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A single Israel layer can be created when two metrics adjoin with no continuous
metric derivative across the boundary. The properties of the layer depend only on
the two metrics it separates. By using a fractional derivative match, a family of
Israel layers can be created between the same two metrics. The family is indexed
by the order of the fractional derivative. The method is applied to Tolman IV and V
interiors and a Schwarzschild vacuum exterior. The method creates new ranges of
modeling parameters for fluid spheres. A thin shell analysis clarifies pressure/
tension in the family of boundary layers. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2158436�

. INTRODUCTION

There is long-standing interest in fluid sphere solutions, largely because of their astrophysical
mplications. An astrophysical model is often an interior fluid sphere metric matched to a
chwarzschild vacuum or Kottler exterior across a bounding surface. The standard technique
atches metric functions and extrinsic curvatures on the boundary. When the extrinsic curvatures

o not match, an Israel boundary layer1,2 can be created. The layer depends only on the properties
f the two bounding metrics. Methods that will create a family of surface layers between the
ounds could prove useful in exploring models of spheres with variable crusts. One way of
reating variable surface layers is to modify the boundary conditions at the fluid–vacuum inter-
ace.

While an extrinsic curvature match is the boundary condition currently most used, there are
hree types of boundary conditions that have been used to match analytic solutions across non-null
oundaries. The three methods have been discussed by Bonnor and Vickers,3 and they all involve
erivatives of the metric functions. The boundary conditions can be generalized by broadening the
dea of derivatives to include fractional derivatives.4,5

There are two simple ways to proceed with the generalization. The first is to assume a straight
ractional derivative match on the boundary metrics and then to use the fractional relations in the
sual formalism for the boundary stress energy. This would be a generalization of the Lichnerow-
cz boundary condition. It would not generalize the extrinsic curvature to fractional values. The
econd would be to use fractional derivatives to define a fractional extrinsic curvature and then use
t to define a fractional boundary layer. This would be a generalization of the usual Lie derivative
o fractional values. The use of fractional calculus is motivated by the possible fractional nature of
he growth processes forming the boundary layer. Fractional transport processes are one of the
ain areas of application for fractional calculus, and boundary layers formed by these processes

ould reflect this fractional formation process.
Beyond the fractional generalizations of techniques and tensor functions, one must consider

he various definitions of fractional differentiation. Use of fractional calculus in diverse areas of
hysics has increased enormously since fractional derivatives were first considered by Leibnitz
nd L’Hospital4 in 1695. Many different definitions have been proposed for different applications.
n this article we use the Caputo form of the Riemann–Liouville and Weyl definitions. The Caputo

erivative is an integral transform of the regular partial derivative and preserves the zero fractional
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erivative of a constant. While considering generalizations of relativistic gravity to include frac-
ional calculus, the different definitions must be explored to determine their applicability.

This work has two goals: first to develop a variable layer model that could be applied to
strophysical problems, and second to better understand the role that fractional derivatives might
lay within a general relativistic framework. In this paper we will apply the first method and use
ractional derivatives to create a family of Israel boundary layers between two bounding metrics.
he family is parametrized by the order of the fractional derivative and may be used to model fluid
pheres with variable crusts. Even when a regular derivative match is possible, the fractional
atch will broaden the parameter ranges for the fluid interior.

In the next section we discuss the metrics and describe the boundary layer. In the third section
everal models are considered: the Misner–Zapolsky �MZ� solution,6,7 and Tolman’s solutions IV
nd V.8 The thin shell pressure balance is treated in the fourth section and some details of the
ractional match are discussed in Sec. V. Details of the fractional derivatives and the standard fluid
phere formalism are given in the Appendices.

I. THEORETICAL FRAMEWORK

. The space-time

The two regions to be considered are covered by an exterior Schwarzschild solution bounding
n interior spherical fluid. The metrics are, with functions �Sch=1−2m0 /y, ��r�, ��r�, H�r�:

Exterior: g��
Sch dx� dx� = − �Sch dt2 + �Sch

−1 dy2 + y2 d�2, �1�

Interior: g��
fluid dx� dx� = − e� d�2 + e� dr2 + H2 d�2. �2�

he bounding surface is located at y=y0 in the exterior and r=R0 in the interior. The correspond-
ng normals to the surface are

Exterior: n�
E dx� = �Sch

−1/2 dy , �3�

Interior: n�
I dx� = e�/2 dr . �4�

ractional derivatives leave these metrics unchanged. Our fractional extension provides a crust
ayer between the interior and exterior metrics.

