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We employ an adaptive parameter control technique based on detection of phase/lag synchrony
between the elements of the system to dynamically modify the structure of a network of noniden-
tical, coupled Rössler oscillators. Two processes are simulated: adaptation, under which the initially
different properties of the units converge, and rewiring, in which clusters of interconnected ele-
ments are formed based on the temporal correlations. We show how those processes lead to differ-
ent network structures and investigate their optimal characteristics from the point of view of result-
ing network properties. © 2006 American Institute of Physics. �DOI: 10.1063/1.2189972�
e applied two control schemes based on the detection of
emporal interdependencies on a network of chaotic os-
illators and evaluate the self-organization on the net-
ork structure. The first scheme is the parameter adap-

ive control to which we refer to as adaptation.
daptation acts through the regularity in relative time

ag (lag synchrony) between pairs of coupled oscillators
o alter their initially different frequencies in order to
btain their convergence. The second scheme, which we
efer to as rewiring, modifies the network structure (to-
ology of connections as well as their relative strength).
ewiring strengthens or weakens coupling between any
air of oscillators depending on the asymmetrical prop-
rties of lag synchrony modeled roughly after biological
rocesses of long term potentiation and depression of the
ynapses. We find that the relative speeds of the two con-
rol processes lead to different final networks, ranging in
oupling strength and density of clustering, and show the
xistence of a set of relative control speeds that optimize
oupling stability. Also, using an asymmetric form of re-
iring where strengthening and weakening rates are dif-

erent, we show that a set of asymmetric rates optimize
he density of clustering while retaining other network
eatures, such as cluster size and selectivity.

. INTRODUCTION

Recently a lot of research has been focused on the role
f network structure in network function and the existence of
he feedback between the two. The network topologies were
tudied extensively in disease spread,1,2 authors’ citations,3,4

eural networks,5 and other types of social, biological, and
rtificial interactions. Other research has examined the dy-
amics of network characteristics6,7 and of dynamical sys-
ems acting over networks.8–11

In neuronal systems network plasticity - involving
odulatory changes taking place on individual neurons, as
ell as those underlying modifications of network connectiv-

ty -is thought to underlie learning and memory formation. It

as been shown experimentally that the firing patterns of

054-1500/2006/16�2�/023106/8/$23.00 16, 02310
individual neurons can be changed by the alteration of the
ionic currents, a process that may occur depending on the
behavioral state �i.e., network dynamics� of an animal.12 On
the other hand, the synaptic coupling of some neuronal
classes has been shown to increase or decrease depending on
the temporal interdependencies of their relative firing pat-
terns. Long term potentiation �LTP� strengthens synapses
from the leading to the following neuron when the latter fires
consistently within a short ��100 ms� time window after the
former. Long term depression �LTD� on the other hand de-
creases synaptic efficacy if the “follower” neuron fires before
its supposed triggering neuron.13–15 Both types of neural
plasticity, adaptation of individual cells or ensembles and
synaptic modifications, will in turn modify the network dy-
namics.

Here, we investigate how temporal pattern formation
may interact with network topology. We study a generic net-
work of coupled, nonidentical Rössler oscillators that incor-
porate two basic mechanisms of activity dependent plastic-
ity: activity dependent adaptation �implemented as parameter
adaptive control16–18� where the internal dynamical charac-
teristics of the coupled oscillators are modified by the prop-
erties of the temporal interactions with other units, and net-
work rewiring mechanisms that are taken from
neurophysiology and are simulating activity dependent syn-
aptic modifications �ADSM�. The evolving temporal pattern-
ing in the system is monitored through an adaptive measure
that we have developed earlier19 that monitors temporal
phase/lag interdependence between the pairs of the oscilla-
tors. We have already shown that such a measure provides
means to obtain parameter adaptive control in the systems of
two coupled, non-identical, non-linear oscillators.20

