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We elaborate on recent results on the transport of interacting particles for both single-species and
binary mixtures subject to an external driving on a ratchetlike asymmetric substrate. Moreover, we
also briefly review motion control without any spatial asymmetric potentialsi.e., no ratchetd. Our
results are obtained using an analytical approach based on a nonlinear Fokker–Planck equation as
well as via numerical simulations. By increasing the particle density, the net dc ratchet current in
our alternatingsacd-driven systems can either increase or decrease depending on the temperature,
the drive amplitude, and the nature of the inter-particle interactions. This provides an effective
control of particle motion by just changing the particle density. At low temperatures, attracting
particles can condense at some potential minima, thus breaking the discrete translational symmetry
of the substrate. Depending on the drive amplitude, an agglomeration or condensation results either
in a drop to zero or in a saturation of the net particle velocity at densities above the condensation
density—the latter case producing a very efficient rectification mechanism. For binary mixtures we
find three ways of controlling the particle motion of onespassived B species by means of another
sactived A species:sid Dragging the target particlesB by driving the auxiliary particlesA, sii d
rectifying the motion of theB particles on the asymmetric potential created by theA–B interac-
tions, andsiii d dynamically modifyingspulsatingd this potential by controlling the motion of theA
particles. This allows to easily control the magnitude and direction of the velocity of the target
particles by changing either the frequency, phase and/or amplitude of the applied ac drivessd. ©
2005 American Institute of Physics. fDOI: 10.1063/1.1903183g

Stochastic transport on periodic asymmetric substrates
far from equilibrium has raised wide-spread interest in
the recent literature.1 Various realizations of ratchet sys-
tems working out of equilibrium have been proposed in-
volving different rectification mechanisms, like time-
dependent temperature oscillations (temperature
ratchet2), zero-average sinusoidal alternating (ac) forces
(ac tilted or rocked ratchet3), stochastic and deterministic
fluctuations of the ratchet potentials,4 among others. In-
tense research activity in this field is partly motivated by
the challenge to describe and control some biological pro-
cesses at both the cell level (for instance, transport in ion
channels5) and the body level (muscle operations6). More-
over, recent technological advances have allowed the de-
velopment of devices to guide tiny particles on nano- and
micro-scales,7 e.g., for particle separation techniques,8

smoothing of atomic surfaces during electromigration,9

and superconducting vortex motion control.10,11 Some of
these devices have been realized experimentally to ma-
nipulate the motion of vortices in superconductors,12–15

particles in asymmetric silicon pores16 as well as charged
particles through artificial pores17 and arrays of optical

tweezers,18–22 among others. However, the interaction
among particles is expected to have an important role on
the rectification power of ratchets. Indeed, it has been
found that interactions can result in very unusual trans-
port properties,10,23–30 including spontaneous symmetry
breaking, commensurability effects, unusual negative
mobility, and surprising current inversions.

I. INTRODUCTION

We show thatthe net current can be effectively con-
trolled by changing the density of interacting particles. This
dependence can be described using effective potentials31

which take into account the renormalization of the bare sub-
strate potentialU due to particle interactions. For repelling
particles,U flattens with increasing particle density because
particles repel one another from the potential wells. This
results in an increase of the net current for lowerswith re-
spect to the potential barriersd drives and a decrease for
stronger drives.

The effective potential becomes deeper with increasing
particle density of attractive particles resulting in the oppo-
site behavior with respect to the repulsive particles.31,32adElectronic mail: ssavelev@riken.jp
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Moreover, the agglomeration or “condensation”32 of attrac-
tive particles into the substrate potential wells occur at large
enough particle densities. This results in thesudden drop of
their drift velocity at the condensation pointfor low drives.
On raising the drive amplitude it can happen that the par-
ticles pile-up or condense only when the ac force pushes
them against the steeper slope of the asymmetric substrate
wells, while remaining in the running state as they are driven
in the opposite direction. For such a range of large drive
amplitudes,the current, versus particle density, saturates at
a maximal value in the vicinity of the condensation density.32

Recent experiments on transport of K and Rb ions in an
ion channel,33 particles of different size in asymmetric sili-
con pores,16 pinned and interstitial vortices,12 and two differ-
ent types of vortices13,14 pose the question of how directed
motion of two or more types or species of particles affect one
another. More interestingly, one might wonder how to induce
and control the net transport ofpassiveparticles, which are
insensitive to the applied drives and/or substrates. A way to
tackle this challenging problem is to employ auxiliaryA par-
ticles that:sid Interact with the target speciesstheB particlesd
and sii d are easy to drive by means of external forces. By
driving A particles one can regulate the motion of otherwise
passiveB particles through experimentally accessible sys-
tems, like ion channels,33 artificial pores,16,17 arrays of opti-
cal tweezers,18 or certain superconducting devices10–14d.