. Matching conditions

On the boundary, the metric match conditions are

�1 − 2m0/R0� = e��R0�,

R0 = H�R0� . �5�

he second matching condition is the extrinsic curvature match, Kb
a, on the bounding surface. If

he curvatures do not match, an Israel boundary layer is created. The stress–energy content of the
srael layer is constructed from the mismatch in the extrinsic curvatures. The stress–energy of the
oundary layer is2

− 8	Sb
a = �Kb

a� − �K�gb
a. �6�

ere K=Ka
a. The stress–energy components on the boundary are

− 8	S0 = ��K0� − �K0 + 2K
�g0� = − 2�K
� ,
0 0 0 
 0 
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− 8	S


 = − 8	S�

� = ��K


� − �K0

0 + 2K


�g



� = − ��K


� + �K0

0�� ,

nd the stress–energy of the boundary is

8	S0
0 =

1

�gyy
E �1/2

g

,y
E

g


E −

1

�grr
I �1/2

g

,r
I

g


I

8	S


 = 8	S�

� =
1

2
� 1

�gyy
E �1/2

g

,y
E

g


E −

1

�grr
I �1/2

g

,r
I

g


I � +

1

2
� 1

�gyy
E �1/2

g00,y
E

g00
E −

1

�grr
I �1/2

g00,r
I

g00
I � . �7�

. Match of fractional derivatives

The stress–energy of the Israel layer is evaluated on the boundary between the interior and
xterior metrics. The actual finite thickness boundary layer is modeled by the single bounding
urface at r=R0. The stress–energy content is governed by regular derivatives of the metric
unctions. The metric match coupled with some derivative match of the metric on the layer, sets
elations between the parameters of the interior and exterior solutions. With the usual extrinsic
urvature or other derivative matches, the properties of the layer are set by the parameters of the
ounding metric. With a fractional match, the order of the fractional derivative enters along with
he other parameters and a family of fractional boundary layers is created. The fluid sphere
xamples considered in this paper have boundary metrics of the form

ds2 = − F�r�dt2 + r2 d�2.

he fractional match is applied only to the differing part of the Israel layer metric, the g00 metric
otential. The actual calculation of the fractional derivatives involves a choice of definition. We
se the Caputo definition �see Appendix A� with the �0�r�R0� Riemann–Liouville limits for the
nterior and the �R0�r�  � Weyl limits for the exterior. The limits themselves, as well as the
hoice of different limits for interior and exterior derivatives, reflect the nonlocality of the frac-
ional derivative operation. Nonlocality in fractional time derivatives is an expression of system
emory.9 It has proven especially useful in modeling jump processes with long wait times.10

imilarly, spatial nonlocality implies that the derivative on the boundary depends on values away
rom the boundary; fractional spatial derivatives have been useful in modeling processes with very
arge jump distances.11 When the jump distance depends on the jump time, fractional time and
patial derivatives enter into the transport equations.12 The examples discussed here are static, but
he structure of the boundary layer could reflect the transport process. The fractional matching
ondition is

1

��n − ��	0

R0 dnFI�x�/dxn

�r − x��−n+1 dx =
�− 1�n−1

��n − ��	R0

 dnFE�x�/dxn

�x − r��−n dx ,

nd is applied at r=R0. We note that the single layer at r=R0 only approximates a boundary of
nite thickness and that using a nonlocal operator might be a better approximation to the actual
atch over a finite thickness than the usual derivative match over a zero thickness surface.

In the next sections, we apply the formalism to Tolman IV and V solutions.

II. MODEL CALCULATIONS

. Tolman’s Solution V

. The solution

We consider a parametrization of Tolman’s Vth solution.8,13 The metric, with constants n and

, is



T

T

d
a
u
g
s

S

T

t

2

S

�

C

012501-4 Bayin, Glass, and Krisch J. Math. Phys. 47, 012501 �2006�
ds2 = − �r/r0�N1 dt2 + a�1 − aCr2+b�−1 dr2 + r2 d�2. �8�

he parameters formed from n are

N1 = 4n/�1 + n�, N2 = 1 + 6n + n2,

a =
N2

�1 + n�2 , b =
N1�1 − n�
�1 + 3n�

.

he interior density and pressure for this solution are

8	� = 
4n

N2
� 1

r2 + C�3 + b�rb,

�9�

8	P = 
4n2

N2
� 1

r2 − C
�1 + 5n�

1 + n
rb.

