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A single Israel layer can be created when two metrics adjoin with no continuous
metric derivative across the boundary. The properties of the layer depend only on
the two metrics it separates. By using a fractional derivative match, a family of
Israel layers can be created between the same two metrics. The family is indexed
by the order of the fractional derivative. The method is applied to Tolman IV and V
interiors and a Schwarzschild vacuum exterior. The method creates new ranges of
modeling parameters for fluid spheres. A thin shell analysis clarifies pressure/
tension in the family of boundary layers. © 2006 American Institute of Physics.
[DOLI: 10.1063/1.2158436]

I. INTRODUCTION

There is long-standing interest in fluid sphere solutions, largely because of their astrophysical
implications. An astrophysical model is often an interior fluid sphere metric matched to a
Schwarzschild vacuum or Kottler exterior across a bounding surface. The standard technique
matches metric functions and extrinsic curvatures on the boundary. When the extrinsic curvatures
do not match, an Israel boundary layelr]’2 can be created. The layer depends only on the properties
of the two bounding metrics. Methods that will create a family of surface layers between the
bounds could prove useful in exploring models of spheres with variable crusts. One way of
creating variable surface layers is to modify the boundary conditions at the fluid—vacuum inter-
face.

While an extrinsic curvature match is the boundary condition currently most used, there are
three types of boundary conditions that have been used to match analytic solutions across non-null
boundaries. The three methods have been discussed by Bonnor and Vickers,” and they all involve
derivatives of the metric functions. The boundary conditions can be generalized by broadening the
idea of derivatives to include fractional derivatives.*’

There are two simple ways to proceed with the generalization. The first is to assume a straight
fractional derivative match on the boundary metrics and then to use the fractional relations in the
usual formalism for the boundary stress energy. This would be a generalization of the Lichnerow-
icz boundary condition. It would not generalize the extrinsic curvature to fractional values. The
second would be to use fractional derivatives to define a fractional extrinsic curvature and then use
it to define a fractional boundary layer. This would be a generalization of the usual Lie derivative
to fractional values. The use of fractional calculus is motivated by the possible fractional nature of
the growth processes forming the boundary layer. Fractional transport processes are one of the
main areas of application for fractional calculus, and boundary layers formed by these processes
could reflect this fractional formation process.

Beyond the fractional generalizations of techniques and tensor functions, one must consider
the various definitions of fractional differentiation. Use of fractional calculus in diverse areas of
physics has increased enormously since fractional derivatives were first considered by Leibnitz
and I Hospital4 in 1695. Many different definitions have been proposed for different applications.
In this article we use the Caputo form of the Riemann-Liouville and Weyl definitions. The Caputo
derivative is an integral transform of the regular partial derivative and preserves the zero fractional
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derivative of a constant. While considering generalizations of relativistic gravity to include frac-
tional calculus, the different definitions must be explored to determine their applicability.

This work has two goals: first to develop a variable layer model that could be applied to
astrophysical problems, and second to better understand the role that fractional derivatives might
play within a general relativistic framework. In this paper we will apply the first method and use
fractional derivatives to create a family of Israel boundary layers between two bounding metrics.
The family is parametrized by the order of the fractional derivative and may be used to model fluid
spheres with variable crusts. Even when a regular derivative match is possible, the fractional
match will broaden the parameter ranges for the fluid interior.

In the next section we discuss the metrics and describe the boundary layer. In the third section
several models are considered: the Misner—Zapolsky (MZ) solution,®’ and Tolman’s solutions IV
and V.® The thin shell pressure balance is treated in the fourth section and some details of the
fractional match are discussed in Sec. V. Details of the fractional derivatives and the standard fluid
sphere formalism are given in the Appendices.