We show that the detection of the structure of temporal
interdependencies can successfully drive network restructur-
ing. In the case when only adaptation is present, the elements
of the network adapt to the same value of their natural fre-
quency forming a network of identical elements. We found
that this adaptation is much faster and more robust with the

networks having global connectivity as compared to the net-
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http://dx.doi.org/10.1063/1.2189972
http://dx.doi.org/10.1063/1.2189972


w
p
t
f
l
s
n
l
a
c
H
h
t
a
w

I

t

w
p
a
�
c
t
d
i
b

c
c
a
s
t
s
c
b
s
s

A

r
t
e
v
m
a
t
�

023106-2 J. Waddell and M. Zochowski Chaos 16, 023106 �2006�
orks with only local connections. On the other hand, the
resence of only the rewiring mechanism promotes forma-
ion of small directional clusters with connections leading
rom elements of higher frequency to the elements with
ower frequency. We have also found that asymmetry in the
peed of rewiring of network connections leads to an optimal
etwork structure, where the cluster formation is highly se-
ective but the clusters remain dense. Lastly, interaction of
daptation and rewiring mechanisms leads to formation of
lusters with feedback connections between adapted nodes.
ere we show that the interplay of these two processes may
ave constructive as well as destructive results; for a range of
he relative values of rates for the two processes the networks
re effectively abolished, while other ranges result in net-
orks with various structures.

I. MODELED NETWORK

The network consists of N nonidentical Rössler oscilla-
ors described by the following equations:

xi = − �iyi − zi,

yi = �ixi + ayi + �
j=1

N

�ij�yj − yi� , �1�

zi = b + �xi − c�zi,

here the parameters �a ,b ,c�= �0.3,0.2,10� are the Rössler
arameters, �i= �1,1.1��0 is the frequency of oscillator i,
nd �ij is the coupling strength from j to i. The parameter

0=1 sets the relative time scale of the dynamics. The initial
oupling is assigned on a 2D toroidal lattice with a connec-
ivity radius r=1 or r=2 and is drawn from a uniform, ran-
om distribution over �0.3,0.5�. The oscillators are initially
ntegrated for 20 000 steps �with a step size �t=0.05 1/�0�
efore either control process is initiated.

It has been established that synchrony in a system of
oupled oscillators can be divided into three major classes:
omplete synchronization if the coupled units are identical
nd their trajectories are fully synchronized,21,22 generalized
ynchronization if there is a functional dependence between
he temporal dynamics of the coupled units,23,24 and phase
ynchronization, appearing in the systems of weakly
oupled nonidentical oscillators when the phases are locked
ut amplitudes of the trajectories are uncorrelated.25–27 Lag
ynchrony is usually established as a transition from phase
ynchrony for stronger coupling regimes.28

. Adaptive measure of temporal ordering

Causal entropy �CE� �Ref. 19� is an asymmetric, time-
esolved measure of the regularity of time or phase lag be-
ween two series of discrete events. Here the timing of an
vent is defined as a time at which trajectory of the indi-
idual oscillator crosses Poincaré section z=1. For time lag
easurement, the CEij is calculated from a histogram of �tij,
series of interevent intervals between an event generated by

he ith oscillator and the preceding event on the jth oscillator

see Fig. 1�A��. Conversely, CE ji is based on the distribution
of interevent durations calculated between an event that was
generated by the jth oscillator and the preceding event gen-
erated by the ith oscillator.

Specifically, after each event a of i, �tij
a is obtained, the

corresponding bin of distribution Pij is updated by adding a
value �P, after which the entire histogram is normalized by
�1+�P�. Thus Pij is the estimated probability density of the
interevent intervals of the ith oscillator following the jth. The
normalization attenuates bins that have not been updated
over the course of n events by �1+�P�−n. This allows the

FIG. 1. �A� The example of time intervals used to form the histogram Pij.
Only the interval from the most recent event of j is used for �tij. �B� The
difference of causal entropy, �CED=CE12−CE21�, between two mutually
coupled Rössler oscillators with differing frequencies. Oscillator 1 has �
=1.05, and the frequency of oscillator 2 is varied between �� �1.00,1.10�.
The causal entropy successfully identifies the temporal ordering between the
pair. �C–E� Examples of three pairs of Rössler oscillators in different dy-
namical regimes. Each shows: a close-up segment of z�t� for both oscilla-
tors, with arrows indicating the interevent intervals used in the CE calcula-
tion �i�; a pair of histograms of P developed from the intervals �ii�,
generated at the end of the integration; the causal entropy difference �CED�
and sum �CES� calculated from the histograms �iii�. �C� Example of a pair
of uncorrelated �uncoupled� oscillators, both with �=1. The interevent in-
tervals are irregular for both oscillators �panels Ci and Cii�. This results in a
small CED, but a large CES �Ciii�. �D� Example of a coupled pair of lag-
synchronized oscillators, with different frequencies ��12=�21=0.5,�1