For C=0, the solution reduces to the MZ solution.6,7,15 This solution was originally used to
escribe neutron star models with equation of state P=n�. The solution with C=0 does not admit
zero-pressure boundary; the C�0 solution does. Both solutions are singular at the origin and are
sed to represent an ultrahigh density core. The MZ solution, lacking a vacuum boundary, is
enerally matched to a gaseous envelope. It may be more realistic in some cases to match these
olutions to a crust with surface stresses.

For C�0, the zero-pressure boundary, Rz, relates constants C and n,

C =
4n2�1 + n�
�1 + 5n�N2

1

Rz
2+b . �10�

ubstituting for C, the pressure and density can be written as

8	PC�0 =
4n2

N2

 1

r2 −
rb

Rz
2+b� , �11�

8	�C�0 =
4n

N2

 1

r2� +
4n2

N2

�n + 3�
�1 + 3n�
 rb

Rz
2+b� . �12�

he condition PC�0�0 requires

R0 � Rz. �13�

Fractional matching will allow a broader family of sphere sizes. Below, we graph values for
he case n=1/3. For C=0, there is no zero-pressure boundary and no constraint.

. Matching conditions

The matching conditions are the same for any C value. Matching the interior metric to vacuum
chwarzschild, we find

1 − 2m0/R0 = �R0/r0�N1

recall N1=4n / �1+n��,

2m0

R0
1+���1 + �� = 
R0

r0
�N1
N1

R0
�� ��N1�

��N1 + 1 − ��
.

ombining the two relations, we find that the scaled radius of the interior is
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R0

2m0
= 1 +

��1 + ����N1 + 1 − ��
��1 + N1�

. �14�

ote that the boundary radius is always greater than 2m0. For ��1, there are no limits imposed
y Eq. �14�. For ��1 we require

1 + N1 � � .

he metric parameter r0 is described by


 r0

R0
�N1

= 1 +
��1 + N1�

��1 + ����N1 + 1 − ��
. �15�

he sizes of the fractional spheres are discussed in Sec. V.

. The crust stress–energy

The stress–energy of the crust for general C is, with �0ª
�1−2m0 /R0,

8	S0
0 =

2

R0
��0 − �1 + n�N2

−1/2�1 − aCR0
2+b�

8	S


 = 8	S�

� =
1

2R0
��0 + 1/�0 − �1 + n��2 + N1�N2

−1/2�1 − aCR0
2+b� .

or C�0, the boundary layer has a stress–energy content �recall N1=4n / �1+n�, N2=1+6n+n2�,

8	S0
0 =

2

R0
��0 − �1 + n�N2

−1/2�1 −
nN1

�1 + 5n�
�R0/Rz�2+b� ,

8	S


 = 8	S�

� =
1

2R0
��0 + 1/�0 − 2�1 + 3n�N2

−1/2�1 −
nN1

�1 + 5n�
�R0/Rz�2+b� . �16�

or C=0 the fluid energy density and stress are

8	S0
0 = �2/R0���0 − �1 + n�N2

−1/2�

=�2/R0���R0/r0�2n/�1+n� − �1 + n�N2
−1/2� , �17�

8	S


 = 8	S�

� = �1/R0���1 − m0/R0�/�0 − �1 + 3n�N2
−1/2� ,

nd describe a much richer modeling environment.

. Tolman’s Solution IV

. Metric and stress–energy

This solution describes an object with finite central presssure and density. A stiff fluid core is
ot possible in this model. The interior metric for this solution is, with constants A, B, and C,

ds2 = − B2�1 + r2/A2�dt2 +
1 + 2r2/A2

�1 − r2/C2��1 + r2/A2�
dr2 + r2 d�2. �18�

he interior density and pressure are

8	� =
1

2�1 + 3�A2/C2 + r2/C2�
2 2 + 2

1 − r2/C2

2 2 2� , �19�

A 1 + 2r /A �1 + 2r /A �
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8	P =
1

A2�1 − �A2/C2 + 3r2/C2�
1 + 2r2/A2 � . �20�

onstants A and C can be expressed in terms of the central fluid values. We have

8	�c =
3

A2�1 + A2/C2� ,

8	Pc =
1

A2�1 − A2/C2� ,

A2 =
2

8	��c/3 + Pc�
,

C2 =
2

8	��c/3 − Pc�
.