Il. THEORETICAL FRAMEWORK

A. The space-time

The two regions to be considered are covered by an exterior Schwarzschild solution bounding
an interior spherical fluid. The metrics are, with functions ¢g.,=1-2my/y, v(r), N(r), H(r):

Exterior: gi‘g‘ dx® dxP = — e, dP? + figly, dy* + y* dO?, (1)

Interior: g%d dx® dxP=— e d7 + " dr* + H* dQ°. (2)

The bounding surface is located at y=y, in the exterior and r=R in the interior. The correspond-
ing normals to the surface are

Exterior: nﬁ dxt = it dy, (3)

Interior: nL dxt =M dr. (4)
Fractional derivatives leave these metrics unchanged. Our fractional extension provides a crust

layer between the interior and exterior metrics.

B. Matching conditions

On the boundary, the metric match conditions are

(1= 2my/Ry) = ek,

Ry=H(R,). (5)

The second matching condition is the extrinsic curvature match, K}, on the bounding surface. If
the curvatures do not match, an Israel boundary layer is created. The stress—energy content of the
Israel layer is constructed from the mismatch in the extrinsic curvatures. The stress—energy of the
boundary layer is?

- 878}, = (K}) — (K)gj- (6)

Here K=Kj,. The stress—energy components on the boundary are

- 8mS) = [(Ko) — (K + 2K g0l = — 2K,
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— 87SY = — 8mS% = [(K&) — (KO + 2K{gh] = — [(K) + (K1,

and the stress—energy of the boundary is

E I
8rs0 = 1 806,y 1 8o,
TO0=""E\12 E

(gyy 800 (gﬁr) 1 glf)ﬁ

1 1 g 1 g | 1 1 gt 1 g
87TSZ= Sﬂsﬁ =5 (LENI2 gog’ T 1/2g010" } + _{ EN1/2 gog ENT) g010’r (7
2] (g yy) 8o (&) 8oo 21 (g yy) goo (&) &oo

C. Match of fractional derivatives

The stress—energy of the Israel layer is evaluated on the boundary between the interior and
exterior metrics. The actual finite thickness boundary layer is modeled by the single bounding
surface at r=R,. The stress—energy content is governed by regular derivatives of the metric
functions. The metric match coupled with some derivative match of the metric on the layer, sets
relations between the parameters of the interior and exterior solutions. With the usual extrinsic
curvature or other derivative matches, the properties of the layer are set by the parameters of the
bounding metric. With a fractional match, the order of the fractional derivative enters along with
the other parameters and a family of fractional boundary layers is created. The fluid sphere
examples considered in this paper have boundary metrics of the form

ds>=— F(r)de* + r* dO2.

The fractional match is applied only to the differing part of the Israel layer metric, the g, metric
potential. The actual calculation of the fractional derivatives involves a choice of definition. We
use the Caputo definition (see Appendix A) with the (0 <r=<R,) Riemann-Liouville limits for the
interior and the (Ry<r=< ) Weyl limits for the exterior. The limits themselves, as well as the
choice of different limits for interior and exterior derivatives, reflect the nonlocality of the frac-
tional derivative operation. Nonlocality in fractional time derivatives is an expression of system
memory.9 It has proven especially useful in modeling jump processes with long wait times.'”
Similarly, spatial nonlocality implies that the derivative on the boundary depends on values away
from the boundary; fractional spatial derivatives have been useful in modeling processes with very
large jump distances.!" When the jump distance depends on the jump time, fractional time and
spatial derivatives enter into the transport equations.12 The examples discussed here are static, but
the structure of the boundary layer could reflect the transport process. The fractional matching
condition is

fRo d"F(x)/dx" (=)™ [ d"Fp(x)/dx"

1
Fn-a)), (r—x)*"! x:F(n—a) Ry (x=1)" *

and is applied at r=R,. We note that the single layer at r=R; only approximates a boundary of
finite thickness and that using a nonlocal operator might be a better approximation to the actual
match over a finite thickness than the usual derivative match over a zero thickness surface.

In the next sections, we apply the formalism to Tolman IV and V solutions.

lll. MODEL CALCULATIONS

A. Tolman’s Solution V
1. The solution

We consider a parametrization of Tolman’s Vth solution.*"* The metric, with constants n and
C,is
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ds® == (rirg))M df* + a(1 — aCr**™) ' dr® + r* dQ?. (8)

The parameters formed from »n are

N, =4n/(1 +n), N>=1+6n+n>,

N _Md-n
T Un? T (1+3n)

The interior density and pressure for this solution are

8 (4")1 C3+b)r
=\— |5+ + s
EN, )P !