=1 ,�2=1.2�. Oscillator 1 follows 2 regularly �panels Di and Dii�, while 2
does not follow 1 with a fixed pattern. This results in a large CED and a
CES of similar magnitude to the CED �panel Diii�. �E� Example of a pair of
completely synchronized oscillators, with �12=�21=0.5,�1=�2=1.0. Both
oscillators fire simultaneously �panel Ei and Eii; note that in Ei, the gray line
depicting trajectory of oscillator 2 is dashed such that the trajectory of
oscillator 1 may be viewed beneath�. This leads to both a small CED and a
small CES �panel Eiii�.
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023106-3 Dynamic network reorganization Chaos 16, 023106 �2006�
easure to automatically adapt to the statistics of most re-
ent interevent intervals. The Shannon entropy is then calcu-
ated

CEij�t� = − �
k

Pijk � log�Pijk� ,

here k indexes the bins of the histogram. Since CEij

CE ji, the CE’s provide asymmetric measurement of tem-
oral interdependence of the events generated by both oscil-
ators. A low CEij indicates that an event on the ith oscillator
ppears systematically after an event on the jth oscillator
ith a highly regular time lag, whereas a high value of CEij

ndicates large variability in the event pattern on the oscilla-
or i with respect to the events on oscillator j, indicating lack
f temporal interlocking between the two oscillators. Explic-
tly, the possible situations that can be detected by the CE
easurement are:

CEij �CE ji�0. This indicates that the interevent distribu-
tions of both oscillators are fairly wide and thus the trajec-
tories of the oscillators do not reveal any temporal interde-
pendencies, implying lack of direct or indirect coupling
�see Fig. 1�C��.
CEij �0 and CE ji�0. This implies that the ijth distribu-
tion is narrow whereas the jith distribution is wide, indi-
cating persistent temporal lag of the trajectory of the ith
oscillator relative to the trajectory of the jth oscillator �see
Fig. 1�D��.
CEij �0 and CE ji�0. This implies the reverse situation
persistent temporal lag of the trajectory of the jth oscillator
relative to the trajectory of the ith oscillator.
CEij �CE ji�0. Both distributions are peaked. This usu-
ally implies complete synchronization of both oscillators
�see Fig. 1�E��. The last part of this condition, both entro-
pies equal to zero, is relaxed in the presence of noise �see
Ref. 19�. The other possibility is that both processes are
periodic and then the temporal interdependence cannot be
determined solely based on lag variability.

o detect asymmetry in the temporal interdependencies be-
ween neural activities we monitor the causal entropy differ-
nce, CEDij =CEij −CE ji. This measures the temporal order-
ng of the pair of oscillators �Fig. 1�B��.

. Modulation by adaptation and rewiring based
n temporal patterning in the network

We model two types of network structure modifications
ccurring based on the temporal interdependence between
he oscillators: adaptation, which is implemented as param-
ter adaptive control and modulates the frequency of the os-
illators, and rewiring, which controls formation �and/or
trengthening� and abolition �and/or weakening� of the cou-
ling between the oscillators.
Adaptation is governed by
��i = �
j=1,ki,in

��

ki,in
�CE ji − CEij� ,

�2�
�i�t + dt� = �i�t� + ��i,

with �i constrained to the range �1, 1.1�; ki,in is the number
of connections into the ith oscillator; the sum occurs over
oscillators directly coupled to the ith oscillator. The adapta-
tion speed parameter, ��, governs the rate at which adapta-
tion occurs. In an illustrative example, consider two oscilla-
tors i and j that are mutually coupled to only one another,
having frequencies such that �i�� j. In this case, i will tend
to fire shortly before j, leading to a low CE ji and a high CE ji.
Adaptation will cause �i to decrease and � j to increase until
such time as the two completely synchronize, which occurs
only when the frequencies become essentially identical.

