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We have used molecular dynamics simulations based on a three-body potential with charge transfer
to generate nanoporous silica aerogels. Care was taken to reproduce the sol-gel condensation
reaction that forms the gel backbone as realistically as possible and to thereby produce credible gel
structures. The self-similarity of aerogel structures was investigated by evaluating their fractal
dimension from geometric correlations. For comparison, we have also generated porous silica
glasses by rupturing dense silica and computed their fractal dimension. The fractal dimension of the
porous silica structures was found to be process dependent. Finally, we have determined that the
effect of supercritical drying on the fractal nature of condensed silica gels is not appreciable. ©
2005 American Institute of Physics. fDOI: 10.1063/1.1857522g

I. INTRODUCTION

Over the last three decades, the sol-gel process has
emerged as a particularly attractive way of manufacturing
porous silica aerogels. The method makes it possible to con-
trol the geometry, porosity, and physical properties of the
resulting structures by careful manipulation of the chemistry
and processing parameters.1 The production of silica aerogels
by the sol-gel method involves the hydrolysis and condensa-
tion of silicon alkoxide precursors of the form SisORd4 sR is
usually an alkyl groupd. The reaction consists of three
stages:2 s1d hydrolysis, s2d alcohol condensation, and,s3d
water condensation. The most commonly used precursors are
tetramethoxysilane, SisOCH3d4 sTMOSd and tetraethoxysi-
lane, SisOCH2CH3d4 sTEOSd. In this paper we focus on
stages3d of the reaction—the water-producing condensation
of fully hydrolyzed precursor molecules. This stage involves
the polymerization of silicic acidfSisOHd4g monomers to
produce the actual gel structure, along with water molecules
as a byproduct.

The molecular dynamicssMDd simulation technique,
which has been effectively used to study sol-gel reactions,3–6

offers an important advantage over experimental investiga-
tions, in that it affords a detailed insight into the atomic-scale
phenomena that underlie the formation of a gel network. Un-
like quantum mechanical calculations, which provide the
most reliable description of atomic interactions, MD simula-
tions based on classical potentials let us model configura-
tions with sufficiently large number of atoms and for periods
of time that accommodate elementary reaction processes.

Some investigators have followed an alternative route to
the simulation of polymerization processes, i.e., through ki-
netic growth models of various sorts,7 including branching

models,8 functional group models,9 bicomponent models,10

nearest-neighbor models,11 and cluster-cluster aggregation
models.12–14 However these models involve a much higher
level of abstraction, and unlike those based on MD, cannot
explicitly account for the effects that result from changes in
the chemistry of constituents.

The work presented here is based on the MD approach,
using a reactive three-body interatomic potential that allows
for charge transfer. Most potentials described in the literature
are highly system specific, i.e., potential parameters may
need to be adjusted when switching from one structural
modification of a material to another. Our potential has been
successfully applied to simulating thea andb modifications
of cristobalite, quartz, and amorphous silica, with one and
the same set of parameters. This allowed us to investigate the
a-b phase transition in cristobalite and quartz by direct
simulation of the underlying process without preconception
of the resulting structures,15 and to thereby uncover the na-
ture of structural disorder inb cristobalite.16 We also discov-
ered the structural transitions responsible for the thermome-
chanical anomalies of silica glass17 and for its permanent
densification under high pressure.18 Here we show the appli-
cability of this potential to the simulation of material systems
in which structural changes are based on chemical reactions.

In addition to simulating the sol-gel reaction, we have
examined the structural features of our simulated aerogels.
The highly porous structure of these materials immediately
suggests fractalsself-similard scaling. Indeed, results from
small-angle x-ray scattering19 sSAXSd, neutron scattering20

sSANSd, and nuclear magnetic resonance21 sNMRd studies
support this hypothesis, and show that silica aerogels form
fractal structures over more than two orders of magnitude in
length.22 Unlike most computer simulations of fractal behav-
ior in aerogels in the literature, which rely on reaction-
limited, diffusion-limited, or ballistic cluster-cluster aggrega-adElectronic mail: kieffer@umich.edu
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tion models,23–25 we have studied the self-similarity of
aerogels generated by direct simulation of the chemical re-
actions that form these structures.