4n*\ 1 (1+5n) ,
mP=|—]5-C r.
Ny, /r 1+n

9)

For C=0), the solution reduces to the MZ solution.®”'* This solution was originally used to

describe neutron star models with equation of state P=np. The solution with C=0 does not admit
a zero-pressure boundary; the C # 0 solution does. Both solutions are singular at the origin and are
used to represent an ultrahigh density core. The MZ solution, lacking a vacuum boundary, is
generally matched to a gaseous envelope. It may be more realistic in some cases to match these
solutions to a crust with surface stresses.

For C+#0, the zero-pressure boundary, R_, relates constants C and n,

4n*(1+n) 1
i) 1 (10)
(l + 5n)N2 RZ
Substituting for C, the pressure and density can be written as
8P 4n2( 1 P ) (11)
T cx0= Ny \ 2T R
g 4n(1> 4n? (n+3)< P ) (12)
o =—|5|+— )
Pezo No\r?) " Ny (1+3n) \R?*"
The condition P...q=0 requires
Ry<R.. (13)

Fractional matching will allow a broader family of sphere sizes. Below, we graph values for
the case n=1/3. For C=0, there is no zero-pressure boundary and no constraint.

2. Matching conditions

The matching conditions are the same for any C value. Matching the interior metric to vacuum
Schwarzschild, we find

1 = 2my/Ry= (Ry/ro)™
[recall Ny=4n/(1+n)],

Iimo I'(l+a)= (&)Nl(]vl)&

(l)+a ro Ie_g F(N1+l—a')'

Combining the two relations, we find that the scaled radius of the interior is
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&_1+F(l+a)F(N1+1—a)

Zm()_ F(1+Nl) (14)

Note that the boundary radius is always greater than 2mg. For <1, there are no limits imposed
by Eq. (14). For =1 we require

1+ Nl > .
The metric parameter r is described by

(&>N1 . L(1+Ny)
R) T TTU+alN,+1-a)

(15)
The sizes of the fractional spheres are discussed in Sec. V.

3. The crust stress—energy

The stress—energy of the crust for general C is, with y,:=\1-2my/R,,

2
8ms)= R—['yo — (1 +n)N;"\1 - aCRZ
0

1
8= 8= g[?’o + 179y — (1 +n)(2+N)N;"\1 —aCRY? .
0

For C # 0, the boundary layer has a stress—energy content [recall Ny=4n/(1+n), Ny=1+6n+n?],

2 [ nN
8mSS=—| - (1+ N'”z\/l— ' (Ry/R 2+b],
™ RO_YO (1+n) 2 (1+5n)( 0 z)
8mSl=8 S"ﬁ—L Uy —2(1+3n)N;>1 /1 ”—N‘(R /R.)*+b (16)
TS = O ¢—2R0 Yot Uyo— +on)iV, _(1+5n) o/ I, .

For C=0 the fluid energy density and stress are

880 = (2/R) o (1 + m)N; 2]
=(2/RO)[(R0/r0)2n/(l+n) _ (1 + n)N51/2:|’ (17)

878y =878 = (1/R))[ (1 = me/Ro)/ v~ (1 + 3n)N3"],

and describe a much richer modeling environment.

B. Tolman’s Solution IV
1. Metric and stress—energy

This solution describes an object with finite central presssure and density. A stiff fluid core is
not possible in this model. The interior metric for this solution is, with constants A, B, and C,

1+ 2747
ds®> == B*(1 + PIA?)dr* + dr* + r* dQ?. 18
g (L4 rADdE + o (4 2 @ T (18)

The interior density and pressure are

1| 143(4%C%+AC?) 1= 2C?
8mp=—7 2.2 + 20 |0
A 1+2/%A (1+2r%/A%)

(19)
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1| 1-(AYC?+3721C?)
87P = -3 7
A 1+27/A

(20)

Constants A and C can be expressed in terms of the central fluid values. We have
3 22
877pC=P[1 +A%C?],
1 22
87TPC=P[1 —-A%C?],

2
"~ 8m(p 3+ P’

2

2

2_ = @
" 8m(pJ3-P.)