Rewiring is governed by a rule strengthening couplings
for which strong lag synchronization occurs and weakening
them otherwise. It is given by the following:

��ij =
��

N
�CEthreshold − CEij� ,

�3�
�ij�t + dt� = �ij�t� + ��ij ,

where �� is the rewiring speed parameter, CEthreshold=0.5 is
threshold value at which the switch from coupling strength-
ening to weakening takes place and N is the number of os-
cillators in the network. The coupling is constrained so that
�ij � �0,0.5�. If a coupling converges to zero, the coupling is
destroyed. Conversely, if coupling does not exist, it is created
when �� is positive. The rewiring term is evaluated between
all pairs of oscillators, regardless of the current existence of
coupling. Studies of similar Hebbian rules on identical cha-
otic oscillators result in a transformation from regular to
small world networks.29

III. MEASUREMENT OF INTERACTION BETWEEN
NETWORK TOPOLOGY AND DYNAMICS

The simulations are divided into three groups. In the first
set of simulations we measure properties of adaptation of
individual neurons as a function of network connectivity and
network topology. In the second set we measure effects of
temporal patterning on network rewiring. Finally, in the third
set of experiments we combine the two mechanisms together.

To determine the progress of adaptation in the network
we measure either the time it takes for adaptation to com-
plete or the resulting variance of the adapted oscillator fre-
quencies after a given period of simulation time.

To measure the extent of adaptation for the combined
case, where both the adaptation and network rewiring is
present, we calculate local variance of oscillator frequency
amongst members of formed clusters.

To characterize the network topology we measure the
maximum size of the clusters, and the average weighted tran-
sitivity amongst the oscillators. Transitivity, also known as
the clustering coefficient, is defined as the number of sub-
clusters formed from triangles of coupled oscillators in a

network divided by the number of possible oscillator pairs
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ithin this cluster �with proper constants such that the maxi-
um is 1 for a completely connected cluster�. Thus it can be

nderstood as the probability, given that two oscillators both
ave couplings to a shared third oscillator, that there is a
oupling between them. The transitivity, averaged over the
hole network, measures the tendency for clusters to exist

nd to be densely intraconnected.
We modified the standard definition of clustering coeffi-

ient for weighted connection to be

WCC1�	� = �
i,j�G1�	�

�ij

�maxk�k − 1�
,

here the sum over the coupling strengths �ij takes into
ccount each directed coupling only once in the
-neighborhood of oscillator 	, �max is the maximum al-
owed coupling strength, and k is the total number of cou-
lings of the oscillator.

To detect global ordering in the system we monitor the
irection of the phase shifts of the oscillators. It is known
hat the oscillators having higher internal frequency will lead
hose with lower frequency �see Fig. 1�B��. We define an
xpectivity function which measures temporal ordering in
he network with respect to frequencies of the individual os-
illators

E =
1

N�N − 1� �
i,j,i�j

N

wij , �4�

here

wij = �1 if �CE ji − CEij��� j − �i� � 0

− 1 if �CE ji − CEij��� j − �i� 
 0
� . �5�

hus the expectivity function measures whether the predic-
ions of time ordering of the oscillators based on the relative
requency values are in agreement with those calculated us-
ng CEs. If the proper value from a given pair is predicted
orrectly the function is assigned the value wij =1, and con-
ersely if the prediction fails wij =−1.

. Adaptation of the individual oscillators
n the network

Here the network is allowed to adjust the frequencies of
ndividual oscillators �Eqs. �2��, but network rewiring does
ot take place. An example of the behavior of such network
an be seen in Fig. 2. The initial frequencies of individual
scillators were generated at random. The oscillators are rep-
esented by circles with different shades of gray, with white
nd black denoting lowest and highest frequency respec-
ively �Fig. 2�A��. During the evolution of the system the
requencies of the oscillator converge to single value making
ll oscillators identical and completely synchronized �Fig.
�B��.

We examined the relationship between the degree of
onnectivity in the network and the speed of adaptation con-
ergence �Fig. 3�. The convergence is achieved even for very
ow connectivity ��5% �, and the convergence time de-
reases with the increased connectivity. This is due to the

act that the temporal ordering in the system increases with
the number of connections in the network; the expectivity
function �Eq. �5�� increases with the connectivity value, in-
dicating an increased degree of temporal ordering in the sys-
tem during initial stages of the simulation.

