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Perturbations on an interface driven by a strong blast wave grow in time due to a combination of
Rayleigh—Taylor, Richtmyer—Meshkov, and decompression effects. In this paper, results from
three-dimensional3D) numerical simulations of such a system under drive conditions to be
attainable on the National Ignition Facilifft. M. Campbell, Laser Part. Bean® 209(1991)] are
presented. Using the multiphysics, adaptive mesh refinement, higher order Godunov Eulerian
hydrocode, RaptdiL. H. Howell and J. A. Greenough, J. Comput. Ph{84, 53 (2003], the late
nonlinear instability evolution, including transition to turbulence, is considered for various
multimode perturbation spectra. The 3D post-transition state differs from the 2D result, but the
process of transition proceeds similarly in both 2D and 3D. The turbulent mixing transition results
in a reduction in the growth rate of the mixing layer relative to its pretransition value and, in the case
of the bubble front, relative to the 2D result. The post-transition spike front velocity is
approximately the same in 2D and 3D. Implications for hydrodynamic mixing in core-collapse
supernovae are discussed.

© 2005 American Institute of PhysidDOI: 10.1063/1.1894765

I. INTRODUCTION cluded that memory of certain aspects of the initial condi-
tions, such as the rms amplitude, is retained in the mix width
An interface between two fluids becomes hydrodynami-at all times. Spike interaction and breakup was found to cor-
cally unstable when it transmits a blast-wave down the denrespond to an increase in small-scale mixing, a significant
sity gradient. Perturbations grow under the combined influreduction in spike velocity, and a loss of initial transverse
ence of the Rayleigh—Taylbf (RT) and  spectral information. Consequently, we referred to it as a 2D
Richtmyer—Meshko§14 (RM) instabilities. In addition, mate- turbulent mixing transition. At late times, the inverse cascade
rial decompression behind the shock front results in amplidriven by bubble competition and merger was halted due to
tude stretching that represents a significant contribution tarive decay, which imposed an effective box size on the sys-
the growth at late time3RM dominates at very early times, tem. After transition but before the emergence of the effec-
but its contribution relative to RT quickly becomes insignifi- tive box size, we observed a quasi-self-similar regime during
cant as the shock-deposited vorticity spreads out and decayghich the similarity parametgir)/h decays slowly in time,
awa)ﬁ'6 In the nonlinear phase, initial perturbations evolvewith a value only weakly dependent on the initial conditions.
into spikes of denser material growing in the direction of In this paper, we extend this study to include 3D calcu-
shock propagation and bubbles of less dense material laggirigtions of systems that are otherwise identical to the laser-
ever further behind the unperturbed interface position. If thedriven targets described in the 2D paper. Our goal is to de-
interface is driven by a sufficiently strong blast wave, two-termine how the deep nonlinear instability evolution differs
dimensional (2D) and/or 3D secondary instabilities will in the 3D case, where vortex stretching makes transition to
eventually cause nonlinear spikes to interact with one anfull 3D turbulence possible. In particular, we would like to
other and break down. Energy and momentum are therebynderstand how the initial conditions affect the time to tran-
diverted into the transverse direction and a transition to aition and the nature of subsequent turbulent flow.
turbulent or turbulentlike state occurs. We will show that nonlinearity thresholds for spike in-
In a previous paper, we considered the effect of the initeraction and breakup are not significantly changed in 3D,
tial perturbation spectrum on the nonlinear evolution of a 2Dand that the post-transition state is more thoroughly mixed
blast-wave-driven system, including spike interacfion. than in the 2D case. More mix gives a lower effective At-
Based on high-resolution 2D Raptosimulations, we con- Wwood number that leads to a large reduction in the bubble
growth rate relative to the 2D values despite the decreased
Paper PI2 4, Bull. Am. Phys. S049, 288 (2004). drag in 3D. Surprisingly, the velocity of the spike front is not
Pinvited speaker. Electronic mail: miles15@linl.gov significantly changed when going from 2D to 3D. It is how-
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ever reduced relative to its pretransition value. This is parphysical dissipation range and much of the inertial range
ticularly interesting in light of the fact that 2D simulations of unresolved. The resulting computational Re is often greatly
blast-wave-driven mixing in core-collapse supernovae conreduced relative to the actual Re in the modeled system, even
sistently underpredict the asymptotic spike velocities byig the point that there is no discernible inertial range and the
about a factor of 2see Ref. 8 and references thejeifhis o mntational Re is lower than the experimentally observed