Note that the central fluid equation of state (EOS) is constrained: P.<p./3. The zero-pressure
boundary that occurs in the regular derivative match has size

R?=C%3 - A%3. (21)

2. Metric match

The match to vacuum Schwarzschild provides

B> (1 +RYA?) =1-2my/R,. (22)
The fractional match is
B> 1 1 my
— = ra+a),
A’RST(3-a) RY™ (1+a)
(23)
BZRS =A’ml (3 - ) (1 + a).
Combining with the metric match, we obtain
A2 Rz(Ro/mo) -[2+T3B-a)l(1+a)]
0 I'G-a)l(l+a) ’
R
B2=@[—°-[2+r(3-a)r(1+a)] : (24)
Ry L mg

Ro/my>2+T3 - a)I'(1+a).

The boundary size depends on the central EOS as well as the order of the fractional derivative:

<mo - [2+T3-a)l(1+a)] 477mS(Pc+pc/3)_O. (25)
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3. Crust stress—energy

We introduce scaled parameters ry: =Rg/A2, rg:=Rg/C% and r2:=R2/A%

1 A v 1 g 2 1-r2)(1+ 1
R i (B
(g\y) g00 (grr) RO 1 + 2I’A
2 —| . A |1+ 3r2 -7
=—Vl+r|B-= —ZZA (26)

RO C 1 + 2VA

0_ o1 1 glgﬂv 1 g{90r 1 1 ggo , 1 g{)()r
8mSy=8mSy="7 12 E 12 12 12
2 ()" ghy (68 ghy | 2L (65D ko (610" gho

1 A [1+3°7=4 1 /R 1-72
= V142 B2 i o ———— | P02 <l @
R, C 1+42r, RoN1 +7 B 1+2ry

Some examples of radius variation and crust stress energy are given in Sec. V.

IV. EQUILIBRIUM IN THE PRESENCE OF SURFACE STRESSES
A. Stress—energy

The Israel layer is the zero-thickness idealization of a bounding layer with finite thickness, d.
The physical crust runs from an outer boundary R, to an interior fluid boundary R; with d=R,
—R; We know that the interior fluid solutions will satisfy the* Tolman—Oppenheimer-Volkov
(TOV) equation. The Israel layers generated in this work are obtained by introducing a disconti-
nuity in the derivative of gqo. The analog of the TOV equation for the layer, requiring that the
solutions remain static, will provide relations among the model parameters. To develop the TOV
analog for the layer, consider the general static spherical metric for an interior fluid with pressure
P and density p,

ds*=—e"di* + M dr* + P dO2. (28)

The details of the field equations are given in Appendix B. The covariant derivative of the general
energy—momentum tensor provides the conservation equation

aT" ) ' 2
_a_r_<%+—>ﬂ+<%>73+<—)T§=0. (29)
r r r

For an isotropic fluid matched to vacuum, this is the usual TOV equation,

JP !
(9—+V—(P+p) 0. (30)

It is the analog of this equation that we want for the Israel layer.

B. The conservation equation over a limiting shell

Consider a bounding shell that will approximate a thin surface layer. The central radius of the
shell is R with the outer boundary R*)=R+d/2, and the inner interior fluid boundary at R~ =R
—d/2. d is the coordinate shell thickness. In the d— 0 limit, R — R,,. A general stress-energy T’ can
be related to a surface stress—energy S} by

Ti= 8(1)Sjele’ (31)

a_]’

where ei is a tangent vector to the shell, and [ the proper distance along a radial geodesic, [
=¢M2d. The shell stress—energy has a perfect fluid analog,
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S = UV + 7(h7 + U'UY),
Wi = g’j —nin/,

n'=(0,e7,0,0),

where 89/c2=-0(g/cm?) and 9= + 7(dynes/cm). Following Poisson®, we take /=0 on the hyper-
surface defined by R, with [ negative for r<<R and positive on the vacuum side, r>R. The 7.
content of the shell can be described using a Heaviside function, O([), as