In order to study the influence of the interspecies inter-
action on particle transport in a binary mixture, we consider
external forces applied either to theA particles only or si-
multaneously to both theA andB types of particles. We have
found three ways to control particles in binary
mixtures:11,31,32,34,35

1. Dragging B by A: When a driving force acts on only one
componentse.g.,Ad of a binarysA andB particlesd mix-
ture and there is no substrate at all, the driven species
can drag along the passive particles. The ac dragging
effect can be described as follows: if the driving force
fAstd acting on the active speciesA is zero-averaged but
asymmetric in time, a net motion of both species occurs.
This enables control of the motion of bothA and B
particle species, even when there is no asymmetric sub-
stratesor no substrate at alld.

2. Mediated ratchet effect: If only one species feels an
asymmetric substrate, then these “active”A particles
produce an effective asymmetric potential for the other
componentB sdue to interspecies interactiond. This po-
tential has the same sopposited polarity for
attractivesrepulsived interaction between different spe-
cies and can be used for the rectification of either the ac
or random motion of passive particles.

3. Gating effect (flashing effective potentials): The motion
of active particles in the “hard” direction with respect to
the asymmetric substrate produces high potential barri-
ers for the passive particles, stopping the motion of the
passive species. The time-correlation of the stopping in-
tervals and ac-driving of passive particles creates an-
other way to control the motion in the binary mixture.
Changing the relative phases of the driving forces makes

it possible to guide at will both theA and B species
either in the same or in opposite directions.

These three ways for manipulating tiny particles in mix-
tures allow an unprecedented level of motion control of dif-
ferent components by tuning the phase and/or amplitude
and/or frequency of the applied drives.

Systems where our two-species transport technique
might be implemented with success are the focus of ongoing
experimental workse.g., superconducting samples penetrated
by topologically different vortices,11,13,14 ion channel tra-
versed by competing ion species33d.

II. ONE TYPE OF PARTICLE

A. Langevin and Fokker–Planck approaches

Our starting point for a system of identical particlessi.e.,
with only one speciesd is the set of Langevin equations

ẋi = −
]Usxid

]xi
− o

jÞi

]

]xi
Wsxi − xjd + Fstd + Î2kBTjsidstd,

s1d

for interacting particles moving on the one-dimensional
asymmetric periodic potentialU, Usx+ ld=Usxd, in the pres-
ence of a time-periodic forceFstd with frequencyn. Here,
the Gaussian white noisejsidstd with zero averagekjsidl=0
satisfies the fluctuation–dissipation relationkjsidstdjsidst+tdl
=dstd; whereT is the temperature,kB is the Boltzmann con-
stant, andW denotes the pair interaction potential. Indicesi
and j run over all particles. For simplicity, we set the viscous
coefficient equal to onesSmoluchowski approximationd. We
integrated the set of equationss1d for our numerical simula-
tions, while the analytical predictions reported below were
derived by solving the integro-differential equations for the
corresponding many-particle distribution functions. The
Fokker–Planck-type equation for the one-particle distribution
function,F1st ,xd, can be written in the form:31,32

]F1st,xd
]t

=
]

]x
FS ]Usxd

]x
− FstdDF1st,xdG

+
]

]x
F1st,xd E dx̃F1st,x̃dGst,x,x̃d

]Wsx − x̃d
]x

+ kBT
]2F1st,xd

]x2 , s2d

where

F2st,x,x̃d ; F1st,xdF1st,x̃dGsx,x̃,td, s3d

denotes a binary distribution function. It is apparent that
particle–particle correlations decay on a scale of the order of
either the interaction lengthl for low particle densitiessn
!1/ld or the inter-particle distance 1/n for high particle
densitiessn@1/ld. As a consequence, the functionG, which
describes the particle–particle correlation, differs appreciably
from 1 suncorrelated particle motiond for particle separations
ux− x̃u&minhn−1,lj, only. This has been numerically proven
in Ref. 31 and is shown in Fig. 1sad. Therefore, if each par-
ticle interacts with many neighbors, i.e.,nl@1, the function
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G in Eq. s2d can be safely approximated to 1 over the entire
integration domainsof orderld of edx̃F1G]W/]x. It follows
that Eq. s2d can be reduced to itsmean-field sMFd
form31,32,34,35

]F1st,xd
]t

= −
] j

]x

=
]

]x
FF1st,xdH ]UMF

]x
− FstdJ + kBT

]F1st,xd
]x

G .

s4d

where the mean-field potentialUMFsxd is defined as

UMFsxd = Usxd +E dx8Wsx − x8dF1st,x8d. s5d

Hereafter, the one-particle distribution functionF1st ,xd is
normalized in terms of the average particle densityn, i.e.,

E
0

l

F1st,xddx/l = n. s6d

If the spatial scale of the substrate potential is of the
order of the interaction lengthl, the nonlocality can play an
important role, producing, e.g., oscillations of the density
F1sxd fsee Fig. 1sbdg. In this case, the analytical treatment of
the integro-differential equations4d is very complicated.