ote that the central fluid equation of state �EOS� is constrained: Pc��c /3. The zero-pressure
oundary that occurs in the regular derivative match has size

Rz
2 = C2/3 − A2/3. �21�

. Metric match

The match to vacuum Schwarzschild provides

B2�1 + R0
2/A2� = 1 − 2m0/R0. �22�

he fractional match is

B2

A2

1

R0
�−2

1

��3 − ��
=

m0

R0
1+���1 + �� ,

�23�
B2R0

3 = A2m0��3 − ����1 + �� .

ombining with the metric match, we obtain

A2 = R0
2 �R0/m0� − �2 + ��3 − ����1 + ���

��3 − ����1 + ��
,

B2 =
m0

R0
� R0

m0
− �2 + ��3 − ����1 + ���� , �24�

R0/m0 � 2 + ��3 − ����1 + �� .

he boundary size depends on the central EOS as well as the order of the fractional derivative:


 R0

m0
�3

− 
 R0

m0
�2

�2 + ��3 − ����1 + ��� −
��3 − ����1 + ��
4	m2�Pc + �c/3�

= 0. �25�

0
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. Crust stress–energy

We introduce scaled parameters rA
2 : =R0

2 /A2, rC
2 : =R0

2 /C2, and rz
2 : =Rz

2 /A2.

8	S0
0 =

1

�gyy
E �1/2

g

,y
E

g


E −

1

�grr
I �1/2

g

,r
I

g


I =

2

R0
��1 − 2m0/R0 −��1 − rC

2 ��1 + rA
2�

1 + 2rA
2 �

=
2

R0

�1 + rA
2�B −

A

C
�1 + 3rz

2 − rA
2

1 + 2rA
2 � , �26�

8	S


 = 8	S�

� =
1

2
� 1

�gyy
E �1/2

g

,y
E

g


E −

1

�grr
I �1/2

g

,r
I

g


I � +

1

2
� 1

�gyy
E �1/2

g00,y
E

g00
E −

1

�grr
I �1/2

g00,r
I

g00
I �

=
1

R0

�1 + rA
2�B −

A

C
�1 + 3rz

2 − rA
2

1 + 2rA
2 � +

1

R0
�1 + rA

2 �m0/R0

B
− �rA

2�� 1 − rC
2

1 + 2rA
2 � . �27�

ome examples of radius variation and crust stress energy are given in Sec. V.

V. EQUILIBRIUM IN THE PRESENCE OF SURFACE STRESSES

. Stress–energy

The Israel layer is the zero-thickness idealization of a bounding layer with finite thickness, d.
he physical crust runs from an outer boundary R0 to an interior fluid boundary Ri with d=R0

Ri. We know that the interior fluid solutions will satisfy the22 Tolman–Oppenheimer-Volkov
TOV� equation. The Israel layers generated in this work are obtained by introducing a disconti-
uity in the derivative of g00. The analog of the TOV equation for the layer, requiring that the
olutions remain static, will provide relations among the model parameters. To develop the TOV
nalog for the layer, consider the general static spherical metric for an interior fluid with pressure

P and density �,

ds2 = − e� dt2 + e� dr2 + r2 d�2. �28�

he details of the field equations are given in Appendix B. The covariant derivative of the general
nergy–momentum tensor provides the conservation equation

−
�Tr

r

�r
− 
��

2
+

2

r
�Tr

r + 
��

2
�T0

0 + 
2

r
�T



 = 0. �29�

or an isotropic fluid matched to vacuum, this is the usual TOV equation,

�P

�r
+

��

2
�P + �� = 0. �30�

t is the analog of this equation that we want for the Israel layer.