II. POTENTIAL MODEL AND COMPUTATIONS

Bonding in silicasSiO2d exhibits significant ionic char-
acter. Pauling’s electronegativity rule predicts the degree of
ionicity in the bond to be about 45%. This implies an extent
of charge localization and directional character in the bond.
It has been suggested that two-body central potentials are not
suitable for the simulation of systems with directional
bonding.26–28 Accordingly, we use a charge-transfer three-
body potential incorporating a Coulomb term, a Born–
Huggins–Mayer repulsive term,29 and a three-body term that
accounts for covalent interaction. For a single particle the
potential energy is given by

fi = qio
j=1

N
qj

4p«0r ij
+ o

j=1

NC

AijS1 +
zi

ni
+

zj

nj
Dessi+s j−ri j dri j

+ o
j=1

NC−1

o
k=j+1

NC

swi j + wikde−gi jksū − ui jkd2 −
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In the firstsCoulombd term,qi denotes the charge on the
ith particle,«0 is the permittivity of free space, andr ij , the
distance between theith and j th particles. The chargeqi is
evaluated asqi =qi

0−2o j=1
NCdi jzi j whereqi

0 is the charge of the
isolated atom,NC is the coordination number of the atom
when bonded,di j the amount of transferred charge, andzi j

=s1+esri j−adbd−1 is a function that modulates the transfer of
charge with interatomic distance,a and b being empirical
parameters. This provision of charge transfer allows for the
formation and rupture of bonds in the reaction. Electroneu-

trality is maintained by havingd ji =−di j . The long-range ef-
fects of the Coulomb interactions, resulting from their depen-
dence on the inverse ofr ij , are evaluated using the Ewald
summation approach.30,31

The remaining terms in Eq.s1d represent the Born–
Huggins–Mayer repulsive, the covalent attractive, and the
van der Waals attractive components of the atomic interac-
tions, in that order. The radial component of the covalent
term is given by wi j =−Aijs1+zi /ni +zj /njd
3ski j /hi jdzi je

li je−ri jhi j . zi andni denote the valence and num-
ber of outer shell electrons of speciesi. The factorsAij , si,
ri j , ki j , hi j , li j , Cij , and gi jk are all empirical parameters;
their numerical values are given in Table I. The charge-
transfer functionzi j is of pivotal importance in this interac-
tion potential. Not only does it control the redistribution of
charge between species upon forming or breaking a covalent
bond, it also modulates the strength of the covalent bond.
Similarly, the angular restoring force described by

e−gi jksū −ui jkd2, where ū is the equilibrium bond angle, enters
the covalent bonding term conditionally, i.e., it is not active
unless bonds between speciesi, j , andk exist. Equations1d
was used to model all pair and three-body interactions in-
volving Si, O, and H atoms, as indicated in Table I.

We simulated condensation reactions using an ensemble
of 512 silicic acid moleculessa total of 4608 particlesd dis-
persed randomly in a cubic simulation box, with periodic
boundary conditions applied. Some of the initial runs for
validation purposes were carried out on a smaller system of
105 silicic acid moleculess945 particlesd. The molecules are
relaxed at a temperature of 300 K to obtain a range of system
densities by adjustment of the simulation box—varying from
1.0 to 2.0 g/cm3 svitreous silica has a density of 2.2 g/cm3d.
These different configurations are then heated up to a tem-

TABLE I. Optimized potential parameters for Si, O, H interactions.

Element si smmd ni zi qi
0 secud

Si 0.101 8 +4 0
O 0.143 8 −2 0
H 0.085 2 +1 0

Pair Aij s10−19 Jd ri j snm−1d Cij s10−19 J nm6d hi j snm−1d ki j snm−1d eli j

Si–Si 0.1600 32.0000 0.00 0.00 32.0000 0.000
Si–O 0.1650 33.0000 0.00 3.20 33.0000 11.9499
Si–H 0.2150 31.8000 0.00 0.00 31.8000 0.000
O–O 0.2500 19.5000 0.00 0.00 19.5000 0.000
O–H 0.1000 34.5000 1.60E−06 14.00 34.5000 124.1338
H–H 0.1900 34.5000 0.00 0.00 34.5000 0.00