We have also studied the adaptability of the network as a
function of network topology. The ability for the network to
adapt was compared over network topologies that range from
locally connected regular networks to those with random
global couplings. We have used the Watts-Strogatz �WS�
Small World Network framework to achieve the intermediate
network topologies. Specifically, the network of �N=36� os-
cillators had initially only local connections formed within a
radius r=2. Every coupling was then randomly rewired to
form random connections with WS rewiring parameter P
�Fig. 4�.

The convergence of adaptation time decreases as a func-
tion of the WS rewiring parameter P, indicating that net-
works having global connectivity adapt faster. This is again
due to the fact that temporal ordering in the network depends
on the network topology; the expectivity function increases
significantly with the WS rewiring parameter P. This in turn
is due to the reduction of average characteristic length in the

FIG. 2. A network undergoing adaptation �N=36, r=2, ��=0.0001�. The
darkness of the oscillators denotes the frequency, with white representing
1.0 and black 1.1. By the end of the run time of 20 000 �0

−1 the entire
network is highly adapted, with all nodes having virtually the same
frequency.

FIG. 3. Networks with N= 	9,16,25,36,49,64
 and r= 	1,2
 were gener-
ated and allowed to adapt with speed ��=0.0001, after and an initial free
period of 20 000 iterations �1000 �0

−1�. �A� Convergence time of adaptation
vs network connectivity. The time required to completely adapt the network
�when the rate of change in standard deviation of frequencies was less than
2% of the initial value� was recorded. More connected networks, which have
small average distance between oscillators, complete adaptation more
quickly than less connected networks. �B� Expectivity vs network connec-
tivity. The time ordering of the network, as measured by expectivity, in-

creases with greater connectivity.
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023106-5 Dynamic network reorganization Chaos 16, 023106 �2006�
etwork. This is consistent with the results obtained by oth-
rs showing that the synchrony is more easily obtained for
etworks with global connectivity.30–32

Finally, to test the effectiveness of adaptation in the pres-
nce of noise, a noise term �� was added to the equation for
he y oscillator coordinate, where � is a uniformly distributed
andom value on the interval �−1,1� and � is the noise am-
litude. The completeness of the adaptation at t=20 000 �0

−1

s measured with the ratio of the final to initial standard
eviation of the frequencies of the oscillators. The ratio of 1
ndicates that no significant adaptation of oscillator frequen-
ies was achieved. The results �Fig. 5, where � is normalized
y the characteristic amplitude of the oscillator=10� reveal
hat systems with large values of noise may still undergo a
arge degree of completion of the adaptation process in the
ame period of time for which the noiseless network will
ompletely adapt. Furthermore, the adaptation is not com-
letely disrupted until the noise is nearly an order of magni-
ude higher than the oscillator amplitude, indicating rela-
ively large robustness of the process. Finally, it can be
bserved that for a range of noise amplitudes ��=1–3.5�,
etworks with moderate and large proportion of long-range
onnections have more efficient adaptation than networks
ith only local coupling.

In biological networks the global adaptation may have
egative consequences as it may lead to transient indiscrimi-
ate synchronization of neurons during epileptic seizure.
ormation of spurious connections �axonal sprouting�, which

ead to changes in network topology was implicated as a
ossible mechanism leading to epilepsy.33,34

. Network rewiring driven by temporal
nterdependence between the network elements

In this set of simulations the network was allowed only
o rewire, based on temporal interdependence between the
scillators �Eq. �3��. The adaptation of oscillator frequencies

IG. 4. A 2D regular lattice network of N=36 and r=2 underwent rewiring
s per Watts-Strogatz �Ref. 35� with the end of each coupling rewired to a
andom oscillator �excluding current connections and self� with probability

P= �0,1.0�. Larger probabilities results in large amounts of nonlocal con-
ections, which reduce the average distance between oscillators on the net-
ork. After a free period of 20 000 iterations �1000 �0

−1�, the network un-
erwent adaptation with speed ��=0.0001. �A� Convergence time of
daptation vs small world rewiring parameter. Larger rewiring probability
ead to a shorter time required to completely adapt the oscillators on the
etwork. �B� Expectivity vs small world rewiring parameter. The expectivity
eveals that the oscillators time order themselves more effectively as the
ewiring parameter is increased, revealing greater communication in the
etwork, and leading to faster adaptation convergence.
as not present.
An example of the evolution of such a network is pre-
sented in Fig. 6. The initial highly connected network in this
example evolves to a sparsely connected one. Note that the
clusters form unidirectional connections from the oscillators
having higher frequency to the oscillators having a lower
one, creating clusters with directed information flow. This is
due to the structure of the rewiring function employed for
network rewiring. A similar function is thought to be respon-
sible for activity dependent synaptic plasticity in the biologi-
cal neuronal networks, indicating that such directional clus-
ters may form in the brain.

