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Perturbations on an interface driven by a strong blast wave grow in time due to a combination of
Rayleigh–Taylor, Richtmyer–Meshkov, and decompression effects. In this paper, results from
three-dimensionals3Dd numerical simulations of such a system under drive conditions to be
attainable on the National Ignition FacilityfE. M. Campbell, Laser Part. Beams9, 209s1991dg are
presented. Using the multiphysics, adaptive mesh refinement, higher order Godunov Eulerian
hydrocode, RaptorfL. H. Howell and J. A. Greenough, J. Comput. Phys.184, 53 s2003dg, the late
nonlinear instability evolution, including transition to turbulence, is considered for various
multimode perturbation spectra. The 3D post-transition state differs from the 2D result, but the
process of transition proceeds similarly in both 2D and 3D. The turbulent mixing transition results
in a reduction in the growth rate of the mixing layer relative to its pretransition value and, in the case
of the bubble front, relative to the 2D result. The post-transition spike front velocity is
approximately the same in 2D and 3D. Implications for hydrodynamic mixing in core-collapse
supernovae are discussed.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1894765g

I. INTRODUCTION

An interface between two fluids becomes hydrodynami-
cally unstable when it transmits a blast-wave down the den-
sity gradient. Perturbations grow under the combined influ-
ence of the Rayleigh–Taylor1,2 sRTd and
Richtmyer–Meshkov3,4 sRMd instabilities. In addition, mate-
rial decompression behind the shock front results in ampli-
tude stretching that represents a significant contribution to
the growth at late times.5 RM dominates at very early times,
but its contribution relative to RT quickly becomes insignifi-
cant as the shock-deposited vorticity spreads out and decays
away.5,6 In the nonlinear phase, initial perturbations evolve
into spikes of denser material growing in the direction of
shock propagation and bubbles of less dense material lagging
ever further behind the unperturbed interface position. If the
interface is driven by a sufficiently strong blast wave, two-
dimensional s2Dd and/or 3D secondary instabilities will
eventually cause nonlinear spikes to interact with one an-
other and break down. Energy and momentum are thereby
diverted into the transverse direction and a transition to a
turbulent or turbulentlike state occurs.

In a previous paper, we considered the effect of the ini-
tial perturbation spectrum on the nonlinear evolution of a 2D
blast-wave-driven system, including spike interaction.6

Based on high-resolution 2D Raptor7 simulations, we con-

cluded that memory of certain aspects of the initial condi-
tions, such as the rms amplitude, is retained in the mix width
at all times. Spike interaction and breakup was found to cor-
respond to an increase in small-scale mixing, a significant
reduction in spike velocity, and a loss of initial transverse
spectral information. Consequently, we referred to it as a 2D
turbulent mixing transition. At late times, the inverse cascade
driven by bubble competition and merger was halted due to
drive decay, which imposed an effective box size on the sys-
tem. After transition but before the emergence of the effec-
tive box size, we observed a quasi-self-similar regime during
which the similarity parameterkll /h decays slowly in time,
with a value only weakly dependent on the initial conditions.

In this paper, we extend this study to include 3D calcu-
lations of systems that are otherwise identical to the laser-
driven targets described in the 2D paper. Our goal is to de-
termine how the deep nonlinear instability evolution differs
in the 3D case, where vortex stretching makes transition to
full 3D turbulence possible. In particular, we would like to
understand how the initial conditions affect the time to tran-
sition and the nature of subsequent turbulent flow.

We will show that nonlinearity thresholds for spike in-
teraction and breakup are not significantly changed in 3D,
and that the post-transition state is more thoroughly mixed
than in the 2D case. More mix gives a lower effective At-
wood number that leads to a large reduction in the bubble
growth rate relative to the 2D values despite the decreased
drag in 3D. Surprisingly, the velocity of the spike front is not
significantly changed when going from 2D to 3D. It is how-
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ever reduced relative to its pretransition value. This is par-
ticularly interesting in light of the fact that 2D simulations of
blast-wave-driven mixing in core-collapse supernovae con-
sistently underpredict the asymptotic spike velocities by
about a factor of 2ssee Ref. 8 and references thereind. This
problem is not solved by 3D calculations that predict spike
velocities the same as in 2D, suggesting a balance between
velocity enhancement due to decreased drag and reduction
due to increased small-scale mixing.