Charge transfer di j secud a snmd b snm−1d

Si–O −0.25 0.27 80.00
O–H 0.05 0.14 50.00

Triplet gi jk srad−2d ū sradd

O–Si–O 0.20 1.91
Si–O–Si 0.45 2.48
Si–O–H 0.08 2.48
H–O–H 0.10 1.83
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perature of 700 K to reproduce condensation reactions
within a reasonable simulation timesreactions show a steady
increase in rate from 300 to 700 Kd. Configurations at each
density are allowed to react for 300 ps at 700 K. The equa-
tions of motion are integrated using a time stepDt
=0.001 ps. Water molecules formed as a result of the con-
densation reaction are initially allowed to stay in the
system—thus the simulations resemble the actual production
of aerogels in autoclaves under high temperature and pres-
sure conditions with neutralpH. The procedure followed is
similar to that of Garofalini and Martin.3

III. RESULTS AND DISCUSSION

We begin by describing our observations on reaction rate
behaviors, i.e., the time dependence of the degree of reaction,
and its variation with temperature. The condensation reaction
produces a polymerized silica network and water molecules.
Figure 1 shows the degrees of formation of bridging siloxane
sSi–O–Sid bonds and water. It is evident that siloxane bond
formation at 700 KfFig. 1sadg is virtually independent of
system density—all configurations in the range
1.0–2.0 g/cm3 have attained 83–87% polymerization by
300 pssthe degree of reaction is measured as the ratio of the
number of siloxane bonds actually formed at a given time to
the number stoichiometrically expected for a completed re-
actiond. Water formation fFig. 1sbdg shows a somewhat
greater dependence on density and attains completion rates
of 72–83% in the same time span—high-density configura-

tions being more reactive. Strictly speaking, it is not neces-
sary to have the water molecules form to get a silica network
structure—one merely needs hydrogen atoms and hydroxyl
sOHd groups to dissociate from the silicic acid monomers. It
is therefore not surprising to observe different density depen-
dences of the formation of polymer network and water mol-
ecules, even though the two processes are not independent of
each other.

The temperature dependence of reaction rates was tested
for the lowest-density configurations1.0 g/cm3d. Figure 2
shows the fraction of polymer and water formed after
50 ps—we see that the degree of formation for both Si–O–Si
and H2O rises steeply with temperature.sThe data in Fig. 2
reflects the increase in reaction kinetics, not the changes in
equilibrium values of the degree of networking as a function
of temperature.d

Both phenomenological models32 and MD simulation
results3–6 have indicated that the condensation reaction
mechanism involves the dissociation of hydrogen ions from
silicic acid monomers, followed by the formation of penta-
coordinated silicon atoms and the rupture of a long Si–O
back bond to produce a dimer. We observe a similar process
in our simulations. We have used a number of criteria to
verify the realism of the simulated gel structures. Of particu-
lar interest is the structural evolution of the silica polymer
network. We find in our simulations that the initial stages of
condensation are marked by the formation of linear chains—
while closed rings are visible in the later stages of reaction.
This observation is borne out by experimental results from
NMR data and quantum calculations.33 The simulated net-
works exhibit a wide range of ring sizes, as one would expect
for a fractal structure. Over the time scales covered by our
simulations, the nature of the Si–O network formed strongly
depends on the density of the precursor solution. At low
densitiess1.0–1.2 g/cm3d the condensed structures are char-
acterized by separate clusters of molecules; while for denser
configurationss1.4–2.0 g/cm3d, a single percolating cluster
spanning the simulation box forms. We can also discern lo-
calized aggregates of atoms measuring on average between
10 and 20 Å, especially in the lowest-density configurations.
However, these structural features exhibit a range of sizes,
and at this point it is not clear how the constraint in the

FIG. 1. sad Degree of reaction for bridging siloxanesSi–O–Sid bonds;sbd
degree of reaction for water formationssystem temperature=700 Kd.

FIG. 2. Degree of polymer and water formation vs temperaturessimulation
time=50 ps, system density=1.0 g/cm3d.
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overall dimensions of our simulation ensembless,50 Åd
may affect the development of such “primary particles.”34

The time evolution ofQn silicon speciesswhere the sub-
script n indicates the number of bridging oxygen atoms at-
tached to a given Si atomd exhibits interesting features. Fig-
ure 3 shows this evolution for the 1.0 g/cm3 configuration.
As might be expected, the number ofQ0 species decreases
almost uniformly with time. The evolution ofQ1 species
shows a peak at around 10 ps, followed in time by a peak in
the number ofQ2 species. The number ofQ3 species peaks
even later; while that ofQ4 species, expectedly, increases
monotonously. This behavior is remarkably similar to results
from the MD simulations of Garofalini and Martin,3 includ-
ing the location of theQ1 peak. These authors also point out
the qualitative similarities of this behavior to data obtained
from NMR investigations.35 It is worth noting here that a
NMR study of the sol-gel polymerization of TEOS at 21 °C
found the degree of condensation, defined in terms of the
relative concentrations ofQn Si species, to saturate at a value
of ,84%.36 This is a close match to the 83–87% completion
observed in our simulations.