sr?bli:n 'ihnOt S%NEd bﬁ: 32?) CaICUIat'ngS th";t Frr?d'cgsgilkecrrlitical Re. We will refer to such flows as weakly turbulent or
eoclies the same as » Suggesting a baiance be E?‘?urbulentlike, and to the initiating transition as the weak tran-
velocity enhancement due to decreased drag and reductl%riltion

due to increased small-scale mixing.
g Two-dimensional turbulence is distinct from its 3D

counterpart in that it lacks the vortex stretching and associ-
Il. TRANSITION TO TURBULENCE IN ated forward cascade that are central to 3D turbulence. There
RT-INSTABILITY-DRIVEN SYSTEMS is, however, a forward enstrophy cascade and an inverse en-

Before continuing on with simulation results, we wish to €rgy cascade driven by vortex pairing and mefgéf.Since
clarify what we mean by turbulence. This is particularly im- 2D simulations are often used to model 3D turbulent sys-
portant for turbulence in multimode RT systems becausg¢ems, it is important in each case to consider whether or not
there are at least four ideas of turbulence that appear in theansition in the 2D system proceeds similarly to transition in
literature, and they do not all affect the instability growth in the analogous fully resolved 3D system. This will likely de-
the same way. pend on whether or not the latter is driven by instabilities

First of all, RT-unstable systems can exhibit turbulencey,5; zre inherently 3D(such as the Widnall vortex ring

in the classical fluid mechanical sense. Unfortunately, ther?nstability”). In such cases, 2D calculations of course cannot

iS no unlversal_ consensus on what classical turbulence is e counted on for predicting the transition time.
ther. We describe it as a disordered state that undergoes ran- . . .
Finally, we note that the word turbulence is sometimes

dom fluctuations in both space and time and is characterized . _ .
by energy flow from some large driving scale down to dissi-used to describe the inverse cascade, driven by bubble com-

pative scales via the 3D phenomenon of vortex stretching(.’etition and merger in 3D as well as in 2D, that is character-
When driven by the RT instability, there is a range of driving istic of nonlinear multimode RT evolution. This continual
scales set by the density spectrum or bubble size distributioleneration of successively larger scales leads to acceleration
When bubble competition and merger are active, the domiof the bubble front and explains the conjectured loss of ini-
nant driving scale for the turbulence grows in time. tial conditions and establishment of a self-similar
Transition to classical turbulence typically requires thatregime®=?° Like transition to classical turbulence, transition
the Reynolds number be greater than some threshold Valueo the self-similar regime requires time, space, and a seed.
This requirement amounts to sufficient spectral separatiofhe seed spectrum must contain multiple, incommensurate
between the driving and dissipative scales. Dimotakisyodes that are unstablee., not so small that they are sta-
pbserve&o that many systems exhibit a transition to a state ofyji,eq by viscosity or other mechanism©therwise, scales
increased molecular mixing, which he called the turbUIentIarger than those present in the initial conditions cannot be

mixing transition, above a critical Re of abou2.0*. This . . .
. . enerated and the asymptotic state will be characterized by a
corresponds to three orders of magnitude separation betwed

the driving and dissipative scales, allowing for an extendec?table’ periodic array of .bubk?les. The characteristic wave-

inertial range that is decoupled from both. Above the criticall®9th Of the spectrum will shift towards the low/-end of

Re for the mixing transition, the internal structure of the flow the initial spectrum, but will not pass beyond it. Noige-

is less Re dependent than before the transition. cluding numerical present in the system can of course serve
In nonstationary flows, there is a time constraint asas the required seed, eventually triggering the interaction and

well X Even if the Reynolds number is high enough thatbreakup of spikes, but the transition will be delayed.