T =T +O(- T+ 5(1)S". (32)

The last term will be zero for the 2+ 1 shell stress energy. Forming the derivative needed in the
conservation equation, we have

aT" dl TH" dl aTo)"
L= () —TH + () —— - 5(1)—T" + O (- ) ——.
ar dr ar dr ar
In the /— 0 limit we have
aT" di
ro_ lim[ 5(1)—7*;”} = —lim[ 8(1)PeM?], (33)
r 10 dr 1—0

where the first term is zero with no radial pressure on the outer boundary. The stress—energy
function evaluated at the inner boundary is P and N7 is an interior metric function. Substituting
into the conservation equation in the /— 0 hypersurface limit, we have

P2 4 (1/12)S0 + (2/R,) 8% = 0. (34)

C. Evaluating d,9q
The derivative, v', on the hypersurface, can be written as a difference equation,

v(R+d/2) — v(R —d/2) B v(R+d/2)— v(R) + v(R) — v(R-d/2)
(R+d2)-(R-d2) (R+d/2) - (R-d/2)

V' (R) =

_ v(R+d/2)—v(R) v(R)-v(R-d/2)
- d i d '

Expanding, we can write

d
v(R+d/2)=v(R) + V,[R(i)]i 4 e

Substituting in the thin shell limit, we have

V[RP]+ v [RY)]

V'(R) = >

The first term follows from the Schwarzschild metric match and the second is given in Appendix
B. We have

v'(R) = (2m/R* + 4wRP)(1 = 2m/R)™",

where we have identified the Schwarzschild mass parameter with the interior mass of the fluid.
Substituting into Eq. (34), we have
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— P(1 =2m/R)™"2 = (m/R? + 2wRP)(1 = 2m/R)~'S{ + (2/R)SY, (35)

which describes the thin shell pressure balance. The classical limit of this equation follows from
c— and is

m 2
P_O-P: (13)(— 7).

If the fluid pressure at the interior boundary dominates, this can be interpreted as a tension in the
shell, balancing the outward interior fluid pressure at the boundary minus the inward pressure due
to the gravitational attraction of the shell by the interior fluid. If the shell mass term dominates, the
stress in the boundary layer will be a pressure. In the next section we explore the stress—energy
structure of the boundary layer, and will see parameter ranges with both layer tension and pres-
sure.

V. DETAILS OF THE FRACTIONAL MATCH
A. Sphere radii

The sizes of the sphere are described by

R I'(1 I'(4n/(1 1-
TolmanV: —% =1 + (L + )(@n/( +n) + a)’ (36)
2my I'(1+4n/(1+n))

IrG-aol'l +a) B

- = 37
4ami(P.+ pJ3) (37

Ry (Ry)?
TolmanlV: | — | = — | [2+T @B -a)I'(1 + a)]
my my
The scaled boundary radius, R,/m, for Tolman V is plotted as a function of alpha for various n in

Fig. 1.

The overall effect of the fractional match is to increase the range of sphere sizes for a given
EOS. The largest differences are for low- n fluids, where a very much smaller sphere radius is
possible than for the zero-pressure match. The Buchdahl bound'* limits the ratio of 2mgy/ R for
fluid spheres whose g, component is continuous across the boundary and whose density is

{ow=0g

o
th
Lol
-~

]
"“_‘_

th
th

®
th

Y
L]
1
=
n
=
wn

44

3 g S ——

Ir‘::i:::-_h_ e
a8 ] '“-u_::__—-h___ ___--—"_-

m T —_—

] ——— h=1.0

a E T T T T F T T T T T T T T T T T T T T 4 ¥ 7 T T T 1
o2 FR-| 1% LB 1 1.2
aloha

FIG. 1. Scaled radius versus fractional order.
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decreasing outward. We have matched fractional derivatives rather than first derivatives and it is
not clear that the conditions of the Buchdahl bound are satisfied, but from Fig. 1, it is seen that the
Buchdahl bound, 2my/Ry=<8/9, is not violated.