We have plotted pair correlation functionssPCFsd to ex-
amine the short-range order characteristics of the simulated
structures at the end of the polymerization process. The Si–O
PCF fFig. 4sadg shows first-neighbor and second-neighbor
peaks at,0.15 and,0.4 nm respectively, while the O–O
PCF fFig. 4sbdg has a first peak at,0.25 nm corresponding
to the side length of a tetrahedral unit that characterizes the
silica structure, followed by a second one at,0.5 nm, which
marks the distance between two far corners of corner-sharing
tetrahedra. All of these values closely match x-ray diffraction
measures for melt-derived silica glass and silica gels pro-
duced by the sol-gel method.37

Finally, we examine to what extent our simulated aero-
gels exhibit fractal geometry, and how this characteristic
compares to a number of experimental studies.19–22 At gel
densities comparable to our simulations, the range of self-
similarity typically observed in experiments is about 10 Å
, r ,50 Å sdensity=0.65 g/cm3d.38 Our simulations pro-
duced percolating porous silica structures extending to about
36–42 Å, with gel backbone densities ranging from
0.66 to 1.24 g/cm3. sWe exclude water molecules from den-

sity calculations from this point onwards, so as to enable
comparison with experiments on dried aerogels.d These
structures are thus large enough for observation of fractal
scaling behavior. To calculate the fractal dimension, we fol-
lowed the methodology used by Kieffer and Angell,39 who
derived the following expression for the fractal dimensiondf

of a simulated structure:

df =
d ln Nsrd

d ln r
. s2d

Here,Nsrd is the number of ions surrounding a central ion at
distancer—essentially the space integral of the pair correla-
tion function. Figure 5 shows representative log-log plots of
NSi–Sisrd vs r at various densitiesfonly the smooth portions
of the curves beyond the near-neighbor peaks are shown: this
is where Eq.s2d appliesg. The fractal dimensiondf is evalu-
ated as the slope of these plotsswe have considered Si ions
only in this calculationd and is shown plotted against density
in the inset to Fig. 5. All values ofdf lie between 2.0 and
3.0—thereby confirming that the structures are indeed frac-
tal.

Having established the fractal nature of our simulated
gels, we now want to determine whether highly porous silica
at a given density has a unique structure or whether it de-
pends on the assembly process. To this end we compare the
structural features of configurations prepared by simulated
gelation reactions described above with those of porous
silica produced by isotropically rupturing a dense glass. Spe-

FIG. 3. Number ofQn silicon species vs simulation timessystem density
=1.0 g/cm3; the subscriptn indicates the number of bridging oxygen atoms
attached to a given Si atomd.

FIG. 4. sad Si–O pair correlation function;sbd O–O pair correlation function
at end of polymerization processssystem density=1.0 g/cm3d.
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cifically, we are interested in how the intermediate-range or-
der characteristics, as reflected in the fractal dimension
evaluated fromNSi–Sisrd, might differ in the two cases. Fur-
thermore, by monitoring the fractal dimension, we can assess
the structural changes that occur during the density spring-
back as a result of drying the hydrogelsspolymerized gel
before water extractiond or releasing the tensile stress, re-
spectively.

To create ruptured silica structures, a configuration of
512 silicon atomssas in the condensation reaction simula-
tionsd and 1024 oxygen atoms was melted at an elevated
temperature of 6000 K, and then quenched to room tempera-
ture yielding a glass with a density of 2.2 g/cm3. sThere are
no hydrogen atoms in this model.d The simulation box was
then uniformly expanded to reduce the density in steps of
0.2 g/cm3 till we obtained a system density of 0.2 g/cm3.
The start and end configurations, along with a couple of in-
termediate steps, are illustrated in Figs. 6sad–6sdd. As before,
the fractal dimensiondf is calculated from theNSi–Sisrd vs r
curves.