In order to make the problem more tractable, we further
discard nonlocal effects by assuming the interaction lengthl
to be much smaller than the periodl of the substrate potential
Usxd. This allows us to replace the integro-differential equa-
tion s4d by

]F1st,xd
]t

=
]

]x
FS ]Usxd

]x
− FstdDF1st,xd + gF1

]F1

]x
G

+ kBT
]2F1st,xd

]x2 s7d

with

g ; E
−`

`

dx8Wsx − x8d =E
−`

`

dyWsyd. s8d

Therefore, Eq.s7d is valid under the following restric-
tions:

n−1 ! l ! l . s9d

Note that, even though we assumed locality with respect to
the substrate unit length, the interparticle interaction can still
be regarded as a long-range interaction because of the den-
sity requirementl@1/n. These are the approximations un-
der which in the following sections we solve Eq.s7d analyti-
cally and compare our analytical results with data from
numerical simulations based on the Langevin equationss1d.
Although conditionss9d strictly apply to a somewhat limited
class of physical systems, the results obtained below have
much wider applicability. Indeed, numerical simulations per-
formed well outside the parameter regions9d agree quite
closely with our mean-field description.

B. Close to equilibrium: Effective potentials
and effective temperature

The starting point of our analysis is the derived nonlin-
ear Fokker–Planck equation for a rocked ratchet

]F1

]t
=

]

]x
SF1SdU

dx
− FstdD + gF1

]F1

]x
+ kBT

]F1

]x
D . s10d

A periodic square-wave force keeps the system out of equi-
librium

Fstd = A sgnfcossvtdg, s11d

with sgnf¯g denoting the sign of the argument and
v=2pn the driving frequency.

FIG. 1. sad Correlation functionG expressing the deviationsG−1d from the
mean-field approximationsthe mean-field approach assumesG=1d vs dis-
tancex−x8 between particles, normalized by the interaction lengthl. The
interaction was taken asWsxd=gsl− uxud /l2, while the substrate potential
Usx/ ld is shown in the inset.G substantially differs from one over distance
ux−x8u,a, when the average distancea between particles is much smaller
thanl. In the opposite limit,a.l, we obtainG,1, on scalesux−x8u,l.
This result depends neither on temperature nor the substrate potentialU in
the studied range of parameters.sbd Oscillations of the normalized one-
particle distribution functionF1sx/ ld /n due to nonlocal effects for the po-
tential shown in the inset ofsad, Q=1, l2/ l1=2/3, l = l1+ l2=2; l=0.2. A
large density of particles in the bottom of potential wellsx=xmin repels other
particles from the nearby region of a scale of aboutl, effectively shifting
the new energetically favorable positions toxmin±l and so on—producing
oscillations inF1sxd. These results were obtained by numerically solving Eq.
s1d.
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In the general case, an analytical study of Eq.s10d is too
complicated. However, if the period of the force oscillations
2p /v is much shorter than the other characteristic time
scales in the problem, orFstd is rather weak, it is reasonable
to expect that the system relaxes close to the equilibrium
state corresponding to zero applied force. This equilibrium
solution

F1sx,A = 0d ; f0 = f0sxd s12d

satisfies the nonlinear equation

U8sxdf0 + gf0
df0

dx
+ kBT

df0

dx
= 0, s13d

which can be solved in implicit form,

CsndexpS−
Usxd
kBT

D = f0sxdexpS g

kBT
f0sxdD ; Zsf0d s14d

where the constantCsnd is determined by the normalization
condition

E
0

l

dxf0sxd = nl.

The equilibrium distributionf0 coincides with the usual
Boltzmann distribution if the particle interaction is switched
off, g=0.

The equation for the perturbation correctionc=csxd
;F1−f0 from the equilibrium statef0 is

]c

]t
=

]

]x
ScSdUeff

dx
− FstdD + kBTeff]c

]x
+ gc

]c

]x

− Fstdf0D , s15d

while the effective potential and temperature are defined as

Ueffsxd = Usxd + gf0, s16d

kBTeffsxd = kBT + gf0. s17d

Equation s15d can be solved perturbativelyssee, e.g., Ref.
31d. This perturbation approach can be qualitatively inter-
preted if we separate the running particles, a relatively small
fraction of about ucsxdu /f0sxd at the pointx, from those
trapped at the substrate minima. The moving particles feel
the potentialUeff generated by both the substrate and the
trapped particles.

In the case ofrepulsiveparticle interaction, such an ef-
fective potential is smoother than the bare substrate potential
fsee Fig. 2sbdg because the particles occupying the bottom of
the potential wells tend to repel the running particles away
from the potential minima.

In contrast to this, when increasing the density ofat-
tracting particles, the wells of the effective potential grow
even deeper than the substrate wellsfFig. 3sbdg. Note that the
particle–particle interaction also induces a spatial depen-
dence of the effective temperaturefFigs. 2sad and 3sadg,
which implies a spatial dependence of the diffusion constant
of the running particles. The effective temperature and po-
tential exhibit the same asymmetryspolarityd for the case of

attracting particlesfFig. 3sadg, meaning that the positions of
their maxima and minima coincide. In this respect, we say
that for repelling particles, the effective temperature and the
effective potential have opposite asymmetryfFig. 2sadg.