We have investigated the cluster formation in the pres-
ence of noise �Fig. 7�. As before, we applied the noise term
�� to the oscillator y coordinate. The transitivity decreases
with the noise amplitude, indicating that increased levels of
noise gradually reduce the ability of oscillators to synchro-

FIG. 5. Standard deviation of frequency �SD�� at the end of the simulation,
normalized by the initial SD�0, vs relative noise amplitude �noise amplitude
� normalized by maximal oscillator amplitude�. After a period of 20 000
iterations �1000 �0

−1�, adaptation was allowed to occur with speed ��

=0.000 05, and was allowed to continue for 380 000 iterations �19 000 �0
−1�.

The average standard deviation of the frequency � was measured at the end
of each of ten simulations for each value of noise amplitude and small world
rewiring parameter P. For moderate ranges of noise, larger values of P
result in a tighter distribution of frequency, indicating greater progress to-
ward complete adaptation �see inset�.

FIG. 6. A network undergoing rewiring �N=36, r=2, ��=100�. The node
colors represent relative oscillator frequency. During the run time of 20 000
�0

−1, the rewiring process pares down most of the couplings in the network,
leaving clusters of oscillators with similar frequencies. The coupling is uni-

directional, with the faster �darker� oscillators leading to the slower ones.



n
n
c
S
w
c

�
r
e
i
n
g
v
q
s
t
t
c
f
c

w
m
s
s
t
w

F
a
r
s
t
T
p

023106-6 J. Waddell and M. Zochowski Chaos 16, 023106 �2006�
ize and form highly transitive clusters. However, it takes a
oise level of roughly the characteristic amplitude of the os-
illators to completely suppress clustering due to rewiring.
till, rewiring is more sensitive to noise than is adaptation,
hich can withstand more than five times the noise before

easing to function.
The rewiring function, as described in the introduction

Eq. �3��, is itself a symmetric function, i.e., the slope of the
ewiring does not favor strengthening �coalescence� or weak-
ning �fragmentation� of couplings. It is the value of the CEs
n relation to the threshold that determines whether the con-
ection forms �the network coalescences� or weakens and
ets eliminated �the network fragments�. The threshold
alue, CEthreshold selects a reasonable level of synchrony re-
uired to differentiate between the two processes. Therefore,
hifting the threshold will affect not the rewiring itself, but
he degree of temporal locking required to form the connec-
ion between an oscillator pair. This symmetry in coales-
ence and fragmentation maybe broken, however, by modi-
ying the rewiring function to be asymmetrical. The rewiring
an be then defined to be

��ij =
��

N
�CEthreshold − CEij� ,

�6�

�� = ���f if CEthreshold 
 CEij

��c if CEthreshold � CEij ,
�

here ��c is the coalescence constant and ��f is the frag-
entation constant. The two parameters define the relative

peed of coalescence and fragmentation in the network. We
tudied the selectivity of the cluster formation - defined as
he ratio of the local �within cluster� to global �network-
ide� standard deviation of oscillator frequencies

IG. 7. Average weighted transitivity vs relative noise amplitude �noise
mplitude � normalized by characteristic oscillator amplitude�. After a pe-
iod of 20 000 iterations �1000 �0