. The conservation equation over a limiting shell

Consider a bounding shell that will approximate a thin surface layer. The central radius of the
hell is R with the outer boundary R�+�=R+d /2, and the inner interior fluid boundary at R�−�=R
d /2. d is the coordinate shell thickness. In the d→0 limit, R→R0. A general stress-energy Tj

i can
e related to a surface stress–energy Sb

a by2

Tj
i = ��l�Sb

aea
i ej

b, �31�

here ea
i is a tangent vector to the shell, and l the proper distance along a radial geodesic, l

�/2
e d. The shell stress–energy has a perfect fluid analog,
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Sij = �UiUj + ��hij + UiUj� ,

hij = gij − ninj ,

ni = �0,e−�,0,0� ,

here S0
0 /c2=−��g/cm2� and S



= ±��dynes/cm�. Following Poisson2, we take l=0 on the hyper-
urface defined by R, with l negative for r�R and positive on the vacuum side, r�R. The Tr

r

ontent of the shell can be described using a Heaviside function, ��l�, as

Tr
r = ��l�Tr

�+�r + ��− l�Tr
�−�r + ��l�Sr

r. �32�

he last term will be zero for the 2+1 shell stress energy. Forming the derivative needed in the
onservation equation, we have

�Tr
r

�r
= ��l�

dl

dr
Tr

�+�r + ��l�
�Tr

�+�r

�r
− ��l�

dl

dr
Tr

�−�r + ��− l�
�Tr

�−�r

�r
.

n the l→0 limit we have

�Tr
r

�r
= − lim

l→0
���l�

dl

dr
Tr

�−�r� = − lim
l→0

���l�Pe�/2� , �33�

here the first term is zero with no radial pressure on the outer boundary. The stress–energy
unction evaluated at the inner boundary is P and ��−� is an interior metric function. Substituting
nto the conservation equation in the l→0 hypersurface limit, we have

Pe��−�/2 + ���/2�S0
0 + �2/R0�S



 = 0. �34�

. Evaluating �rg00

The derivative, ��, on the hypersurface, can be written as a difference equation,

���R� =
��R + d/2� − ��R − d/2�

�R + d/2� − �R − d/2�
=

��R + d/2� − ��R� + ��R� − ��R − d/2�
�R + d/2� − �R − d/2�

=
��R + d/2� − ��R�

d
+

��R� − ��R − d/2�
d

.

xpanding, we can write

��R ± d/2� = ��R� ± ���R�±��
d

2
+ ¯ .

ubstituting in the thin shell limit, we have

���R� 
���R�+�� + ���R�−��

2
.

he first term follows from the Schwarzschild metric match and the second is given in Appendix
. We have

���R�  �2m/R2 + 4	RP��1 − 2m/R�−1,

here we have identified the Schwarzschild mass parameter with the interior mass of the fluid.

ubstituting into Eq. �34�, we have
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− P�1 − 2m/R�−1/2 = �m/R2 + 2	RP��1 − 2m/R�−1S0
0 + �2/R�S



, �35�

hich describes the thin shell pressure balance. The classical limit of this equation follows from
→ and is

P − �
m

R2 = 
 2

R
��− �� .

f the fluid pressure at the interior boundary dominates, this can be interpreted as a tension in the
hell, balancing the outward interior fluid pressure at the boundary minus the inward pressure due
o the gravitational attraction of the shell by the interior fluid. If the shell mass term dominates, the
tress in the boundary layer will be a pressure. In the next section we explore the stress–energy
tructure of the boundary layer, and will see parameter ranges with both layer tension and pres-
ure.

. DETAILS OF THE FRACTIONAL MATCH

. Sphere radii

The sizes of the sphere are described by

TolmanV:
R0

2m0
= 1 +

��1 + ����4n/�1 + n� + 1 − ��
��1 + 4n/�1 + n��

, �36�

TolmanIV: 
 R0

m0
�3

− 
 R0

m0
�2

�2 + ��3 − ����1 + ��� −
��3 − ����1 + ��
4	m0

2�Pc + �c/3�
= 0. �37�

he scaled boundary radius, R0 /m0, for Tolman V is plotted as a function of alpha for various n in
ig. 1.

The overall effect of the fractional match is to increase the range of sphere sizes for a given
OS. The largest differences are for low- n fluids, where a very much smaller sphere radius is
ossible than for the zero-pressure match. The Buchdahl bound14 limits the ratio of 2m0 /R0 for
uid spheres whose g00 component is continuous across the boundary and whose density is
FIG. 1. Scaled radius versus fractional order.
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ecreasing outward. We have matched fractional derivatives rather than first derivatives and it is
ot clear that the conditions of the Buchdahl bound are satisfied, but from Fig. 1, it is seen that the
uchdahl bound, 2m0 /R0�8/9, is not violated.