Equations14d always admits a solution if the particles
repel each other,g.0. However, in the case of attracting
particles,g,0, the transcendental Eq.s14d has a solution
only if

CsndexpS−
minsUsxdd

kBT
D ,

kBT

eugu
.

Here,e is Euler’s numbers2.71…d. In other words, more and
more particles accumulate nearxmin, which in turn attract
additional particles from even further away. Eventually, the
particle attraction wins over the random thermal noise. This
occurs at a critical valuencrit of the particle density when
Zsf0sxmindd equals the maximum value maxf0

fZsf0dg
=kBT/eugu. At higher densities, the equilibrium distribution
s14d cannot be sustained any longer; thermal noise cannot
prevent thecondensationof a finite fraction of the nonideal
sinteractingd gas particles into the liquidlike phase at the bot-

FIG. 2. sad The spatial dependence of the effective temperatureTeff, andsbd
the effective potentialUeff−Ueffs0d for repelling particles and for different
values of their densityn. Both the effective temperatureTeff and the effec-
tive potential energyUeff are shown in arbitrary units. The bare substrate
potential is chosen as: Usxd=Urampsxd;sins2px/ ld+ 1

2 sins4px/ ld
+ 1

3 sins6px/ ld. The mutual repulsion of particles causes the flattening of the
“effective” potential with increasingn. The positions of themaxima of
Ueffsxd coincide with theminima of Teffsxd, and vice versa. This indicates
that Teffsxd andUeffsxd have opposite asymmetry.
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tom of the potential wells. This results in a drop of effective
diffusion coefficient

Deff ~ Teff

to zerofsee upper panel in Fig. 3sadg and the mobility of the
particles also becomes zero.

C. Far from equilibrium: Rectification enhancement
and particle condensation

In order to understand how to control particle motion by
changing the particle density, we recall that the effective po-
tential acting on moving particles flattens when increasing
the density of therepelling particles.

This mechanism is illustrated schematically in Fig. 4sad
where a typical effective potential at lowssolid red curved
and high densitysdotted blue curved is drawn for clarity. If
the temperature and the amplitude of the ac force arelow
enough, a running particle cannot overcome the potential
barriers forlow particle densityfsolid red curve, Fig. 4sbdg.
Therefore, the particlessolid circled remains trapped in a
potential minimum during the ac tilting of the potentialfin
Fig. 4sbd, the upper and bottom panels show the effective
potential subject to maximum tilt both to the right and to the
leftg. Thus, the current has to be very small.

However, the particle can overcome the lower potential

barriers of the effective potential corresponding tohigher
particle densityn sdotted blue curved, when the potential is
tilted fFig. 4sbd, a particlesopen circled can move to the leftg.
The above behavior leads to the “activation” of the net mo-
tion for higher n due to flattening effective potential with

FIG. 3. Same as in Fig. 2, but forattracting particles. The “effective”
potential wells deepen due to particle accumulating near the potential
minima. The effective temperatureTeff has a maximum whereUeff has a
maximum, and vice versa. The sudden agglomeration orcondensationof the
attracting particles in the potential minimax=xmin occurs whenTeffsxmind
drops to zero.

FIG. 4. Schematics of the density-dependence of the net time-average ve-
locity Vdc for a rocked ratchet:sad The original potentialssolid red lined and
flatter effective potentialsdashed blue lined Ueffsxd due to the repelling in-
teraction among particles;sbd The small amplitude of the ac force, which
tilts the effective potential fromUeff−Ax sthe upper paneld to Ueff+Ax sbot-
tom paneld, could not produce a net motion in the bare potentialssolid red
lined at low temperatures because of the potential barriers. However, the
suppressed barrierssdashed blue lined for a high density of repelling par-
ticles can be overcome, resulting in directed particle motion;scd For large
amplitudes, the ac particle motion in the bare potential gets rectified as the
tilt is strong enough. Indeed, a particlessolid circled moves easily only when
the potential is tilted toUeff−Ax fupper panel inscdg; the suppression of the
barriers also activates a substantial particle flow in the opposite direction,
thus reducing the ratchet rectification power. For attracting particles, the
effective potentialUeffsxd deepens with increasing the densityn. The depen-
dence of the net average velocityVdc on the densityn for attracting particles
is discussed in the text.
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increasingn sschematically shown as a transformation ofU
from the solid red curve to dashed blue oned. Thus, the dc net
current is obviously enhanced when increasing the density of
particles for small enough amplitudeA of the ac force.

On the other hand, ifA is strong enough, particles can
easily pass through the potential barriers in the preferable
direction even forlow particle density when the potential is
tilted fFig. 4scd, upper panel, solid red curveg. In such a case,
a particlessolid circled moves easily to the left, while barriers
prevent the motion in the opposite directionfFig. 4scd, bot-
tom panel, solid red curveg, resulting in an effective rectifi-
cation. The suppression of the barrierssassociated with in-
creasing the densityn of repelling particlesd stimulates the
undesirable motion in the direction which is opposite to the
net currentfFig. 4scd, bottom panel, dotted blue curveg. With
increasingA, this has to result in a change of the dependence
of the net velocityVdc on the particle densityn, i.e., from an
increasing to a decreasing function ofn. This change of the
Vdcsnd-dependence was observed in both simulations and
analytical calculationsfFig. 5sadg.