an inertial range can, in principle, exist transition cannot take  The space requirement for transition to self-similar tur-

place until the inertial range has had time to develop. A finabulence is that the system or box size be at least several

requirement for transition that is common to both nonstationtimes larger than the longest-wavelength significant modes

ary and stationary flows is the existence of some seed pefresent in the initial conditions. There must also be suffi-
turbation that instabilities can act on. The seed requirement iiant time for larger scale to be generated. If the space re-

often not focused on because it will n.aturally be sat|sf.|ed Inquirement is not met and until the time condition is satisfied,
virtually every system, whether physical or computauonal,the scale-invariant bubble distributidrwill not be realized.

due if nothing else to thermal or numerical noise. . o
g In blast-wave-driven systentsr other system with simi-

The turbulent mixing transition often takes place inI v d ing dri he effective b : | h
flows that have already undergone a transition from a lami:2"y decaying rivg; the effective box size can play the

nar, ordered state to a disordered, spectrally complex State.Same role as the physical box size in limiting the inverse
The term “turbulence” is often also applied to any such sys€ascadé?If the drive becomes very small at late times but

tem that appears random, regardless of whether or not thef9es not vanish, then thinking in terms of the effective box
is a forward energy cascade via vortex stretching down aisize amounts to a transformation of the time requirement into
inertial range. This includes 3D simulations that leave thethe spatial domain.
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FIG. 2. (a) Initial spectral shapes used for the short-wavelength component
(b) Time (ns) in the 3D calculations. Initial interface contour plots) narrow Gaussian
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FIG. 1. (a) Target schematinot to scalg (b) Variation in time of interface Gaussian shorts plus mode 4 "egg crate.

velocity and deceleration.

. EEFECT OF TRANSITION ON RT-INSTABILITY We now consider the question of coincidence among the
GhOWTH ) various transitions. It has been proposed that the mixing-

transition time in RT-unstable systems is limited by the vis-

The evolution of a RT-unstable interface is likely to be cous growth of a shear layer along the spike stalks, and with
similarly affected by transition to a classically turbulent or it the Liepmann—Taylor scale that sets the lofvend of the
turbulentlike 2D or 3D state. Our previous 2D simulationsinertial rangel.3‘14 However, for broadband systems in a big
agree with 2D and 3D simulations of others that such tranbox at high Reynolds numbér.e., seed and space require-
sitions leads to a higher degree of small-scale “molecularments met for both classical and self-similar transitjpttse
mixing and typically a reduction of the growth rdtdVe  mixing transition is preceded by nearly coincident weak and
have noted, however, that the velocity of the bubble front carself-similar transitions. Once modes become nonlinear and
be increased if the transition leads to bubble competition irbegin to couple and generate larger scales, marking transition
what would otherwise be a stable, periodic array. In thato self-similar turbulence, spikes soon reach their nonlinear-
case, transition to a classically turbulent or turbulentlike statéty interaction and breakup threshofiighese interactions
provides the seed requirement for a subsequent transition tirive mix-layer-scale vortices, effectively short circuiting the
quasi-self-similar turbulence. In our simulations, the 2D tran{process whereby the low-end of the inertial range is lim-
sition was found to occur when the dominant modes in théted by the viscous growth of a shear layer. Even in 2D, spike
spectrum reached a nonlinearity threshold of abbix interaction and breakup due to Kelvin—-Helmhol&H) ac-
~5-6. For spectrally complex initial conditions, the 2D andtivity results in abrupt growth of small-scale vortices,
self-similar transitions occurred virtually simultaneously. In thereby temporarily mimicking full 3D turbulence character-
single or few-mode systems, the self-similar transition someized by vortex stretching and the associated transfer of en-
times occurred significantly later than the 2D transition. ergy down to the dissipative scales. Diffusive growth of the

