to the layer. gij is the metric of the bounding space time and hij is the projection
operator onto the layer,

qKcd =
1

2
qLN�gij�hc

i hd
j . �A7�

Jumps across the layer are described by

�qKcd� . �A8�

3. The Ðq derivative

The Ðq derivative defined in Eq. �7� in the text as a replacement for the regular partial
derivative divides out some of the usual fractional derivative behavior. Consider the Caputo
derivative of r2 over a spherical region from the origin to r. We have

Dr
qr2 =

1

��1 − q��0

r

2z�r − z�−qdz =
2r2−q

��1 − q��0

1

w�1 − w�−qdw =
2r2−q

��1 − q�
��1 − q���2�

��2 − q�
=

2r2−q

��3 − q�
.

The Ðq derivative is

Dx
q� � =

�x� − x�1−q

��2 − q�
Ðx

q�� ,

Ðqr2 =
2r

2 − q
.

4. Some properties of the fractional Lie derivative

a. Defining the fractional commutator

The regular Lie derivative defines the commutator as

LUV = �U,V� = �UV − �VU ,

where �U=Uk�k is the standard directional derivative. The fractional Lie derivative generalizes
the commutator,

qLUVi = UkÐx,k
q Vi − VkÐx,k

q U ,

�A9�
q�U,V�i = UkÐx,k

q Vi − VkÐx,k
q Ui.
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Product of derivatives

The product of two regular Lie derivatives is related to the Lie derivative of the commutator.

L�U,V� = LULV − LVLU.

Consider the fractional Lie derivative acting on a scalar function f ,

qL�U,V�f = �UkÐx,k
q Vi − VkÐx,k

q Ui
Ðx,i
q f = UkÐx,k

q ViÐx,i
q f − VkÐx,k

q UiÐx,i
q f = qLU

qLVf − qLV
qLUf

and the fractional derivative has the same structure.
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