For attracting particles, the potential wells deepen with
increasing particle density. In Fig. 4 this corresponds to the
modification of the effective potentialUeff from a dashed
blue slow densityd to a solid redshigh densityd profile. Thus,
particles sopen circled, moving on the bare potentialslow
density cased, get trapped by the deeper potential wells at
higher densitiesfFig. 4sbd, solid circle, solid red curveg; at
small A, the net velocity diminishes in the case of attracting
particles. For higher driving amplitudes, the deepening effec-
tive potential, when increasingn, results in increasing ratchet
asymmetry and, thus, increasing the net velocity. This is con-
sistent with the results displayed in Fig. 5sbd, green solid
squares; inset in Fig. 5.

Moreover, for the case of attractive particles, there is
another way to control particle motion, including strong en-
hancement of rectification power. Indeed, all our arguments
on the basis of an effective potentialUeffsxd become invalid
for particle densitiesn higher thanncrit, where a drive-
dependent condensation transitionoccurs. For rather small
driving forcesFstd, this results in thesudden drop of their
drift velocity at the condensation (agglomeration) pointfFig.
5sbd, red open squaresg. When raising the drive amplitude it
can happen that the particles condense only when the ac
force pushes them against the steeper slope of the asymmet-
ric substrate wells, while remaining in the running state as
they are driven in the opposite directionfFig. 5scd, insetg. For
such a range of large drive amplitudes,the ratchet current
versus the particle density saturates at a maximal value in
the vicinity of the condensation densityfFig. 5scd, solid red
squaresg.

1. Adiabatic approximation: Quantitative description
far from equilibrium

In the low frequency limit, for any timet̃, the system can
be regarded as being in the steady state corresponding to an
applied dc forceF;Fst̃d; hence, the adiabatic expression for
the ratchet current isjdc=ne0

1/n jfFst̃dgdt̃, where jsFd is the
stationary current in the presence of the constant driveF. If
jsFd is not an odd function ofF fi.e., jsFdÞ−js−Fdg, then the

rocked ratchet can rectify the oscillatory motion of the par-
ticles. The stationary solution to Eq.s4d can be written as

− jsFd = sU8 − FdF1sxd + kBTF18 + gF1F18, s18d

s 8 denoting anx derivatived. When adopting, for simplicity,
the piecewise linear periodic potentialUsx+ ld=Usxd:

Usxd = Q
x

l1
for 0 , x , l1

and

U = Q − Q
x − l1

l2
for l1 , x , l1 + l2 = l , s19d

the stationary one-particle distribution in Eq.s18d, F1sxd, can
be expressed in implicit form as

FIG. 5. Numerical data from Eqs.s1d with periodic boundary conditions
over two potential unit cells:sad time-average net velocityVdc vs repelling
particle densityn for n=0.01, A=0.5, Q=1, l1=0.9, l=0.1, gMD =0.02, T
=0.2 ssolid magenta circlesd, and T=0.05 sopen blue circlesd. The corre-
sponding analytical predictions from Eqs.s22d for g=gMD =0.02 sdashed
linesd andg=gMF=0.02/1.5<0.0133ssolid lined are reported for compari-
son ssee textd; sbd Vdc versus attracting particle densityn for A=0.8 andT
=0.2 sred open squaresd, A=1 andT=0.4 sgreen solid squaresd, A=15 and
T=0.2 sinsetd; other parameter values aren=0.01,Q=1, l1=0.9,l=0.1, and
g=−0.02; scd Vdc vs repellingsblue open circlesd and attractingsred solid
squaresd particle densityn for n=0.01, A=6, Q=1, l1=0.9, l=0.1, g=
−0.02, andT=0.2. Inset: Spatial distribution of attracting particles withn
=7 and other parameters as in the main panelsblack circled. One snapshot
sdistribution;F1/nd of the particles was taken at each drive period with the
external force pushing in the “hard”smagenta solid line, the left axisd or the
“easy” sgreen dotted line, the right axisd direction, respectively.
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F1sF − f1d − j

P0sF − f1d − j
= expS sF − f1dx − gsF1 − P0d

kBT + gj/sF − f1d D , s20d

for 0,x, l1, and

F1sF + f2d − j

P1sF + f2d − j
= expS sF + f2dsx − l1d − gsF1 − P1d

kBT + gj/sF + f2d D ,

s21d

for l1,x, l. Here,P0 andP1 are the particle densities at the
potential minima and maxima, respectively, i.e.,P0=F1s0d,
P1=F1sl1d; f1=Q/ l1, and f2=Q/ l2 are the two restoring
forces exerted by the substrate.