−1�, the network underwent rewiring with
peed ��= 	10,50
. Increased noise disrupts the synchrony, and encourages
he loss of coupling while discouraging the formation of new couplings.
hus the number of couplings as well as the number of intracluster cou-
lings decreases with noise on the order of a oscillator amplitude.
LSD� /SD�; the lower this ratio, the more selective are the
clusters - as well as the size of the maximal cluster formed
and the transitivity as a function of the ratio of coalescence
to fragmentation constant �Fig. 8�. For low relative values of
��f transitivity and cluster size tend to 1, but with a loss of
oscillator selectivity �LSD� /SD��1�. This indicates that
the there is a large population of connections formed so that
one cluster is formed over the whole network; this regime
holds no advantage over shifting the CE threshold. For
higher values, though, there is a region in which transitivity
�WCC1� is strengthened while selectivity �LSD� /SD�� is
largely or completely conserved. In this region the maximum
cluster size scales roughly with the selectivity, suggesting
that the asymmetric rewiring can improve the quality of clus-
ters �in terms of higher transitivity� by adding coupling
within clusters rather than adding more oscillators to a clus-
ter. The decreasing maximal cluster size indicates formation
of relatively small, highly selective, densely packed clusters

FIG. 8. �A� Relative local standard deviation of frequency, �B� maximum
cluster size �normalized by N�, and �C� average transitivity for asymmetric
rewiring. After an initialization period of 20 000 iterations �1000 �0

−1�,
asymmetric rewiring occurred on a network �N=36, r=2� for a period of
380 000 iterations �19 000 �0

−1�. The fragmentation speed was varied, while
the coalescence speed was kept constant at ��c=100. The gray box repre-
sents the region in which the selectivity of the clusters is enhanced while
relatively high transitivity is maintained.
in the network.
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For the symmetric rewiring function �the ratio �1� rela-
ively few, small, selective clusters are formed.

. Adaptation and rewiring

In this set of simulations both processes, adaptation and
ymmetric rewiring ���c=��f =���, were allowed to take
lace simultaneously to modify the network structure.

An example of network behavior is shown in Fig. 9. The
etwork forms relatively small clusters from oscillators hav-
ng the same final frequency. This in turn leads to the forma-
ion of feedback loops, or bidirectional connections between
he elements of the cluster. Thus contrary to the previous
ase �rewiring only� the clusters do not have preferred direc-
ion of information flow.

We have investigated the resulting network topology for
ifferent relative speeds of adaptation and rewiring pro-
esses. The limiting cases are suggested from the results
bove that focus on each process individually. When adapta-
ion is much slower than rewiring, the network first breaks
nto clusters with similar frequencies, which then are adapted
oward a common value for each cluster. When adaptation is
uch faster than rewiring, the oscillators may adapt to a

ommon frequency and then coalesce into one large cluster.
owever, adaptation speed can be limited by connectivity

nd topology of couplings, as demonstrated in the adaptation
ection. Furthermore, the synchronizability of the network
an be limited not only by the distribution of oscillator fre-
uencies, but also by the initial structure of the network it-
elf, particularly its connectivity. Thus, another limiting case
or slow rewiring is that the network, though with high ad-
ptation, is still not globally synchronizable state, so that the
ewiring processes gradually tear the network apart �see Figs.
0�B� and 10�D��.

We have studied network selectivity, maximal cluster
ize, transitivity for different relative values of network re-
iring, and adaptation for different values of initial connec-

ivity. Figure 10�A� shows the average standard deviation
f frequency within clusters normalized by the standard de-
iation of frequency across all oscillators in the system
LSD� /SD��. The curve obtained for ��=0 shows the se-
ectivity of the rewiring process. There is a tendency for
ouplings to remain between oscillators with more similar

IG. 9. A network undergoing simultaneous adaptation and symmetric re-
iring �N=36, r=2, ��=0.000 316, ��=100�. The colors denote relative

requency of the oscillators. After 20 000 �0
−1, the network is composed of

lusters of oscillators with very similar frequencies. Most coupling is bidi-
ectional, indicating the formation of feedback loops and the complete syn-
hronization of oscillators within the cluster.
requencies. In this case the selectivity is around 30% of the
range of available frequencies for rewiring such that ���1.
Increased �� adapts clusters that have formed to become
more uniform, resulting in a local standard deviation of fre-
quency near zero. For slower rewiring, the network breaks
up due to the lack of time ordering during the gradual decline
of the coupling. This lack of clusters leads to an undefined
local standard deviation within the cluster �gray region�.