The radius for Tolman IV is a cubic root of Eq. (37), but some general description can be
given. The modeling term in the equation is the denominator of the last term. Consider the factor

¢ ~ dmmip 3

describing an object with mass my=Nmo=N(2X 10°° kg), and central density and pressure of
neutron star order, p,~ 10! kg/m?3, P.~ 10} Newton/m?. Numerical scaled radius values using
these values are described in Table I for a range of N and alpha values. For N~ 100 or larger, the
last term in the cubic is negligible and the radius is essentially given by the limiting value

Ro/my~2+T3-a)I'(1+a).

The masses for these radii are well out of the neutron star range. The reflection symmetry about
a=1 is the result of a product equivalence of the two gamma functions for paired alpha values,
ie., a=(0.6,1.4) give the same gamma function product. From Table I, it is clear that the low N
values have masses and radii of neutron star orders of magnitude.16 For example, for N=1, the
radii are approximately Ry~ 11.44m,~ 17 km. Smaller central densities, describing more ordinary
fluid objects, result in much larger fluid spheres. For a central density of p,~ 10'" kg/m?, the radii
for a=1, Ry(N) are Ry(1)=2228.33m;, Ry(10)=480.87my, R(100)=104.39m,, R,(1000)
=23.32m,, with the values for larger and smaller « paired and increasing, just as for the larger
central density.

TABLE L. Ry/My—Tolman TV—p,~ 10'7 kg/m>.

a N=1 N=10 N=100 N=1000
0.2 13.24 4.41 3.55 3.54
0.4 12.39 4.10 3.28 3.27
0.6 11.85 391 3.12 3.11
0.8 11.54 3.81 3.04 3.03

1 11.44 3.78 3.01 3
1.2 11.54 3.81 3.04 3.03
1.4 11.85 391 3.12 3.11
1.6 12.39 4.10 3.28 3.27

B. Crust stress—energy

Figures 2 and 3 describe the variation of the boundary energy density and pressure, in Tolman
V, n=1/3, as the size of the fluid sphere varies. Over a large part of the Ry/R, range, a crust
tension contains the interior fluid, with the tension increasing in size as the fluid sphere becomes
smaller, essentially acting to squeeze the fluid into smaller volumes. The results are similar for
C=0.
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FIG. 2. Ds=-8mm,Sy versus fractional order.

For Tolman IV, the crust energy density is

\/ (1-R2C?)(1 + RYA?)

2 I
8mo=—| - V1 =2my/Ry+
v 1+2RY/A?

0
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\/[1 —47Rp, (173 = n)[1 + 4mp RY(1/3 +n)]
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The modeling factor of importance is the term
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For nuclear central densities, p,~ 10'% g/cm’, this is
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FIG. 3. Ps=8mm,Sy versus fractional order.
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R2
2035N? x 10742,
My

In order to have real values, we require

N=1, Ry~ 12m,, [0.293 % (1/3-n)]<1,
N=10, Ry~4my, [326% (1/3-n)]<1,

N=100, Ry~3my, [183X (1/3-n)]<]1.

It is clear that the broadest range of central equations of state for nuclear central densities is for the
lower mass objects. Higher mass objects require a central EOS very close to the 1/3 limit. For
smaller values of the central density, the central EOS range is much broader. For a central density
of p.~107 g/cm?, the modeling factor is

2 R2
47— pomd =20.35N* X 1071 =3,
m m
0 0

and for real values require

N=1, Ry~2228my [0.10X107%(1/3-n)]<1,
N=10, Ry~ 480m, [0.47 X 1072(1/3-n)]<1,
N=100, Ry~ 104my, [0.022X (1/3-n)]<1,

N=1000, Ry~ 23my, [0.11 X (1/3-n)]<1.