Two equations for the three unknown quantitiesP0, P1,
and j were derived writing Eqs.s20d and s21d for the ex-
tremal pointsx= l1 andx= l, respectively, and imposing peri-
odic boundary conditionsF1sld=F1s0d=P0. A third equation
for these variables was obtained by integrating Eq.s18d over
one unit cell of the piecewise linear potentialUsxd and then
eliminating the two integration constantse0

l1F1sxddx and
el1

l F1sxddx by means of the normalization condition
e0

l F1sxddx=nl. The resulting equations can be conveniently
expressed as

P −
V

f− = −
D

2
cotH f−/G1 + g̃D

2f1 + g̃V/f−gJ ,

P −
V

f+ =
D

2
cotH f+/G2 − g̃D

2f1 + g̃V/f+gJ , s22d

V =
f−f+ + sg̃P + 1dDqG1G2

f + qsG2 − G1d
,

in terms of the dimensionless variablesP=sP0+P1d /2n, D
=sP0−P1d /n, V= jl /kBTn, and the model parametersq
=Q/kBT sactivationd, f =Fl /kBT sdrived, g̃=gn/kBT sdensity
or pair couplingd, andg= l1/ l2 sratchet anisotropyd. Here, we
introduce the auxiliary anisotropy parametersG1= l / l1=1
+g−1 and G2= l / l2=1+g, as well as the total dimensionless
forces f−= f −qG1 and f+= f +qG2 experienced by a single
particle moving along the relevant sides of a potential well.

At low densities the net particle velocityV can be ex-
panded in powers ofg̃, V=V0+ g̃V1+Osg̃2d, whereV0 andV1

can be easily given explicit analytical expressions. In order
to compute the functionsDsg̃d, Psg̃d, andVsg̃d at higherg̃,
Eqs.s22d can be solved numerically by increasingg̃ stepwise
through a simple iteration procedure. The obtained depen-
dence of the net dc velocityVdc=sVsAd+Vs−Add /2 versus the
density n of repelling particles is shown in Fig. 5sad. The
results are in good qualitative agreement with simulations of
the Langevin equations1 with a pair potential

Wsyd = g
l − uyu

l2 if uyu , l andW= 0 otherwise. s23d

Figure 5sad ssolid magenta and open blue circlesd clearly
shows that, as predicted in our theoretical analysis within the
effective potential approach, the net current for repelling par-
ticles increasessdecreasesd with density at highslowd barri-
ersQ with respect to the drivingA. The comparison between

numerics and theory reveals a quantitative disagreement
fcircles versus dashed curves in Fig. 5sadg. This apparent
discrepancy points to unavoidable corrections to our mean-
field scheme, including an appreciable screening of the inter-
particle interaction, and nonlocality effects introduced by the
truncated pair potentialW used in the simulation. To make
the approximate analytical curves reproduce closer the cor-
responding simulation data, the bare interaction constantg
=gMD employed in the simulation must be replaced in Eqs.
s22d by a rescaled interaction constantgMF, namely gMF

.s2/3dgMD fsolid curves versus circles in Fig. 5sadg.
For the case of attractive particles, the solution of Eq.

s22d has been obtained up to a certain critical point, i.e., for
n,ncrit. This indicates the condensation phase-transition,
which is now driven by the force amplitudeA. Numerical
simulations qualitatively agree with analytical ones: The
ratchet current increases with the densityn of attractive par-
ticles up to the condensation pointncrit fFigs. 5sbd and 5scd
sred squaresdg. For densities above the condensation thresh-
old ncrit, different scenarios can take place. If the amplitudeA
of the ac force is smaller than both substrate restoring forces
Q/ l1 and Q/ l2, then the particles condense in the tilted po-
tential wells, no matter what the orientation of the drive.
Since the mobility of the condensed particles is zero, the
average net particle current drops to zerofFig. 5sbdg. Most
notably, if A takes values between the two substrate forces
Q/ l1, Q/ l2, i.e., f1,A, f2, then potential wells exist only in
one tilting configurationshere, U+Axd. Therefore, in our
simulation the particles condense at the minima ofU+Ax
when the ac force pushes them to the left; the instantaneous
current in such “hard” direction drops to zero. On the con-
trary, the particles are almost ballistic when the periodic
force pushes them in the opposite, “easy” directionsno
minima and therefore no condensation inU−Axd. The stro-
boscopic spatial distribution of attracting particles subject to
an ac drive pointing in the hard and the easy direction, re-
spectively, are shown in the inset of Fig. 5scd: When pushed
in the hard direction, almost all particles condense at the
bottom of the wells; on the contrary, particles moving to the
right in the running state are distributed quite homoge-
neously in space. Therefore, motion is allowed in the “easy”
or natural ratchet direction only; the curveVdcsnd levels off
in correspondence with the condensation densityncrit, i.e., it
saturatesfor n.ncrit fFig. 5scd, red squaresg. For larger ac
forces withA.maxsf1, f2d, no condensation occurs in either
direction andVdcsnd monotonically approaches a saturation
valuefinset in Fig. 5sbdg which decreases with increasingA.

III. SPONTANEOUS SYMMETRY BREAKING

In order to understand more precisely what occurs at the
condensation transition, we study the particle distributions
for both equilibrium and nonequilibrium cases.