The relation between maximal cluster size and the rela-
tive speed of adaptation and network rewiring remains un-
clear �Fig. 10�B��. The increase in the rewiring speed creates
larger and more transitive clusters �Fig. 10�D��, while faster
adaptation does not appear to clearly affect the size of the
clusters �Fig. 10�B��. However, adaptation is strengthening
transitivity amongst clusters formed with fast rewiring �Fig.
10�D��. This is due to the fact that the adapted clusters form
bidirectional connectivity.

Lastly, we have studied the lifetime of the connections
between the oscillators as a function of rewiring speed and

FIG. 10. Network measures vs rewiring speed �� for various adaptation
speeds ��. A network �N=36, r=2� was integrated for 20 000 iterations
�1000 �0

−1� before adaptation and rewiring were allowed for 380 000 itera-
tions �19 000 �0

−1�. Each data point is the result of ten simulations. �A�
Standard deviation of �i within clusters �normalized by network-wide stan-
dard deviation of �i� LSD� /SD�. For zero adaptation ���=0�, LSD� /SD�
shows the selectivity of the rewiring processes. Rewiring selects oscillators
with roughly 30% of the available range of frequencies when clustering
forms. With adaptation, established clusters can adapt to become more simi-
lar. For parameters which resulted in no clusters, LSD� /SD� is undefined;
these points are marked with a gray rectangular overlay. �B� Maximum
cluster size �normalized by the size of the network�. Greater rewiring speed
results in larger maximum cluster size. �C� Average lifetime of couplings.
For very low values of rewiring speed, the network dissociates, with all
couplings vanishing. Rarely, new couplings will be generated for short pe-
riods of time. For moderate values of rewiring speed, stable couplings are
generated between compatible oscillators. For large values of ��, the net-
work again begins to dissociate. The reduced coupling lifetime is due to
both the tendency for couplings to be deleted and for new, unstable cou-
plings to be generated. �D� Average weighted transitivity. There is a ten-
dency towards increased transitivity with faster rewiring, until it plateaus.
Larger values of adaptation speed allow for continued increase in transitivity
after a plateau occurs for smaller adaptation speeds. The dashed line repre-
sents initially full connectivity �coupling between all pairs in each direction,
but with random coupling strength�. It is shown that for slow rewiring ���

=0.03� a completely transitive cluster emerges, with all couplings at full
strength. For values of rewiring slower than this, run time was not sufficient
to completely aggregate the cluster.
adaptation speed �Fig. 10�C��. The decrease in average life-
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ime of couplings with an increase in rewiring speed is due to
oth the continued creation of new couplings further into the
imulation and an increased tendency to destroy couplings
hen synchrony is interrupted.

The mechanism for the formation of clusters appears to
ely upon two features. First, couplings are pared from the
nitial lattice, leaving couplings between synchronized oscil-
ators, usually with similar frequencies. These small clusters
hen “capture” other oscillators that trajectories happen to
riefly coincide with to one of the members of the cluster. A
oupling forms, and the coupled trajectories begin to syn-
hronize. At the same time, trajectories of other members of
he cluster will begin to emulate or be emulated by the new
ember, causing synchronization over the whole cluster and

ausing new couplings to be formed, leading to a highly
ransitive cluster.

V. CONCLUSIONS

We have studied network reorganization driven by tem-
oral interdependencies between elements in the system of
oupled, initially nonidentical Rössler oscillators. The tem-
oral interdependencies in the network are monitored by an
daptive, asymmetric measure that monitors changes in
hase/lag synchrony between its oscillator pairs. We have
tudied two basic mechanisms of network reorganization:
daptation of frequencies of individual oscillators and net-
ork rewiring based on asymmetries in temporal interdepen-
encies of their dynamics. Both of those mechanisms led
eparate processes during network reorganization. Adapta-
ion led to formation of large clusters composed of identical
scillators, whereas rewiring alone led to formation of
maller clusters having directed information flow. Both pro-
esses together led to the formation of adapted clusters with
idirectional couplings producing feedback loops between its
lements. Additionally we have found the existence of an
ptimal ratio of relative coalescence and fragmentation
peeds during asymmetric rewiring during which highly se-
ective large clusters are formed. This prediction should now
e investigated experimentally during LTP and LTD pro-
esses in the brain. On the other hand, for a range of relative
peeds of adaptation and rewiring the initial network connec-
ions are effectively destroyed leading to annihilation of the
etwork.
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