While transition to a classically turbulent or turbulent- shear layer will likely provide the time limitation for transi-
like state leads to enhanced mixing that tends to reduce thion to classical turbulence only in single-mode or otherwise
RT growth rate$>?* transition to a(quasijself-similar re-  spectrally simple systems.
gime leads to an inverse cascade that tends to enhance the When the mixing transition occurs in a system that has
perturbation growtit> When both transitions are coincident, already undergone transitions to weak and self-similar turbu-
the overall effect on the growth rates depends on which eflence, it can only cause a reduction of the growth rates by
fect wins out. Simulations in 2D and 3D tend to show aneffectively lowering the Atwood number within the mix
initial growth rate reduction, especially for the spikes, but thelayer.
growth must eventually be enhanced if the system allows for At low Re, the weak and self-similar transitions need not
unlimited generation of larger structures with higher terminalbe coincident. For example, consider that the inverse cascade

velocities®?* can occur at any Reynolds number, and in 2D as well as 3D.
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Equivalently, the presence of an inverse cascade does not *
imply strong interactions between spikes and the associated =t
increase in mixedness. The Reynolds number will eventually s =
become high if the inverse cascade is allowed to continue i
long enough(Re~\%2g%2 if h~\), but the system can be o Bubble ==
turbulent in the self-similar sense at lower Re as well. ‘ ‘ j
Conversely, a system with simple modal content can ex- A " T el
hibit localized classical turbulence, including the mixing
transition, if the Reynolds number is high enough. For ex-
ample, in RM shock tube experiments by Jacobs and
co-workers?® secondary instabilities lead to transition to
classical turbulence within the KH rollups of single-mode
spikes, while the large-scale single-mode structure remains
intact and there is no bubble competition. Even so, spike
interaction and breakup should increase the extent to which
areas of turbulence permeate the mix region.
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IV. CALCULATION SETUP AND DESCRIPTION

) ) . . . FIG. 3. (Color onling. Effect of dimensionality on single-mode grow#
The simulations are performed using the multiphysicSamplitudes andb) averaged growth rate. The 3D growth rate initially satu-

radiation hydrodynamics code Raptor, which uses a secondates at about1.5 (rather than 2.5) times the 2D growth ratec) Late-time

order (in space and timeGodunov method applied to the log density image from mode 4 “egg-carton” interface. Despite nonlinearity
a/\=7, regular single-scale structure persists along much of the length of

Euler equation%' Raptor is parallelized and uses adaptivethe spikes. However, a transition to turbulence appears to have occurred in
mesh refinement, making it well suited to problems such ascalized regions where shear layers from individual spikes have merged.
ours that require high resolution in only a portion of the
computational domain. The calculation setup is nearly iden-
tical to our 2D simulations detailed elsewhérand only an  resolution(256 ppbh multimode runs and one low-resolution
abbreviated description will be given here. The only differ-(128 pph) mode 4 “egg-crate” run [given by z
ence in the 3D calculations is that the initial spectra are nows (2.5 um)cogk,x)cogk,y), wherek, corresponds to the 1
typically 3D, and the nominal resolution is 256 cells across=4 modd. Here and throughout, the number of points per
the computational domain instead of 512. The highest levebox (ppb) is the number of zones in the transverse direction.
of refinement is reserved for the interface region, and th&wo of the high-resolution multimode runs include only a
total number of cells grows with the mix width, eventually short wavelength component with modes 20-80 and ampli-
reaching over 5& 10°. tudes given by a narrow Gaussian in one case andka 1/
Our hypothetical targdisee schematic in Fig.(d)] con-  distribution in the othefsee Fig. 2a)]. Each interface was
sists of a 15Qum plastic pusher sectiofdensity 1.42 g/cc  constructed by determining all modes in the annulus satisfy-
in contact with a cryogenic hydrogefdensity 0.086 g/ogc  ing 20< (€§+€§)1’2< 80 (for integer ¢, ,) and assigning to
2.2 mm payload section. An initial perturbation is imposed ateach a random phase and randomized amplitude taken from
the pusher/payload interface, and the width the computathe prescribed distribution. Contour plots of the initial con-
tional domain was typically 20@m. Open boundary condi- ditions are shown in Figs.(B) and Zc). The other two mul-
tions are used in the paralléo the shock direction while  timode calculations include a simple long wavelength com-
periodic conditions are specified in the transverse directionponent in addition to the narrow Gaussian short wavelength
The end of the pusher opposite the perturbation is drivemomponent see Figs. @) and 2e)]. The long wavelength
with a 25 kJ, 1 ns laser pulse, which launches a strong planaomponent is either a single 2D mode 4 or the 3D mode 4
blast wave into the target. Planar experiments with thesegg crate.
drive properties will be possible within a few years as the In estimating the Reynolds number in the calculations,
National Ignition Facilit)?7 becomes operational. The simu- we take Rg(t) =[2h(t)/2Ax]*3 where (1) is the mix width
lations are initiated with a high-velocity, heated, compresse@ndAx is the cell size. This give a time-dependent Reynolds
slab with characteristics taken from a laser-driven Laghex number that climbs as high as2200 in the first 18 ns of a
simulation at the end of the laser pulse. Radiation is no#0 ns experiment. This is comparable to the time-
included in the Raptor calculations, as the material temperandependent Reynolds number based on the width of the
tures are always below 100 eV. The Mach numbers of theomputational domain Re 1626. If the perturbation ampli-
incident and transmitted blast waves are in the range of 10tude growth is similar in 2D and 3D, then we expect to find
30, where the precise value depends on the degree to whidkg,~ 4400 at 40 ns. The estimated Re number in the actual
x-ray preheat can be controllégthe incident Mach number experiments is of order 20two orders of magnitude greater
with no preheat would be about B0The resulting initial  than in the simulationjsngypical of numerical simulations of
interface speed is about 130n/ns[see Fig. 1b)]. The post-  turbulent systems, the dissipative scales are much smaller
shock Atwood number remains nearly constant at about 0.%han the grid scale. We might expect, however, to qualita-
In this paper, we will present results from four high- tively capture the effect of the turbulence on the large scales
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FIG. 4. Perturbation amplitude and velocity histories from narrow Gaussian afdshért wavelength cases. Results from 2D calculatizasolved to
512 pph with the same spectral shapes are included for comparison.