The solid lines in Fig. 7 showdf plotted against density
for both the reaction-generated and ruptured structures be-
fore they are relaxed. For the porous structures formed by
rupture,df is seen to remain leveled at 3.0 until the tensile
limit of the glass is reached at about 1.6 g/cm3 and then drop
smoothly from 3.0 to about 2.0—the structures becoming
more tenuous ssmaller dfd as density is lowered to
0.2 g/cm3. The curve is comparable to results from previous
simulations, even though these earlier studies were carried
out using a different potential.39 The reaction-generated con-
figurations, which cover a smaller density range, have fractal
dimensions that are consistently lower than those of the rup-

FIG. 5. Calculation of fractal dimension from slope ofNSi–Sisrd vs r; inset,
fractal dimension vs density.

FIG. 6. Two-dimensionals2Dd projections of structures corresponding to three different steps in expansion of silica glass from 2.2 to 0.2 g/cm3 sruptured
systemd: sad 2.2 g/cm3 sbefore expansiond; sbd 1.4 g/cm3; scd 0.8 g/cm3; sdd 0.2 g/cm3. To better reveal the network structure these images only show the
Si–O bonds. Si atoms are located at the vertices of four converging bonds and O atoms at the kinks in between two vertices.
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tured glass at comparable densities. This indicates fundamen-
tal structural differences between the silica gel produced by
sol-gel condensation and porous structures that may result
from mechanically ruptured glass. Apparently, there are
some basic differences in the way porosity is generated in the
two cases: in the reacted system, the pores result from the
need to accommodate the water molecules that form during
condensation, whereas in the ruptured system pores open up
because of the inability of the system to maintain cohesion in
all dimensions. In one case the system deals with an excess
of a secondary phaseswaterd, in the other with a lack of
primary phasespolymerized geld. Hence, the governing force
balance in the two situations is different. While for both sys-
tems the silicon-oxygen bonds at the internal pore surfaces
are under tension upon formation of the fractal networksthis
will become obvious in the following discussiond, in case of
the reaction-generated structures this tension is induced by
the pressure from the condensation of water within the pores,
whereas in the case of the ruptured structures a tensile stress
is externally applied to the system.

Interestingly, while in both cases,df lies between 2.0 and
3.0, which confirms fractal scaling behavior, the two-phased
system produces a gel structure with a lower value ofdf for
any given density than the ruptured system. Recall that frac-
tality implies self-similarity of structural features within the
range over which fractal scaling applies. This means that in
this regime pores of all sizes exist and that they have similar
geometry irrespective of their size. Hence, the fact that the
fractal dimension of the reaction-generated structure is lower
than that of the ruptured structure reveals another interesting
detail about the process by which these structures develop.
Fracture in the latter case is initiated at a particular site in the
structure, i.e., the weakest link. A fissure is nucleated at this
site and continues to grow as the configuration is strained.
Other voids nucleate subsequently and in terms of size these
evolve with delay, never catching up to the initial crevice.
This explains the distribution in void sizes. Furthermore,
subsequent fissures tend to emanate from the extremities of
existing voids, as it occurs during the bifurcation of cracks.
The overall progression of void formation can best be de-
scribed as a nucleation and growth process, and the majority
of the pore volume can be attributed to the void at which the
failure of the structure initiated.39

Conversely, condensation reactions occur sporadically.
The locations of consecutive reactions are spatially uncorre-
lated, as would be expected of a reaction-limited aggrega-
tion. With time, pockets form to hold the condensed water,
and they have sizes that are independent of each other. Ap-
parently, there is no preferred size for such pores and they
have similar shape. This results in an even pore size distri-
bution and may explain the lower fractal dimension. In spite
of the differences in the actual values ofdf, it is noteworthy
that the slopes of the fractal dimension vs density plots in
Fig. 7 are comparable for the reaction-generated and rup-
tured systems. Seemingly, the magnitude of the fractal di-
mension of a gel backbone depends on the process by which
it is formed. However, the relative change indf that is asso-
ciated with the redistribution of matter upon changing the
density is not affected by the synthesis process, possibly be-
cause it is a measure that depends on the way structural
building blocks can connect to each other to span space.

Aerogels are prepared in the laboratory by removing the
pore fluid from hydrogels under supercritical conditions.
Such conditions are necessary to eliminate the formation of a
meniscus in the fluid at the pore mouths, because the tensile
stress exerted by the meniscus invariably causes the gel
backbone to collapse. Even when carrying out the fluid re-
moval under supercritical conditions, a small amount of
shrinkage is often observed during this procedure, and it is
not entirely clear how this shrinkage might affect the fractal
dimension of the gel structure. In order to compare the char-
acteristics of our simulated gels to those of experimental
aerogels, and in order to assess the structural changes that
may occur during supercritical drying, we need to remove
the condensed water molecules and allow the structures to
relax to a stable state under normal atmospheric conditions
si.e., approximately zero pressured.