II. TRANSITION TO TURBULENCE IN
RT-INSTABILITY-DRIVEN SYSTEMS

Before continuing on with simulation results, we wish to
clarify what we mean by turbulence. This is particularly im-
portant for turbulence in multimode RT systems because
there are at least four ideas of turbulence that appear in the
literature, and they do not all affect the instability growth in
the same way.

First of all, RT-unstable systems can exhibit turbulence
in the classical fluid mechanical sense. Unfortunately, there
is no universal consensus on what classical turbulence is ei-
ther. We describe it as a disordered state that undergoes ran-
dom fluctuations in both space and time and is characterized
by energy flow from some large driving scale down to dissi-
pative scales via the 3D phenomenon of vortex stretching.
When driven by the RT instability, there is a range of driving
scales set by the density spectrum or bubble size distribution.
When bubble competition and merger are active, the domi-
nant driving scale for the turbulence grows in time.

Transition to classical turbulence typically requires that
the Reynolds number be greater than some threshold value.9

This requirement amounts to sufficient spectral separation
between the driving and dissipative scales. Dimotakis
observed10 that many systems exhibit a transition to a state of
increased molecular mixing, which he called the turbulent
mixing transition, above a critical Re of about 23104. This
corresponds to three orders of magnitude separation between
the driving and dissipative scales, allowing for an extended
inertial range that is decoupled from both. Above the critical
Re for the mixing transition, the internal structure of the flow
is less Re dependent than before the transition.

In nonstationary flows, there is a time constraint as
well.11–14 Even if the Reynolds number is high enough that
an inertial range can, in principle, exist transition cannot take
place until the inertial range has had time to develop. A final
requirement for transition that is common to both nonstation-
ary and stationary flows is the existence of some seed per-
turbation that instabilities can act on. The seed requirement is
often not focused on because it will naturally be satisfied in
virtually every system, whether physical or computational,
due if nothing else to thermal or numerical noise.

The turbulent mixing transition often takes place in
flows that have already undergone a transition from a lami-
nar, ordered state to a disordered, spectrally complex state.10

The term “turbulence” is often also applied to any such sys-
tem that appears random, regardless of whether or not there
is a forward energy cascade via vortex stretching down an
inertial range. This includes 3D simulations that leave the

physical dissipation range and much of the inertial range
unresolved. The resulting computational Re is often greatly
reduced relative to the actual Re in the modeled system, even
to the point that there is no discernible inertial range and the
computational Re is lower than the experimentally observed
critical Re. We will refer to such flows as weakly turbulent or
turbulentlike, and to the initiating transition as the weak tran-
sition.

Two-dimensional turbulence is distinct from its 3D
counterpart in that it lacks the vortex stretching and associ-
ated forward cascade that are central to 3D turbulence. There
is, however, a forward enstrophy cascade and an inverse en-
ergy cascade driven by vortex pairing and merger.15,16 Since
2D simulations are often used to model 3D turbulent sys-
tems, it is important in each case to consider whether or not
transition in the 2D system proceeds similarly to transition in
the analogous fully resolved 3D system. This will likely de-
pend on whether or not the latter is driven by instabilities
that are inherently 3Dssuch as the Widnall vortex ring
instability17d. In such cases, 2D calculations of course cannot
be counted on for predicting the transition time.

Finally, we note that the word turbulence is sometimes
used to describe the inverse cascade, driven by bubble com-
petition and merger in 3D as well as in 2D, that is character-
istic of nonlinear multimode RT evolution. This continual
generation of successively larger scales leads to acceleration
of the bubble front and explains the conjectured loss of ini-
tial conditions and establishment of a self-similar
regime.18–20Like transition to classical turbulence, transition
to the self-similar regime requires time, space, and a seed.
The seed spectrum must contain multiple, incommensurate
modes that are unstablesi.e., not so small that they are sta-
bilized by viscosity or other mechanismsd. Otherwise, scales
larger than those present in the initial conditions cannot be
generated and the asymptotic state will be characterized by a
stable, periodic array of bubbles. The characteristic wave-
length of the spectrum will shift towards the low−, end of
the initial spectrum, but will not pass beyond it. Noisesin-
cluding numericald present in the system can of course serve
as the required seed, eventually triggering the interaction and
breakup of spikes, but the transition will be delayed.6

The space requirement for transition to self-similar tur-
bulence is that the system or box size be at least several
times larger than the longest-wavelength significant modes
present in the initial conditions.19 There must also be suffi-
cient time for larger scale to be generated. If the space re-
quirement is not met and until the time condition is satisfied,
the scale-invariant bubble distribution21 will not be realized.