if we adequately resolve the lower end of a self-similar in-coefficients’>**3° Uzp/Uyp=1Cyp/Cap=~ \67/ (27X 1.22)
ertial range. According to Dimotakis, this scale can be esti=2.46~1.57. In fact, the 3D growth rate initially saturates
mated by the Liepmann—Taylor scale, which he defines agi apouty1.5~ 1.2 times the 2D growth rafesee Fig. )],

— ~1/2 : i O\pzi —
A r=5LReg, " whereL is the driving scalé? With L=2h,we  ,ossibly because the 3D bubbles appear to develop with a
find for the exper|mentsLT~3—10,um._ln the simulations, slightly smaller diameter.
there are then about 4-13 cells per Liepmann-Taylor scale, A late-time log density image from the mode 4 eqa-
which corresponds to mode 67-20. Thus we estimate that we 9 y 9 99

are beginning to resolve the upper end of the inertial ranggarton interface '_S shown in Fig(@. Desp!te nonlinearity
with 256 ppb. This estimate is confirmed by spectra pre_a/)\=7, regular single-scale structure persists along much of
sented in Sec. V. We would feel much more comfortable withthe length of the spikes. However, a transition to turbulence

another factor of 2—4 in resolution, but such calculations ar@ppears to have occurred in localized regions where shear

for now prohibitively time consuming. layers from individual spikes have merged. An x-ray radio-
graph at 25 ns from a 2D short-on-long Omega experifﬁent
V. SIMULATION RESULTS shows indications of similar localized transitiopsee Fig.

9(d)]. Based on the time required for establishment of an
] inertial range via the viscous growth of the Liepmann—Taylor
In Fig. 3, we compare the growth of the mode 4 €99-gcaje, Robeet al. predict that the mixing transition is pos-

crate with a single 2D mode 4. The 3D spikes and bUbee§ible in the experiments after 17 HsThis scenario seems

have the same transverse scale as the 2D spikes and bUbbleeispro fiate in this spectrally simple svstem where there is no
so, during the pretransition phase, the difference in theif ~ProP P y ple sy

growth rates should be set by the ratio of their dragweak transition early on.

A. Effect of dimensionality on single-mode growth
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FIG. 5. (Color onling. (a) Mixing parameter andb) log density plots from
2D and 3D ng short-wavelength calculations.