We plot the particle distributionsF1 below and above the
condensation pointsFig. 6d. Simulating two substrate poten-
tial cells, we found that both cells are equivalently occupied
at low particle densitiesssee point 1, below the condensation
pointd. Above condensationspoints 2 and 3d, the spatial
equivalence of the two cells is spontaneously broken: Par-
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ticles condense either on the right or the left minimum, no
matter if the initial particle distribution was set the same in
both cells. This is the manifestation of very small fluctua-
tions getting strongly amplified in time. Note that the trans-
lational symmetry of the substrate may be broken for both
nonequilibriumsat relatively weak drivingd and equilibrium
operating conditionssno external drived, alike. This is differ-
ent from the essentially nonequilibrium symmetry-breaking
phase transition reported in Ref. 27, that disappears in equi-
librium and requires two noise sources. For zero substrate
potential, the condensation transition is replaced by the tran-
sition from weakly coupled to clustered particle motion dis-
cussed in the next section.

The symmetry-breaking mechanism discussed here con-
sists in the irregular accumulation of particles in some sub-

strate wells, with the remaining wells getting completely de-
pleted. This occurs via the following amplification of
fluctuations: very minor, random differences in particle oc-
cupation of different cells become more and more pro-
nounced as time evolves and finally break the original
equivalence of all cells. This is somewhat similar to the
“Maxwell demon” mechanism where particles originally
equally distributed among cells accumulate in some wells
while depleting other wells. Also, it provides a deep analogy
between this nonequilibrium dynamics near the condensation
point and dynamical instabilities or critical-fluctuations near
symmetry-breaking phase transitionsssee, e.g., Ref. 37d. For
instance, critical fluctuations at the critical temperature pro-
duce a symmetry-broken ferromagnetic stateswith either up
or down magnetization along a ferromagnetic easy-axisd
from a fully symmetric paramagnetic phasesFig. 6, left bot-
tom sketchd. By analogy, if two particles start their motion
from an unstable equilibrium position, they can move far
apart from one another depending on very minor differences
in their initial conditionssFig. 6, right bottom sketchd. Note
that such an analogy between equilibrium phase transitions
and instability of dynamical systems has been successfully
used in the renormalization group approach.

IV. BINARY MIXTURE: CONTROLLING MOTION
OF PASSIVE PARTICLES

In this section we consider how to control the motion of
particles in binary mixtures. We consider transport in quasi-
one-dimensional geometries, thus including the wide cat-
egory of fabricated devices and nano-biological systems ad-
dressed in recent literature.7,11–13,34,35 Since the dragging
effect implies “trapping” the target speciesB by another spe-
ciesA, we first need to take into account the local change in
the distribution ofB particles near anA particle. This can be
done by considering the binary distribution function
FABsx,x8d, which describes the probability of finding anA
particle nearx and aB particle nearx8. A partial differential
equation forFAB can be constructed by averaging the time
derivative of the microscopic binary distribution

NAB = o
i,j

dsx − xA,istdddsx8 − xB,jstdd,

over different stochastic realizations. Here, the sum has to be
taken over the coordinatesxA,i and xB,j of all the A and B
particles at timet. As our main goal is to study the behavior
of one species relative to the other, we further neglect the
interaction among particles of the same type.

The relevant Langevin equations are

dxa,i

dt
= −

]

]xa,iFUa + o
j ,j8

WsxA,j − xB,j8dG + Î2kBTja
sid,

s24d

where ja
sid are white noises withkja

sidl=0, kja
sidstdjb

s jds0dl
=da,bdi,jdstd, anda, b=A or B, andWsxA,j −xB,j8d denotes the
interaction between thej th A particle and thej8th B particle.
We assume that theA species is driven by the time-
dependent forcefAstd, possibly in the presence of a periodic
asymmetric substrate Eq.s19d, while the B species isnot

FIG. 6. Spontaneous symmetry-breaking destroys the equivalence of two
neighboring potential cells at the phase transition. The normalized particle
distributionsF1sx/ ld /N are shown for three different total numbersN=2n of
particles inside the two cells, corresponding to the net velocityVdcsNd
shown at the top. The normalized equilibrium distributionsF1sx/ ld /N for
the same particle numbers are also shown in the right column. These results
were obtained by numerically solving the Langevin equationss1d. The pa-
rameters used here aren=0.01, Q=1, l1=0.9, l=0.1, g=−0.02,T=0.2, A
=0.5. Both cells are equally occupied at densities lower than the condensa-
tion point se.g., point 1d; this equivalence is broken at higher densities
spoints 2 and 3d. Bottom sketches: The mechanism of spontaneous symme-
try breaking at the condensation point has counterparts in the theory of
equilibrium phase transitionsse.g., the paramagnetic–ferromagnetic transi-
tion shown in the left sketch at the bottom and certain dynamical instabili-
ties of the type sketched in the right sketch at the bottom, as described in the
textd.
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subject to an asymmetric substrate but only to the external
force fBstd; namely UA=U− fAstdx, and UB=−fBstdx. The
Langevin equations can be manipulated to determine the
time evolution ofFAB at B densitiesnB much lower than the
A densitynA:

]FAB

]t
=

]

]x
HFAB

] fUAsxd + Wsx − x8dg
]x

+ kBT
]FAB

]x
J

+
]

]x8
HFAB

] fUBsx8d + Wsx − x8dg
]x8

+E dx9FABAsx,x8,x9d
]Wsx8 − x9d

]x8
+ kBT

]FAB

]x8
J ,

s25d

whereFABAsx,x8 ,x9d is the three-particle distribution func-
tion related to the probability of finding twoA particles near
x andx9 and aB particle nearx8.