In blast-wave-driven systemssor other system with simi-
larly decaying drived, the effective box size can play the
same role as the physical box size in limiting the inverse
cascade.6,22 If the drive becomes very small at late times but
does not vanish, then thinking in terms of the effective box
size amounts to a transformation of the time requirement into
the spatial domain.
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III. EFFECT OF TRANSITION ON RT-INSTABILITY
GROWTH

The evolution of a RT-unstable interface is likely to be
similarly affected by transition to a classically turbulent or
turbulentlike 2D or 3D state. Our previous 2D simulations
agree with 2D and 3D simulations of others that such tran-
sitions leads to a higher degree of small-scale “molecular”
mixing and typically a reduction of the growth rate.6 We
have noted, however, that the velocity of the bubble front can
be increased if the transition leads to bubble competition in
what would otherwise be a stable, periodic array. In that
case, transition to a classically turbulent or turbulentlike state
provides the seed requirement for a subsequent transition to
quasi-self-similar turbulence. In our simulations, the 2D tran-
sition was found to occur when the dominant modes in the
spectrum reached a nonlinearity threshold of abouth/l
<5–6. For spectrally complex initial conditions, the 2D and
self-similar transitions occurred virtually simultaneously. In
single or few-mode systems, the self-similar transition some-
times occurred significantly later than the 2D transition.

While transition to a classically turbulent or turbulent-
like state leads to enhanced mixing that tends to reduce the
RT growth rates,23,24 transition to asquasi-dself-similar re-
gime leads to an inverse cascade that tends to enhance the
perturbation growth.25 When both transitions are coincident,
the overall effect on the growth rates depends on which ef-
fect wins out. Simulations in 2D and 3D tend to show an
initial growth rate reduction, especially for the spikes, but the
growth must eventually be enhanced if the system allows for
unlimited generation of larger structures with higher terminal
velocities.6,24

We now consider the question of coincidence among the
various transitions. It has been proposed that the mixing-
transition time in RT-unstable systems is limited by the vis-
cous growth of a shear layer along the spike stalks, and with
it the Liepmann–Taylor scale that sets the low−, end of the
inertial range.13,14 However, for broadband systems in a big
box at high Reynolds numbersi.e., seed and space require-
ments met for both classical and self-similar transitionsd, the
mixing transition is preceded by nearly coincident weak and
self-similar transitions. Once modes become nonlinear and
begin to couple and generate larger scales, marking transition
to self-similar turbulence, spikes soon reach their nonlinear-
ity interaction and breakup thresholds.6 These interactions
drive mix-layer-scale vortices, effectively short circuiting the
process whereby the low−, end of the inertial range is lim-
ited by the viscous growth of a shear layer. Even in 2D, spike
interaction and breakup due to Kelvin–HelmholtzsKHd ac-
tivity results in abrupt growth of small-scale vortices,
thereby temporarily mimicking full 3D turbulence character-
ized by vortex stretching and the associated transfer of en-
ergy down to the dissipative scales. Diffusive growth of the
shear layer will likely provide the time limitation for transi-
tion to classical turbulence only in single-mode or otherwise
spectrally simple systems.

When the mixing transition occurs in a system that has
already undergone transitions to weak and self-similar turbu-
lence, it can only cause a reduction of the growth rates by
effectively lowering the Atwood number within the mix
layer.

At low Re, the weak and self-similar transitions need not
be coincident. For example, consider that the inverse cascade
can occur at any Reynolds number, and in 2D as well as 3D.

FIG. 1. sad Target schematicsnot to scaled. sbd Variation in time of interface
velocity and deceleration.