The radius for Tolman IV is a cubic root of Eq. �37�, but some general description can be
iven. The modeling term in the equation is the denominator of the last term. Consider the factor

c1 � 4	m0
2�c/3

escribing an object with mass m0=Nm�=N�2�1030 kg�, and central density and pressure of
eutron star order, �c�1017 kg/m3, Pc�1033 Newton/m2. Numerical scaled radius values using
hese values are described in Table I for a range of N and alpha values. For N�100 or larger, the
ast term in the cubic is negligible and the radius is essentially given by the limiting value

R0/m0 � 2 + ��3 − ����1 + �� .

he masses for these radii are well out of the neutron star range. The reflection symmetry about
=1 is the result of a product equivalence of the two gamma functions for paired alpha values,

.e., �= �0.6,1.4� give the same gamma function product. From Table I, it is clear that the low N
alues have masses and radii of neutron star orders of magnitude.16 For example, for N=1, the
adii are approximately R0�11.44m0�17 km. Smaller central densities, describing more ordinary
uid objects, result in much larger fluid spheres. For a central density of �c�1010 kg/m3, the radii
or �=1, R0�N� are R0�1�=2228.33m0, R0�10�=480.87m0, R0�100�=104.39m0, R0�1000�
23.32m0, with the values for larger and smaller � paired and increasing, just as for the larger
entral density.

. Crust stress–energy

Figures 2 and 3 describe the variation of the boundary energy density and pressure, in Tolman
, n=1/3, as the size of the fluid sphere varies. Over a large part of the R0 /Rz range, a crust

ension contains the interior fluid, with the tension increasing in size as the fluid sphere becomes
maller, essentially acting to squeeze the fluid into smaller volumes. The results are similar for

TABLE I. R0 /M0—Tolman IV—�c�1017 kg/m3.

� N=1 N=10 N=100 N=1000

0.2 13.24 4.41 3.55 3.54
0.4 12.39 4.10 3.28 3.27
0.6 11.85 3.91 3.12 3.11
0.8 11.54 3.81 3.04 3.03
1 11.44 3.78 3.01 3
1.2 11.54 3.81 3.04 3.03
1.4 11.85 3.91 3.12 3.11
1.6 12.39 4.10 3.28 3.27
=0.
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For Tolman IV, the crust energy density is

8	� =
2

R0
�− �1 − 2m0/R0 +��1 − R0

2/C2��1 + R0
2/A2�

1 + 2R0
2/A2 �

=
2

R0
�− �1 − 2m0/R0 +��1 − 4	R0

2�c�1/3 − n���1 + 4	�cR0
2�1/3 + n��

1 + R0
28	�c�1/3 + n�

� .

he modeling factor of importance is the term

4	
R0

2

m0
2�cm0

2 = 3c1
R0

2

m0
2 .

or nuclear central densities, �c�1014 g /cm3, this is

FIG. 2. Ds=−8	m0S0
0 versus fractional order.

�
FIG. 3. Ps=8	m0S� versus fractional order.
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20.35N2 � 10−4 R0
2

m0
2 .

n order to have real values, we require

N = 1, R0 � 12m0, �0.293 � �1/3 − n�� � 1,

N = 10, R0 � 4m0, �3.26 � �1/3 − n�� � 1,

N = 100, R0 � 3m0, �183 � �1/3 − n�� � 1.

t is clear that the broadest range of central equations of state for nuclear central densities is for the
ower mass objects. Higher mass objects require a central EOS very close to the 1/3 limit. For
maller values of the central density, the central EOS range is much broader. For a central density
f �c�107 g/cm3, the modeling factor is

4	
R0

2

m0
2�cm0

2 = 20.35N2 � 10−11 R0
2

m0
2 ,

nd for real values require

N = 1, R0 � 2228m0, �0.10 � 10−2�1/3 − n�� � 1,

N = 10, R0 � 480m0, �0.47 � 10−2�1/3 − n�� � 1,

N = 100, R0 � 104m0, �0.022 � �1/3 − n�� � 1,

N = 1000, R0 � 23m0, �0.11 � �1/3 − n�� � 1.