VI. CONCLUSION

In this work we have examined a family of boundary layers created by matching fractional
derivatives across a boundary.”’18 The boundary layers considered have structure that depends on
the order of the fractional derivative. One of the reasons that fractional calculus may be important
for boundary layers is the mechanism by which a boundary layer is formed. One of the possible
ways to build a variable density crust is by a diffusive process; a process whose underlying cause
is Brownian motion. This motion, as analyzed by statistical mechanics, involves diffusion, dissi-
pation, and the fluctuation-dissipation theorem. The dynamical model of Brownian motion was
provided by Langevin in 1908 using a stochastic differential equation. It seems apparent from the
nature of randomness that such macroscopic stochastic equations are incompatible with the con-
tinuous and differentiable character of microscopic Hamiltonian dynamics. (Think of the conven-
tional diffusion equation, with the diffusion process described by a second-order spatial deriva-
tive.) Therefore, the mathematical description rests on either ordinary analytical functions
describing the dynamics, or on conventional differential operators describing the phase space
evolution. The differentiable nature of the macroscopic picture is, in a sense, a natural conse-
quence of microscopic randomness. This means that use can be made of ordinary differential
calculations on the macroscopic scale, even if the microscopic dynamics are incompatible with
ordinary calculus methods. On the other hand, in the case where a time scale separation between
macroscopic and microscopic levels of description does not exist, the nondifferentiable nature of
the microscopic dynamics is transmitted to the macroscopic level. Since fractional calculus has
been shown to provide a good description for a range of diffusive processes,19 one might expect a
boundary condition based on fractional calculus would reflect the fractional growth process. An
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example, given by Allegrini, Grigolini, and West,” shows that a diffusion process generated by a

fluctuation with no time scale at the macroscopic level generates a diffusion process well de-
scribed by a fractional Laplacian.

While diffusion is a possible mechanism for generating a layer with structure, the method of
generating the fractional family of layers is independent of the production mechanism and gener-
ates a family whose stress—energy and size depends on the order of the fractional derivative. The
result is a much broader range in fluid sphere properties. For example, in Tolman V, a much larger
range of spheres sizes can be described with the fractional layer than without, with the energy
density of the layer decreasing as the size of the sphere increases. The C #0 Tolman V spheres
have a zero-pressure boundary solution. For spheres smaller than the zero-pressure sphere, the
layer has a tension, while for spheres larger than the zero-pressure sphere, the layer has positive
stress over much of the range of the fractional order. The fractional boundary could prove to be a
valuable modeling tool in more realistic neutron star models.

The range of stress—energy in the fractional boundary layers implies differences in structure as
a function of the fractional order. The differences in density could be modeled in several ways: for
example, with different crust materials or different incomplete fluid coverings (tilings).21 The layer
itself is a model of a thin crust and there could be differences in the geometry of the 2+1 shells
that fill the real crust. The interior fluid geometry and the exterior Schwarzschild vacuum do not
have to match for a crust with finite thickness.

The models presented in this paper matched an integral transform of the regular derivative
across a spatial boundary. It is not a fractional generalization of general relativity, but a fractional
generalization of a boundary condition. The next step is to explore the range of fractional gener-
alizations of other sets of boundary conditions and other derivative definitions to applicable space-
times.

APPENDIX A: DERIVATIVES

1. Regular

For functions f and F continuous on [a,b] € Reals,

F(x):= fxf(t)dt,

F(x) is differentiable such that dF/dx=f. The nth integer derivative is simply d"F/dx". For
example,

d" k k! k—n

" (k—n)!

With the gamma function this is

da I'a+1)

P INa-n+ l)x

a—n

The gamma function, I'(z), is defined as

F(z):f cF N d, T(1R)=\m, T()=1,
0

I'm+1)=nl'(n)=n!, forn>0.
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2. Fractional
A. Riemann-Liouville

The Riemann-Liouville definition for the « fractional derivative of f(x) is, with =0,

apy e Ly oL A (T f@)
D) = dx“f(x)' "T(n-a) dx"fc (x— t)"_"”dt’ (A1)

where 7 is the smallest integer larger than « when it is fractional, that is, n=[a]+1. In the a=1
limit, the derivative produces the integer result. The constant ¢ in the limit of the integral is usually
set to 0 (Riemann definition) or to —© (Liouville definition). For example, the Riemann—Liouville
derivative of x* for <1 with n=1, we have