FIG. 2. sad Initial spectral shapes used for the short-wavelength component
in the 3D calculations. Initial interface contour plots:sbd narrow Gaussian
sngd, scd 1/k2, sdd narrow Gaussian shorts plus 2D mode 4, andsed narrow-
Gaussian shorts plus mode 4 “egg crate.”
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Equivalently, the presence of an inverse cascade does not
imply strong interactions between spikes and the associated
increase in mixedness. The Reynolds number will eventually
become high if the inverse cascade is allowed to continue
long enoughsRe,l3/2g1/2 if h,ld, but the system can be
turbulent in the self-similar sense at lower Re as well.

Conversely, a system with simple modal content can ex-
hibit localized classical turbulence, including the mixing
transition, if the Reynolds number is high enough. For ex-
ample, in RM shock tube experiments by Jacobs and
co-workers,26 secondary instabilities lead to transition to
classical turbulence within the KH rollups of single-mode
spikes, while the large-scale single-mode structure remains
intact and there is no bubble competition. Even so, spike
interaction and breakup should increase the extent to which
areas of turbulence permeate the mix region.

IV. CALCULATION SETUP AND DESCRIPTION

The simulations are performed using the multiphysics
radiation hydrodynamics code Raptor, which uses a second-
order sin space and timed Godunov method applied to the
Euler equations.7 Raptor is parallelized and uses adaptive
mesh refinement, making it well suited to problems such as
ours that require high resolution in only a portion of the
computational domain. The calculation setup is nearly iden-
tical to our 2D simulations detailed elsewhere,6 and only an
abbreviated description will be given here. The only differ-
ence in the 3D calculations is that the initial spectra are now
typically 3D, and the nominal resolution is 256 cells across
the computational domain instead of 512. The highest level
of refinement is reserved for the interface region, and the
total number of cells grows with the mix width, eventually
reaching over 503106.

Our hypothetical targetfsee schematic in Fig. 1sadg con-
sists of a 150mm plastic pusher sectionsdensity 1.42 g/ccd
in contact with a cryogenic hydrogensdensity 0.086 g/ccd
2.2 mm payload section. An initial perturbation is imposed at
the pusher/payload interface, and the width the computa-
tional domain was typically 200mm. Open boundary condi-
tions are used in the parallelsto the shockd direction while
periodic conditions are specified in the transverse direction.

The end of the pusher opposite the perturbation is driven
with a 25 kJ, 1 ns laser pulse, which launches a strong planar
blast wave into the target. Planar experiments with these
drive properties will be possible within a few years as the
National Ignition Facility27 becomes operational. The simu-
lations are initiated with a high-velocity, heated, compressed
slab with characteristics taken from a laser-driven Lasnex28

simulation at the end of the laser pulse. Radiation is not
included in the Raptor calculations, as the material tempera-
tures are always below 100 eV. The Mach numbers of the
incident and transmitted blast waves are in the range of 10–
30, where the precise value depends on the degree to which
x-ray preheat can be controlledsthe incident Mach number
with no preheat would be about 60d. The resulting initial
interface speed is about 130mm/nsfsee Fig. 1sbdg. The post-
shock Atwood number remains nearly constant at about 0.7.

In this paper, we will present results from four high-

resolutions256 ppbd multimode runs and one low-resolution
s128 ppbd mode 4 “egg-crate” run fgiven by z0

=s2.5 mmdcossk4xdcossk4yd, wherek4 corresponds to the 1
=4 modeg. Here and throughout, the number of points per
box sppbd is the number of zones in the transverse direction.
Two of the high-resolution multimode runs include only a
short wavelength component with modes 20–80 and ampli-
tudes given by a narrow Gaussian in one case and a 1/k2

distribution in the otherfsee Fig. 2sadg. Each interface was
constructed by determining all modes in the annulus satisfy-
ing 20ø s,x

2+,y
2d1/2ø80 sfor integer ,x,yd and assigning to

each a random phase and randomized amplitude taken from
the prescribed distribution. Contour plots of the initial con-
ditions are shown in Figs. 2sbd and 2scd. The other two mul-
timode calculations include a simple long wavelength com-
ponent in addition to the narrow Gaussian short wavelength
componentfsee Figs. 2sdd and 2sedg. The long wavelength
component is either a single 2D mode 4 or the 3D mode 4
egg crate.