I. CONCLUSION

In this work we have examined a family of boundary layers created by matching fractional
erivatives across a boundary.17,18 The boundary layers considered have structure that depends on
he order of the fractional derivative. One of the reasons that fractional calculus may be important
or boundary layers is the mechanism by which a boundary layer is formed. One of the possible
ays to build a variable density crust is by a diffusive process; a process whose underlying cause

s Brownian motion. This motion, as analyzed by statistical mechanics, involves diffusion, dissi-
ation, and the fluctuation-dissipation theorem. The dynamical model of Brownian motion was
rovided by Langevin in 1908 using a stochastic differential equation. It seems apparent from the
ature of randomness that such macroscopic stochastic equations are incompatible with the con-
inuous and differentiable character of microscopic Hamiltonian dynamics. �Think of the conven-
ional diffusion equation, with the diffusion process described by a second-order spatial deriva-
ive.� Therefore, the mathematical description rests on either ordinary analytical functions
escribing the dynamics, or on conventional differential operators describing the phase space
volution. The differentiable nature of the macroscopic picture is, in a sense, a natural conse-
uence of microscopic randomness. This means that use can be made of ordinary differential
alculations on the macroscopic scale, even if the microscopic dynamics are incompatible with
rdinary calculus methods. On the other hand, in the case where a time scale separation between
acroscopic and microscopic levels of description does not exist, the nondifferentiable nature of

he microscopic dynamics is transmitted to the macroscopic level. Since fractional calculus has
een shown to provide a good description for a range of diffusive processes,19 one might expect a

oundary condition based on fractional calculus would reflect the fractional growth process. An
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xample, given by Allegrini, Grigolini, and West,20 shows that a diffusion process generated by a
uctuation with no time scale at the macroscopic level generates a diffusion process well de-
cribed by a fractional Laplacian.

While diffusion is a possible mechanism for generating a layer with structure, the method of
enerating the fractional family of layers is independent of the production mechanism and gener-
tes a family whose stress–energy and size depends on the order of the fractional derivative. The
esult is a much broader range in fluid sphere properties. For example, in Tolman V, a much larger
ange of spheres sizes can be described with the fractional layer than without, with the energy
ensity of the layer decreasing as the size of the sphere increases. The C�0 Tolman V spheres
ave a zero-pressure boundary solution. For spheres smaller than the zero-pressure sphere, the
ayer has a tension, while for spheres larger than the zero-pressure sphere, the layer has positive
tress over much of the range of the fractional order. The fractional boundary could prove to be a
aluable modeling tool in more realistic neutron star models.

The range of stress–energy in the fractional boundary layers implies differences in structure as
function of the fractional order. The differences in density could be modeled in several ways: for

xample, with different crust materials or different incomplete fluid coverings �tilings�.21 The layer
tself is a model of a thin crust and there could be differences in the geometry of the 2�1 shells
hat fill the real crust. The interior fluid geometry and the exterior Schwarzschild vacuum do not
ave to match for a crust with finite thickness.

The models presented in this paper matched an integral transform of the regular derivative
cross a spatial boundary. It is not a fractional generalization of general relativity, but a fractional
eneralization of a boundary condition. The next step is to explore the range of fractional gener-
lizations of other sets of boundary conditions and other derivative definitions to applicable space-
imes.

PPENDIX A: DERIVATIVES

. Regular

For functions f and F continuous on �a ,b� � Reals,

F�x�: = 	
a

x

f�t�dt ,

�x� is differentiable such that dF /dx= f . The nth integer derivative is simply dnF /dxn. For
xample,

dn

dxnxk =
k!

�k − n�!
xk−n.

ith the gamma function this is

dn

dxnx� =
��� + 1�

��� − n + 1�
x�−n.

he gamma function, ��z�, is defined as

��z� = 	
0



e−ttz−1 dt, ��1/2� = �	, ��1� = 1,
��n + 1� = n��n� = n ! , for n � 0.
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. Fractional

. Riemann–Liouville

The Riemann-Liouville definition for the � fractional derivative of f�x� is, with ��0,

D�f�x� =
d�

dx� f�x�: =
1

��n − ��
dn

dxn	
c

x f�t�
�x − t��−n+1dt , �A1�

here n is the smallest integer larger than � when it is fractional, that is, n= ���+1. In the �=1
imit, the derivative produces the integer result. The constant c in the limit of the integral is usually
et to 0 �Riemann definition� or to − �Liouville definition�. For example, the Riemann–Liouville
erivative of xk for ��1 with n=1, we have

D�xk =
1

��1 − ��
d

dx
	

0

x

tk�x − t�−� dt

=
1

��1 − ��
d

dx
	

0

x

tkx−�
1 −
t

x
�−�

dt

=
1

��1 − ��
d

dx
	

0

1

wkx−�+1+k�1 − w�−� dw .