We followed two approaches to simulate the interface-
free fluid removal: one is instantaneous and the other one
gradual. In the first approach, we removed the water mol-
ecules from the reacted system in a one-step extraction pro-
cess. Then the system was relaxed to zero pressure with a
10 ps constant-pressure MD run, followed by a 5 ps
constant-volume run and a second constant-pressure run for
10 ps, to ensure a stable structure. The ruptured glass was
subjected to a similar three-step relaxation procedure for
comparison purposes. The results are shown by the dotted
lines in Fig. 7. As we can see, there is a considerable spring-
back associated with the ruptured glasses—they are rela-
tively unstable as formedsunder large negative pressuresd,
and coil back to more dense configurations with higher frac-
tal dimension as the tensile stress is released. The lower the
initial density, the larger is the extent of spring-back. By
comparison, the reaction-generated gel structures are more
stable and robust to relaxation—the spring-back is much
lower in this case.

However, the one-step extraction of water from the re-
acted system described above may be a rather crude approxi-
mation of supercritical drying. A better model of the process
would be a gradual removal of water from the simulation
box, accompanied by a simultaneous relaxation to zero pres-
sure. The passage of a curvature-free liquid-vapor interface

FIG. 7. Effect of relaxation on fractal dimension of porous silica for reacted
and ruptured systems.
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through the pores of our simulated structure was imple-
mented by successive removal of condensed water molecules
from the top one-fourth of the simulation box, then from the
top half, and so on, continuing progressively downwards un-
til the system was totally free of waterfsee Figs. 8sad–8sddg.
Each stage of water removal was followed by a three-step
relaxation to zero pressure, as previously described. During
this relaxation, thermal motion of water molecules rapidly
created a diffused liquid-vapor interface. Figure 9 compares
the effects of the two different “drying” procedures—the cor-
responding configurations are numbered for identification.
As can be seen from the plots, the gradual drying process has
a much smaller effect both on the density and the fractal
dimension than the one-step water extraction.

Plots of scattering intensity obtained from SANS experi-
ments on neutrally reacted and dried silica aerogels yield a
fractal dimension df of ,2.4 over the density range
0.11–0.36 g/cm3.40 An identical measure has been reported
from SAXS studies.41 We observe approximately the same
fractal dimensions for simulated structures of somewhat
higher densities; i.e.,df subsequent to gradual drying varies
from 2.2 to 2.63sFig. 9d, corresponding to gel densities of
0.7–1.2 g/cm3. As has been pointed out in the literature

sRef. 2, p. 535d, it is difficult to ascertain whether the fractal
dimension measured on a dried aerogel truly corresponds to
that of the original hydrogel structure as formed at the gela-
tion point. Our simulations indicate that this difference is not
appreciable, i.e., the shrinkage involved in the drying process
does not have a significant effect on the value ofdf.

FIG. 8. sad–sdd 2D projections of structures corresponding to four different stages in gradual extraction of water molecules from reacted gel. The silica
network bonds are shown as dark lines, as in Fig. 6. Water molecules can be identified as a kinked pair of bonds with two light-colored beads at the extremities
and hydroxyl groups as one half of these structures.

FIG. 9. Effect of drying procedure on fractal dimension of reacted gel.
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IV. CONCLUSIONS

We have successfully simulated the sol-gel condensation
process with a reactive three-body charge-transfer MD po-
tential to obtain polymerized silica aerogels. From various
measures, the structures are seen to be realistic as compared
with experiments. Comparison of their fractal dimensiondf

with that of a porous silica structure generated by rupture of
dense silica reveals thatdf is not uniquely related to the gel
backbone density, and consequently the degree of porosity of
a structure, but that this dimension depends on the process by
which the structure is created. The supercritical drying pro-
cess is modeled both by a one-step and a gradual removal of
water molecules followed by the relaxation of the aerogels to
zero pressure. The final fractal dimension of the gels is seen
to vary between 2.2 and 2.63—a close match with the ex-
perimentally observed value of 2.4 for neutrally reacted gels.
Our simulations show that the drying process has a negli-
gible effect on the fractal nature of the silica structures
formed at the gelation point.
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