In estimating the Reynolds number in the calculations,
we take Rehstd;f2hstd /2Dxg4/3 where 2hstd is the mix width
andDx is the cell size. This give a time-dependent Reynolds
number that climbs as high as,2200 in the first 18 ns of a
40 ns experiment. This is comparable to the time-
independent Reynolds number based on the width of the
computational domain ReL=1626. If the perturbation ampli-
tude growth is similar in 2D and 3D, then we expect to find
Reh,4400 at 40 ns. The estimated Re number in the actual
experiments is of order 105, two orders of magnitude greater
than in the simulations.13 Typical of numerical simulations of
turbulent systems, the dissipative scales are much smaller
than the grid scale. We might expect, however, to qualita-
tively capture the effect of the turbulence on the large scales

FIG. 3. sColor onlined. Effect of dimensionality on single-mode growthsad
amplitudes andsbd averaged growth rate. The 3D growth rate initially satu-
rates at aboutÎ1.5 srather thanÎ2.5d times the 2D growth rate.scd Late-time
log density image from mode 4 “egg-carton” interface. Despite nonlinearity
a/l=7, regular single-scale structure persists along much of the length of
the spikes. However, a transition to turbulence appears to have occurred in
localized regions where shear layers from individual spikes have merged.
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if we adequately resolve the lower end of a self-similar in-
ertial range. According to Dimotakis, this scale can be esti-
mated by the Liepmann–Taylor scale, which he defines as
lLT =5LReh

−1/2 whereL is the driving scale.10 With L=2h, we
find for the experimentslLT <3–10mm. In the simulations,
there are then about 4–13 cells per Liepmann–Taylor scale,
which corresponds to mode 67–20. Thus we estimate that we
are beginning to resolve the upper end of the inertial range
with 256 ppb. This estimate is confirmed by spectra pre-
sented in Sec. V. We would feel much more comfortable with
another factor of 2–4 in resolution, but such calculations are
for now prohibitively time consuming.

V. SIMULATION RESULTS

A. Effect of dimensionality on single-mode growth

In Fig. 3, we compare the growth of the mode 4 egg-
crate with a single 2D mode 4. The 3D spikes and bubbles
have the same transverse scale as the 2D spikes and bubbles,
so, during the pretransition phase, the difference in their
growth rates should be set by the ratio of their drag

coefficients,25,29,30 u3D/u2D=ÎC2D/C3D<Î6p / s2p31.22d
<Î2.46<1.57. In fact, the 3D growth rate initially saturates
at aboutÎ1.5<1.2 times the 2D growth ratefsee Fig. 3sbdg,
possibly because the 3D bubbles appear to develop with a
slightly smaller diameter.

A late-time log density image from the mode 4 egg-
carton interface is shown in Fig. 3scd. Despite nonlinearity
a/l=7, regular single-scale structure persists along much of
the length of the spikes. However, a transition to turbulence
appears to have occurred in localized regions where shear
layers from individual spikes have merged. An x-ray radio-
graph at 25 ns from a 2D short-on-long Omega experiment31

shows indications of similar localized transitionsfsee Fig.
9sddg. Based on the time required for establishment of an
inertial range via the viscous growth of the Liepmann–Taylor
scale, Robeyet al. predict that the mixing transition is pos-
sible in the experiments after 17 ns.13 This scenario seems
appropriate in this spectrally simple system where there is no
weak transition early on.

FIG. 4. Perturbation amplitude and velocity histories from narrow Gaussian and 1/k2 short wavelength cases. Results from 2D calculationssresolved to
512 ppbd with the same spectral shapes are included for comparison.
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B. Evolution of short wavelength component

Perturbation amplitude and velocity histories from the
two high-resolution 3D short wavelength cases are shown in
Fig. 4. Results from 2D calculations with the same initial
spectral shapes are shown for comparison. In general, the
variation between the 3D calculations is slightly less than in
2D. This could be due at least in part to better statistics in the
identification of the spike and bubble positions.

At early times, 3D bubbles grow faster than 2D bubbles
of the same size. This is expected based on the reduced drag
of spherical relative to cylindrical bubbles. At about 5 ns,
however, the 3D bubble velocities begin to drop off rapidly,
falling to about half the 2D bubble velocity by 10 ns.