B. Evolution of short wavelength component ) ) )
FIG. 6. Time evolution ofa) density spectray, (b) k53 p,, and(c) turbulent

Perturbation amplitude and velocity histories from thedirected energy spectra. The appearance of an inertial range in the spectra
two high-resolution 3D short wavelength cases are shown iferesponds to the increase in mixedness apparent in feg. 9
Fig. 4. Results from 2D calculations with the same initial
spectral shapes are shown for comparison. In general, the ) _ _ _
variation between the 3D calculations is slightly less than ipPrameter continues to increase until about 10 ns, when it
2D. This could be due at least in part to better statistics in th@©9ins to saturate at a higher value of about 0.90. Again, this
identification of the spike and bubble positions. is higher than the value of about 0.83 reported by Youngs
At early times, 3D bubbles grow faster than 2D bubbles2nd Cooket al™*"Three-dimensional Raptor simulations of
of the same size. This is expected based on the reduced dr§ssical RT do not show this discrepancy, suggesting that it
of spherical relative to cylindrical bubbles. At about 5 ns,€sults from RM, thermal conduction, decompression, or a
however, the 3D bubble velocities begin to drop off rapidly, COmbination of these effects. We have verified that conduc-
falling to about half the 2D bubble velocity by 10 ns. tion is not responsible, and do not believe that RM is impor-
Within a few ns after shock transmission, a transitiontant after the first few nanoseconds. This leaves decompres-

begins from a state with little small-scale mixing to a highly- Sion, which tends to increase the number of mixed zones at
mixed state[see Fig. §)]. The degree of “mixedness” is material interfaces. We have not yet determined whether the

determined by using Youngs’s “molecular mix,” defineo”oy resulting increase in asymptotic mixedness is a physical or
numerical effect.
f{f(l—f))dz By about 10 ns, the simulation appears to have under-
gone a turbulent mixing transition. Indeed, at 90% mixed, it
0 ' @) is difficult to imagine what additional mixing transition
f(f}dzf (1-f)dz

could possibly take place.

Two-dimensional density and velocity power spectra are
wheref and 1-f are the volume fractions of the two fluids integrated over annuli ik, -k, space to give a 1D represen-
and the angular brackets denote averaging over the trangtion that depends only on the magnitude of the transverse
verse direction. In the 2D calculations, this “2D mixing tran- wave vector. Results from the 3D narrow-Gaussian case are
sition” is complete when the mixing parameter begins toshown in Fig. 6. The density fluctuation is defined by
saturate at 4 ns at a level of about 0.7. As we noted previdp(z)=p(2) —{p(2)), where (p(2)) is the z-dependent trans-
ously, this is noticeably higher than the value of about 0.54verse density average. Each spectrum shown is the average
obtained by Youngs and Coait al. from their 2D simula-  of several(typically four) 1D spectra evenly spaced through-
tions of classical, incompressible B¥*1n 3D, the mixing  out the interior of the mix region. The inverse cascade to
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2D calculations show evidence of a weak transition at around 20 ns. The 3D
single-mode egg-carton perturbation also shows a transition at around 20 ns,
which is the same time that log density plots appear to show localized

mixing transitions. When 3D noise is present, the transition happens much
earlier (between 10 and 15 hs

noted in 3D classical RT simulations and attributed to the
secondary nature of the transverse ffdvithat an inertial
range appears at all is at first glance surprising considering
the relatively limited range of scales present in these simu-
lations and the lack of a sub-grid-scale model. The grid-
resolution Reynolds number, defined by y,Re (h/Ax)*3
~10° is an order of magnitude smaller than the integral-
scale Reynolds number observed by Dimotakis to mark the
mixing transition in many flows’ It appears, however, that
the effective integral-scale Reynolds number is much higher
than the grid-resolution Reynolds number. Following the
scaling used by Dimotakis, we find that the ratio of the lower
end to the upper end of the inertial range is approximately
given by 0.1 R&“* Based on the inertial range observed in
the calculated spectra, this gives R&(®. As predicted by
Dimotakis, the appearance of the inertial range corresponds
with a turbulent mixing transition.