sing the definition of the beta function,

	
0

1

wp−1�1 − w�q−1 dw =
��p���q�
��p + q�

,

e have

D�xk =
1

��1 − ��
dx−�+1+k

dx

��k + 1���1 − ��
��k + 2 − ��

=�1 + k − ��xk−� ��k + 1�
��k + 2 − ��

=xk−� ��k + 1�
��k + 1 − ��

.

or �=1, this is the usual result D1xk=dxk−1. Note that, for k=−1, this operation fails. This is an
xample of one of the problems encountered in applying fractional derivatives to general relativity.
ot all definitions of fractional derivatives work for all functions. The fractional derivative of xk

or ��1 is identical to the fractional derivative for ��1. For this function, the derivative is
ontinuous across the �=1 boundary.

D�xk =
1

��2 − ��
d2

dx2	
0

x

tkx1−�
1 −
t

x
�1−�

dt

=
1

��2 − ��
d2

dx2	1

wkxk+2−��1 − w�1−� dw

0
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=xk−� ��1 + k�
��1 + k − ��

.

ne should note that the Riemann–Liouville fractional derivative of a constant is not zero.

. Caputo

The Caputo derivative is the integral transform of the regular derivative and is found by
oving the derivative in the Riemann–Liouville definition inside the integral to act on the func-

ion. We have

D�f�x� =
1

��n − ��	0

x

dn

dtn f�t�

�x − t��−n+1dt . �A2�

xample: f�x�=xb, ��0,

D��x − a�k =
1

��n − ��	0

x

dn

dtn tk

�x − t��−n+1dt .

or ��1, n=1 we have

D��x − a�k =
1

��1 − ��	0

x

ktk−1�x − t�−� dt =
kxk−�

��1 − ��	0

1

wk−1�1 − w�−� dw = kxk−� ��k�
��k + 1 − ��

,

�A3�

hich is identical to the Riemann–Liouville derivative for this function. This derivative also is not
efined for k=−1. In general relativity, one of the space-times one would like to treat is vacuum
chwarzschild, but the Riemann–Liouville derivative will not give finite answers for the 1/r
tructure. The derivative of 1 /r can be taken with the Weyl derivative.

. Weyl

The Weyl derivative differs from the Riemann–Liouville derivatives over the range of the
ractional transform. To take the fractional derivatives of 1 /r we use the Weyl derivative over the
ange �R0 ,  �. The Weyl derivative of f�r� can be written as

D�f�r� =
�− 1�n−1

��n − ��	r

 dnf�t�
dtn �t − r�n−� dt ,

here n is the smallest integer above � when it is fractional. This paper is concerned with the
ractional derivative across the boundary and the phase �−1�n−1, was chosen to make D� continu-
us across �=1. Applying the derivative definition to 1/r for ��1 �n=1� we find

D�r−1 = − r−�1+����1 + ��, � � 1. �A4�

or �=1, this gives the usual first derivative of 1 /r. For ��1 �n=2� the derivative is the same.
ne should be careful not to interpret the derivative for �=2 as the second derivative. The second
erivative would follow from a double application of D�. For this function the single derivative at
=2 is not the same as the double application of the derivative operator.

PPENDIX B: FLUID SPHERE FORMALISM
Consider the general static spherical metric over the interior fluid with ��r� and ��r�,
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ds2 = − e� dt2 + e� dr2 + r2 d�2.

ith Einstein’s field equations as Gij =8	Tij, the energy–momentum components are

8	T0
0 = − e−����/r − 1/r2� − 1/r2,

8	Tr
r = e−����/r + 1/r2� − 1/r2,

8	T


 = 8	T�

� = �e−�/2������ + ���/2 + 1/r���� − ���� .

or the fluid interior, the energy–momentum, with four-velocity Ui= �e�/2 ,0 ,0 ,0�, is

Tij = �� + P�UiUj + Pgij .

n the comoving frame the fluid stress energy is

T0
0 = − �, Tr

r = T


 = T�

� = P .

t is common to use the function m�r� in grr with

e� = �1 − 2m�r�/r�−1,

o that

�� = 2�m�/r − m/r2��1 − 2m/r�−1.

rom the first field equation we have

m� = 4	r2� .

he second field equation provides a relation between the fluid pressure, P, and ��,

��/2 = �4	rP + m/r2��1 − 2m/r�−1
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