Within a few ns after shock transmission, a transition
begins from a state with little small-scale mixing to a highly-
mixed statefsee Fig. 5sadg. The degree of “mixedness” is
determined by using Youngs’s “molecular mix,” defined by32

U ;
E kfs1 − fdldz

E kfldzE k1 − fldz

, s1d

where f and 1−f are the volume fractions of the two fluids
and the angular brackets denote averaging over the trans-
verse direction. In the 2D calculations, this “2D mixing tran-
sition” is complete when the mixing parameter begins to
saturate at 4 ns at a level of about 0.7. As we noted previ-
ously, this is noticeably higher than the value of about 0.54
obtained by Youngs and Cooket al. from their 2D simula-
tions of classical, incompressible RT.23,24 In 3D, the mixing

parameter continues to increase until about 10 ns, when it
begins to saturate at a higher value of about 0.90. Again, this
is higher than the value of about 0.83 reported by Youngs
and Cooket al.23,24Three-dimensional Raptor simulations of
classical RT do not show this discrepancy, suggesting that it
results from RM, thermal conduction, decompression, or a
combination of these effects. We have verified that conduc-
tion is not responsible, and do not believe that RM is impor-
tant after the first few nanoseconds. This leaves decompres-
sion, which tends to increase the number of mixed zones at
material interfaces. We have not yet determined whether the
resulting increase in asymptotic mixedness is a physical or
numerical effect.

By about 10 ns, the simulation appears to have under-
gone a turbulent mixing transition. Indeed, at 90% mixed, it
is difficult to imagine what additional mixing transition
could possibly take place.

Two-dimensional density and velocity power spectra are
integrated over annuli inkx−ky space to give a 1D represen-
tation that depends only on the magnitude of the transverse
wave vector. Results from the 3D narrow-Gaussian case are
shown in Fig. 6. The density fluctuation is defined by
drszd=rszd−krszdl, where krszdl is the z-dependent trans-
verse density average. Each spectrum shown is the average
of severalstypically fourd 1D spectra evenly spaced through-
out the interior of the mix region. The inverse cascade to

FIG. 5. sColor onlined. sad Mixing parameter andsbd log density plots from
2D and 3D ng short-wavelength calculations.

FIG. 6. Time evolution ofsad density spectrark, sbd k5/3 rk, andscd turbulent
directed energy spectra. The appearance of an inertial range in the spectra
corresponds to the increase in mixedness apparent in Fig. 9sad.
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longer wavelengths is apparent in the density spectra. It pro-
ceeds rapidly at early times but slows dramatically by 20 ns,
indicating the approach of the asymptotic freeze-out stage.
This slowing is more apparent in 3D than in our earlier 2D
calculations, where vortex pairing and merger contributes to
the inverse cascade.

The fluctuating velocity components are defined in the
same way as the density fluctuation:dvx,y,zszd=vx,y,zszd
−kvx,y,zszdl where “k l” again denotes transverse average. An
inertial range with Kolmogorovk−5/3 scaling33 is visible by
about 10 ns in the density spectra from about mode 10 to
about mode 30 and in the parallel energy spectra from about
mode 10 out to mode 20. The appearance of an inertial range
in the transverse energy spectra is somewhat delayed relative
to the parallel component. This effect has been previously

noted in 3D classical RT simulations and attributed to the
secondary nature of the transverse flow.24 That an inertial
range appears at all is at first glance surprising considering
the relatively limited range of scales present in these simu-
lations and the lack of a sub-grid-scale model. The grid-
resolution Reynolds number, defined by ReDx;sh/Dxd4/3

,103, is an order of magnitude smaller than the integral-
scale Reynolds number observed by Dimotakis to mark the
mixing transition in many flows.10 It appears, however, that
the effective integral-scale Reynolds number is much higher
than the grid-resolution Reynolds number. Following the
scaling used by Dimotakis, we find that the ratio of the lower
end to the upper end of the inertial range is approximately
given by 0.1 Re1/4. Based on the inertial range observed in
the calculated spectra, this gives Re.105. As predicted by
Dimotakis, the appearance of the inertial range corresponds
with a turbulent mixing transition.

It is important to note that the 3D bubble velocity falls
off precisely while the 3D mixedness is increasing above the
value seen in the 2D calculations. This suggests that the in-
creased mixing in the bubble region has resulted in a lower
effective Atwood number and, consequently, a lower growth
rate.