It is important to note that the 3D bubble velocity falls
off precisely while the 3D mixedness is increasing above the
value seen in the 2D calculations. This suggests that the in-
creased mixing in the bubble region has resulted in a lower

in the initial conditions. Results from 2D calculations with the same spectra€ffective Atwood number and, consequently, a lower growth
shapes are included for comparison.

rate.
In this spectrally complex system, the time to transition
does not seem to be limited by the viscous growth of a shear

longer wavelengths is apparent in the density spectra. It prdayer as was suggested in the 3D single-mode calculation.
ceeds rapidly at early times but slows dramatically by 20 nsinstead, transition is triggered by strong interactions between
indicating the approach of the asymptotic freeze-out stageneighboring spikes. When the dominant spikes reach their
This slowing is more apparent in 3D than in our earlier 2Dnonlinear breakdown thresholds, a significant fraction of
calculations, where vortex pairing and merger contributes teheir energy is diverted into the transverse direction, result-
the inverse cascade. ing in forcing of mix-layer-scale vortices. Since this happens
The fluctuating velocity components are defined in theearlier when the characteristic mode number in the spectrum
same way as the density fluctuatiodv, (2)=vy, (2) is higher, the transition here takes place earlier than it does in
—(vxyA2) where )" again denotes transverse average. Anthe single-mode system despite the fact that the integral scale
inertial range with Kolmogorok >3 scalingf3 is visible by  (the mix width is much smaller.
about 10 ns in the density spectra from about mode 10 t
about mode 30 and in the parallel energy spectra from abou
mode 10 out to mode 20. The appearance of an inertial range Two high-resolution, 3D, short on long simulations were
in the transverse energy spectra is somewhat delayed relativen. In each case, the short wavelength component was the
to the parallel component. This effect has been previouslgame 3D narrow Gaussian shown in Fig&) 2and 2b) and

. Effect of shorts on long
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FIG. 9. (Color onling. Log density plots of the evolv-
ing mix layer from thg(@) 3Dm4 +3Dng calculation and
(b) 2Dm4 +3Dng calculations. Irfa), the upper row of
slices is taken from a spike position, and the lower row
from a bubble position. Ir(b), solid lines in parallel
slices denote approximate locations of transverse slices.
Spike interaction(between the mode 4 spikebegins
whena/\=2. A very clear transition to a well-mixed
state has taken place by 18 ns, at which paiht~5.

In the 2D m4 case, the interior of the mix region re-
mains anisotropic in the transverse plane until the mix-
ing transition has taken placée) Comparison with the
analogous 2D calculatiof2Dm4 +2Dng illustrates the
importance of 3D effects. The post-transition state de-
pends strongly on the dimensionality, but the process of

h/A=12 h/A=18

. . . , - _ . transition proceeds similarly in 2D and 30d) X-ray
! = ( , : K & radiography from a 2D short-on-long Omega target
: ’ 2 4 : \ < ‘i 7 shows indications of transition at the same degree of

nonlinearity as predicted by the simulations.

(c

~

Experiment

(d)

used in Fig. 5. The long-wavelength component was a 2Dhe perturbation grows nonlinear and large vortices develop
mode 4(2Dm4) in one case and a mode 4 “egg carton” at the spike tips. A very clear transition to a well-mixed state
(which we will call 3D mode 4 or 3bv) in the other. Am-  has taken place by 18 ns, at which poaft\~5 and 1-2
plitude histories from these calculations are shown in Fig. 7additional largest-scale eddy turnover times have elapsed.
along with results from 2B¥, 3Dm4, and 2D narrow- These same nonlinear thresholds for spike interaction and
Gaussian shorts on a 2D modé2Dm4+ng. In each case, breakdown/transition were found in our 2D calculatifns.
the amplitude of mode 4 was 2/m (a/A=0.095, and the Thus it appears that, for complex initial spectra, transition in
rms amplitude of the short-wavelength component was teblast-wave-driven systems proceeds similarly in 2D and 3D,
times smaller. indicating that three-dimensional secondary instabilities do
The large reduction in bubble growth seen with thenot play a dominant role in initiating the transition. Again,
short-wavelength distribution is not so apparent when modéhe mixing transition corresponds to the loss of transverse
4 is presenfsee Fig. Tb)]. We believe that this is because it spectral information and the appearance of an inertial range
takes much longer for mode 4 to grow up to its nonlinearwith k=2 scaling[see Figs. 1&) and 1@b)].
interaction and breakdown thresholds. Consequently, the The 2Dm4+3Dng evolves similarly except that the inte-
mixing transition does not occur until between 10 and 15 ngior of the mix region remains anisotropic in the transverse
(see Fig. 8 This is consistent with the conclusion we madeplane until the mixing transition has taken pldesee Figs.
based on our 2D calculations that the presence of a long(b), 10(c), and 1Qd)]. The post-transition mix width re-
wavelength mode with significant initial amplitude can delaymains somewhat smaller than with the egg-carton perturba-