1 d "
D* ":——f Fx—0"dr
T —wad), T

_;i"wtk —a(l E)_adt
T(1-a)dx), * X

_ 1 ifl ka—a+l+k(1 —w) % dw
I'l-a)dx), )

Using the definition of the beta function,

fl _T(p)I(g)

w1 (1 =w)a ! gw

0 CTp+q)’

we have

e L T+ D1~ )
“TTl-a) dx T(k+2-a

B e I'k+1)

=(1+k-a)x —F(k+2—a)

_ ka I'k+1)
Fk+1-a)

For a=1, this is the usual result D'x*=dx*~!. Note that, for k=—1, this operation fails. This is an
example of one of the problems encountered in applying fractional derivatives to general relativity.
Not all definitions of fractional derivatives work for all functions. The fractional derivative of x*
for =1 is identical to the fractional derivative for a¢<1. For this function, the derivative is
continuous across the a=1 boundary.

Dk L& fxt" “”‘(1 t>l_adt
e ————— X - -
rQ-a)ds), X
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 kw I'(1+k)
- Irl+k-a)

One should note that the Riemann—Liouville fractional derivative of a constant is not zero.

B. Caputo

The Caputo derivative is the integral transform of the regular derivative and is found by
moving the derivative in the Riemann-Liouville definition inside the integral to act on the func-
tion. We have

dn
7]‘ (1)

1 (" d
DY) = o JO et (A2)

Example: f(x)=x°, =0,

4"
- lk

1 T oodr
D%x—-a)f= f —ogdt.
Fn-a)J, x=—1)*"

For a<1, n=1 we have
(k)
Fk+1-a)’
(A3)

1 * ke
D% x — k _ ktk—l - %dt= J k-1 1=w)%dw=k k—a
(x—a) F(l—a)fo (x—1) ri-wl, w1 - w) Y dw = kx

which is identical to the Riemann—Liouville derivative for this function. This derivative also is not
defined for k=-1. In general relativity, one of the space-times one would like to treat is vacuum
Schwarzschild, but the Riemann-Liouville derivative will not give finite answers for the 1/r
structure. The derivative of 1/r can be taken with the Weyl derivative.

C. Weyl

The Weyl derivative differs from the Riemann-Liouville derivatives over the range of the
fractional transform. To take the fractional derivatives of 1/r we use the Weyl derivative over the
range (R, ). The Weyl derivative of f(r) can be written as

(G D 0
Fn-wl, d"

Df(r) = (t—r)"*dt,

where n is the smallest integer above a when it is fractional. This paper is concerned with the
fractional derivative across the boundary and the phase (—1)""!, was chosen to make D® continu-
ous across a=1. Applying the derivative definition to 1/r for a<1 (n=1) we find

DY ' ==+ (1 + @), a<1. (A4)

For a=1, this gives the usual first derivative of 1/r. For a>1 (n=2) the derivative is the same.
One should be careful not to interpret the derivative for a=2 as the second derivative. The second
derivative would follow from a double application of D®. For this function the single derivative at
a=2 is not the same as the double application of the derivative operator.

APPENDIX B: FLUID SPHERE FORMALISM

Consider the general static spherical metric over the interior fluid with v(r) and \(r),
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ds®>=—e"di* + M dr* + r* dQP.

With Einstein’s field equations as G;;=87T};, the energy—momentum components are

87Ty =—eN\'Ir=1/r?) = 1/77,
87T = e MV Ir+ 1% = 1112,

87Ty=8nTh=(e2)[v" + (W' 12+ Ur) (v = \)].

For the fluid interior, the energy—momentum, with four-velocity U'=(e"?,0,0,0), is

TV =(p+ P)U'UV’ + PgY.

In the comoving frame the fluid stress energy is

To=-p, T.=T)=T4=P.

It is common to use the function m(r) in g,, with

eN=[1-2m(r)/r]™",

so that

N =20m'Ir=mir?)(1 = 2m/r)™ .

From the first field equation we have

m' =47rp.

The second field equation provides a relation between the fluid pressure, P, and v’,
V'12=(47rP + m/r?) (1 = 2m/r)™!
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