In this spectrally complex system, the time to transition
does not seem to be limited by the viscous growth of a shear
layer as was suggested in the 3D single-mode calculation.
Instead, transition is triggered by strong interactions between
neighboring spikes. When the dominant spikes reach their
nonlinear breakdown thresholds, a significant fraction of
their energy is diverted into the transverse direction, result-
ing in forcing of mix-layer-scale vortices. Since this happens
earlier when the characteristic mode number in the spectrum
is higher, the transition here takes place earlier than it does in
the single-mode system despite the fact that the integral scale
sthe mix widthd is much smaller.

C. Effect of shorts on long

Two high-resolution, 3D, short on long simulations were
run. In each case, the short wavelength component was the
same 3D narrow Gaussian shown in Figs. 2sad and 2sbd and

FIG. 7. Perturbation amplitude histories from calculations with mode 4sm4d
in the initial conditions. Results from 2D calculations with the same spectral
shapes are included for comparison.

FIG. 8. Mixing in simulations with mode 4sm4d in the initial spectra. The
2D calculations show evidence of a weak transition at around 20 ns. The 3D
single-mode egg-carton perturbation also shows a transition at around 20 ns,
which is the same time that log density plots appear to show localized
mixing transitions. When 3D noise is present, the transition happens much
earlier sbetween 10 and 15 nsd.
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used in Fig. 5. The long-wavelength component was a 2D
mode 4 s2Dm4d in one case and a mode 4 “egg carton”
swhich we will call 3D mode 4 or 3Dm4d in the other. Am-
plitude histories from these calculations are shown in Fig. 7
along with results from 2Dm4, 3Dm4, and 2D narrow-
Gaussian shorts on a 2D mode 4s2Dm4+ngd. In each case,
the amplitude of mode 4 was 2.5mm sa/l=0.05d, and the
rms amplitude of the short-wavelength component was ten
times smaller.

The large reduction in bubble growth seen with the
short-wavelength distribution is not so apparent when mode
4 is presentfsee Fig. 7sbdg. We believe that this is because it
takes much longer for mode 4 to grow up to its nonlinear
interaction and breakdown thresholds. Consequently, the
mixing transition does not occur until between 10 and 15 ns
ssee Fig. 8d. This is consistent with the conclusion we made
based on our 2D calculations that the presence of a long-
wavelength mode with significant initial amplitude can delay
the transition to a turbulentlike state.

Log density slices through the evolving mix layer from
the 3Dm4+3Dng calculation are shown in Fig. 9sad. The
dominant mode 4 spikes begin to interact with one another
whena/l<2, or approximately one eddy turnover time after

the perturbation grows nonlinear and large vortices develop
at the spike tips. A very clear transition to a well-mixed state
has taken place by 18 ns, at which pointa/l<5 and 1–2
additional largest-scale eddy turnover times have elapsed.
These same nonlinear thresholds for spike interaction and
breakdown/transition were found in our 2D calculations.6

Thus it appears that, for complex initial spectra, transition in
blast-wave-driven systems proceeds similarly in 2D and 3D,
indicating that three-dimensional secondary instabilities do
not play a dominant role in initiating the transition. Again,
the mixing transition corresponds to the loss of transverse
spectral information and the appearance of an inertial range
with k−5/3 scalingfsee Figs. 10sad and 10sbdg.

The 2Dm4+3Dng evolves similarly except that the inte-
rior of the mix region remains anisotropic in the transverse
plane until the mixing transition has taken placefsee Figs.
9sbd, 10scd, and 10sddg. The post-transition mix width re-
mains somewhat smaller than with the egg-carton perturba-
tion, but the two flows are otherwise very difficult to distin-
guish.