the transition to a turbulentlike state. tion, but the two flows are otherwise very difficult to distin-
Log density slices through the evolving mix layer from guish.
the 3Dm4+3Dng calculation are shown in Fig(&#. The Figure 9c), which is a side-by-side comparison of

dominant mode 4 spikes begin to interact with one anothePDm4+2Dng and 2n4 +3Dng, provides a useful illustra-
whena/\ =2, or approximately one eddy turnover time after tion of the importance of 3D effects. Early on, 3D effects are
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least temporarily. Wherever it occurs, the self-similar transi-
tion will eventually give accelerated growth if it is allowed
to proceed unhindered by system size or drive time con-
straints. For interfaces that have already undergone a transi-
tion to self-similar growth, a subsequent mixing transition
| 32ns can only inhibit future instability growth.

12018 . .

. N 1R 6% ) , These conclusions are in large part born out by 2D and
1 10 ¢ 100 1000 1 10 ¢ 100 1000 3D Raptor calculations of planar blast-wave-driven systems.
L®E, 3Dn',4+3Dng i  50ms 2D;n4+3Dng_ The 3D calculations have not yet reached the freeze-out
- stage, but do appear to exhibit a mixing transition despite a
grid-resolution Reynolds number only of order a thousand.
Whether or not the current resolution captures enough of the
. inertial range that further increases in resolution will be un-
3 necessary remains for now an open question.

18.6 o The simulations show sensitive dependence on the initial
1000 1 10 £ 100 1000 conditions deep in the nonlinear post-transition phase of the
FIG. 10. Density and energy spectra from then®>3Dng and 2D !n_si[ablllty g.r.OWth' Where the Iow_mode 4.IS included in the
+3Dng calculations. An inertial range is apparent by the time the mixingInltlal conditions, the late-time mix width is much larger. It
transition has taken place. Even in thergé®case, the transverse velocity could be argued that the boundary conditions are affecting
spectrum is nearly isotropic after the mixing transition. the growth at this stage, but that effect should be to inhibit
the growth rather than suppress it. Perhaps if the transverse

domain could be made arbitrarily large and the drive sus-

tnh0t |.mtpofrtant.tln b?th cas(;as, adtransmon.at g\b?utt 10T?1$ taket:cj'tined arbitrarily long, the shorts only and short-on-long sys-
€ Interface 1o a less ordered, more mixeq state. the posltéms would begin to look very similar. However, at 20 ns we

tI’aI’ISItI;):I staFf IS Very tdlgerdgnt n ZhD fand ?:r? ’ ggt tEe Fro'are already nearing the freeze-out stage, in which differences
lcess ortransi 'O? ljs. not. ?j I_og:qapf y31rorr;] e Sd or 'On"lp perturbation amplitude will be preserved at later times.
ong experiment discussed Ih Ret. SNows evidence O -~ 1,5 three-dimensional effects do not add anything that
transition when the perturbation reaches the same degree o, . nter the tendency of blast-wave-driven systems to

”‘;’.‘"S‘far'ty.t"?‘s in the sn_nullattlor_[s?r? Fig. Qd?]. Thtebtlme at thremember some aspects of the initial conditions. For super-
which transilion occurs Is fater in the experiment because i, calculations, this means that an understanding of the

Omega drive was five times less energetic than in the NI initial conditions is important for getting that late-time mix

system. width correct. Experiments should include similar initial
conditions in order to be truly relevant to supernova. In par-
VI. CONCLUSIONS ticular, spectrally simple initial conditions are of limited util-

When an RT-unstable interface grows to several times ity since even the process by which they undergo transition
characteristic wavelength, it can undergo a “weak transition'may be different than with more realistic multimode spectra.
to a disordered, apparently random state. This transition pro-
ceeds similarly in 3D and 2D systems with approximatelyaACKNOWLEDGMENT
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