Figure 9scd, which is a side-by-side comparison of
2Dm4+2Dng and 2Dm4+3Dng, provides a useful illustra-
tion of the importance of 3D effects. Early on, 3D effects are

FIG. 9. sColor onlined. Log density plots of the evolv-
ing mix layer from thesad 3Dm4+3Dng calculation and
sbd 2Dm4+3Dng calculations. Insad, the upper row of
slices is taken from a spike position, and the lower row
from a bubble position. Insbd, solid lines in parallel
slices denote approximate locations of transverse slices.
Spike interactionsbetween the mode 4 spikesd begins
when a/l<2. A very clear transition to a well-mixed
state has taken place by 18 ns, at which pointa/l<5.
In the 2D m4 case, the interior of the mix region re-
mains anisotropic in the transverse plane until the mix-
ing transition has taken place.scd Comparison with the
analogous 2D calculations2Dm4+2Dngd illustrates the
importance of 3D effects. The post-transition state de-
pends strongly on the dimensionality, but the process of
transition proceeds similarly in 2D and 3D.sdd X-ray
radiography from a 2D short-on-long Omega target
shows indications of transition at the same degree of
nonlinearity as predicted by the simulations.
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not important. In both cases, a transition at about 10 ns takes
the interface to a less ordered, more mixed state. The post-
transition state is very different in 2D and 3D, but the pro-
cess of transition is not. Radiography from the 2D short-on-
long experiment discussed in Ref. 31 shows evidence of
transition when the perturbation reaches the same degree of
nonlinearity as in the simulationsfsee Fig. 9sddg. The time at
which transition occurs is later in the experiment because the
Omega drive was five times less energetic than in the NIF
system.

VI. CONCLUSIONS

When an RT-unstable interface grows to several times its
characteristic wavelength, it can undergo a “weak transition”
to a disordered, apparently random state. This transition pro-
ceeds similarly in 3D and 2D systems with approximately
equal nonlinear spike interaction and breakdown thresholds.
In the latter case, it can lead to 2D turbulence with an inverse
energy cascade due to vortex pairing and merger. A separate
inverse cascade in 3D as well as 2D systems follows transi-
tion to the self-similar regime of bubble competition and
merger. In systems that are not spectrally simple, the weak
and self-similar transitions are likely to occur nearly simul-
taneously. In 3D systems, a subsequent mixing transition
leads to fully-developed classical turbulence if the Reynolds
number is high enough. Because the post-transition interface
region is more thoroughly mixed in 3D than in 2D, its
growth is more suppressed relative to the single-mode case.

Each of these transitions has time, space, and seed re-
quirements that must be met before it can occur. The time
requirement for the mixing transition may be given by a
viscous diffusion time for spectrally simple systems, but is
more likely to be set by a nonlinearity threshold for strong
spike interaction and breakdown when the initial conditions
are spectrally complex.

The weak, 2D, and mixing transitions lead to increased
small-scale mixing that reduces the instability growth rate at

least temporarily. Wherever it occurs, the self-similar transi-
tion will eventually give accelerated growth if it is allowed
to proceed unhindered by system size or drive time con-
straints. For interfaces that have already undergone a transi-
tion to self-similar growth, a subsequent mixing transition
can only inhibit future instability growth.

These conclusions are in large part born out by 2D and
3D Raptor calculations of planar blast-wave-driven systems.
The 3D calculations have not yet reached the freeze-out
stage, but do appear to exhibit a mixing transition despite a
grid-resolution Reynolds number only of order a thousand.
Whether or not the current resolution captures enough of the
inertial range that further increases in resolution will be un-
necessary remains for now an open question.

The simulations show sensitive dependence on the initial
conditions deep in the nonlinear post-transition phase of the
instability growth. Where the low mode 4 is included in the
initial conditions, the late-time mix width is much larger. It
could be argued that the boundary conditions are affecting
the growth at this stage, but that effect should be to inhibit
the growth rather than suppress it. Perhaps if the transverse
domain could be made arbitrarily large and the drive sus-
tained arbitrarily long, the shorts only and short-on-long sys-
tems would begin to look very similar. However, at 20 ns we
are already nearing the freeze-out stage, in which differences
in perturbation amplitude will be preserved at later times.

Thus three-dimensional effects do not add anything that
will counter the tendency of blast-wave-driven systems to
remember some aspects of the initial conditions. For super-
nova calculations, this means that an understanding of the
initial conditions is important for getting that late-time mix
width correct. Experiments should include similar initial
conditions in order to be truly relevant to supernova. In par-
ticular, spectrally simple initial conditions are of limited util-
ity since even the process by which they undergo transition
may be different than with more realistic multimode spectra.
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