Next, we express the three-particle distributionFABA in
terms of one-particleFa and binary distributionFAB func-
tions. In general, a binary function can be written as

FABsx,x8d = FAsxdFBsx8dGSx + x8

2
,x − x8D s26d

whereFA andFB are the one-particle distributions forA and
B and G defines the deviation of the distribution of theA
particles near aB particle. In other words, the productFAG
determines the conditional probability to find anA particle at
x giventhat aB particle is atx8. Since we assume zeroA–A
interactions, the conditional probability to find oneA particle
at x is approximately independent on the conditional prob-
ability to find anotherA particle atx9 sor at least these cor-
relations are relatively weakd. Thus, the three-particle distri-
bution can be expressed as

FABAsx,x8,x9d = FBsx8dFAsxd

3GSx + x8

2
,x − x8DFAsx9d

3GSx8 + x9

2
,x9 − x8D . s27d

To make the problem analytically tractable we also consider
the interaction rangel of the A–B interactions to be much
smaller thanl. In such a case we can assume long distances
ux−x8u@l swhereGssx+x8d /2 ,x−x8d=1d in order to derive
FA andFB, and short distancesux−x8uøl to calculateG. In
the long distance limit, we obtain the Fokker–Planck equa-
tions for FA andFB:

FA]xUA + kBT]xFA = − jA,

FBs]xfUB + gFAg + bFAd + kBT]xFB = − jB s28d

with ]x=] /]x, the effective interaction constant

gsxd =E dyWsydGsx,yd s29d

and dragging coefficient

bsxd =E dyWsyd
]Gsx,yd

]y
−

1

2

]gsxd
]x

. s30d

The particle currentsja are defined as]Fa/]t=−] ja/]x and,
in the adiabatic approximation studied below, depend on the
instantaneous value of the driving forcesfastd. The equation
for the correcting factorGsx,yd to the mean-fieldsMFd ap-
proximation withy=x−x8 can be easily constructed by im-
posinguyu&l! l in Eq. s25d. For the sake of simplicity, here
we only display the case whenU=0, i.e.,

]

]y
HGS ]Wsyd

]y
− VABD + kBT

]G

]y
J = 0, s31d

where

VAB ; VA − VB =
jA
nA

−
jB
nB

s32d

is the relative velocity. Therefore, theA–B interaction pro-
duces:s1d An effective potentialgsxdFA acting on theB par-
ticles, which were originally insensitive to the substrate, and
s2d an effective dragbsxdFA exerted by theAs on theBs.

A. Dragging and time asymmetric driving:
Controlling particle motion without a substrate

1. dc-Dragging by auxiliary particles

When no force acts on theB species, the dc-drivenA
particles can drag along theB particles. WhenU=0 fEq.

FIG. 7. The upper schematic diagram: The dragging ofB sblue particled by
a passing redA particle; theB particle feels a larger density ofA-particles
behind than in front ofB, due to the slowing down ofA approachingB and
acceleratingA moving away fromB. The lower schematic picture shows the
clustered motion of threeA and oneB particles. The bottom table shows the
effective mobility and critical driving amplitude for cluster destruction.
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s31dg, the dragging problemswith fB=0 and fA=Adcd is
solved analytically. IfjA= jB=0, the functionG is a simple
Boltzmann distributionG=exps−W/kBTd, while if VA.0
one obtains

G =
VAB

2kBT
E

y

`

dzexpHWszd − Wsyd − VABsz− yd/2
kBT

J .

s33d

InsertingG in Eq. s28d yields VA= fA,

VB = nAE dyGsyd
]W

]y
. s34d

In order to understand the physical picture of this drag-
ging effect, let us consider a driven particleA sred particle in
the upper “slip-dragging” sketch in Fig. 7d approaching a

nondriven particleB sblue particled. For repellingA–B inter-
actions, theA particle is slowing down when it is behind the
B particlesi.e., in the green “slowing down” regiond. As soon
as theA particle overtakes theB particlesi.e.,A occurs in the
yellow “accelerating” region in front ofB in the upper sketch
in Fig. 7d, the B particle pushesA forward, accelerating the
motion ofA. Because of the faster motion ofA in front of B
sthe yellow region in the upper sketch of Fig. 7d, compared
to whenA is behindB sthe green region in the same sketchd,
theA particle spends more timesor can be found with higher
probabilityd behindB than in front ofB. This results in an
effective force acting onB, i.e., pushingB in the direction of
the A particle motion.

Next, we performed numerical simulations of the Lange-
vin equations for theA andB particles with interactions de-
scribed in s23d. In spite of the finite interaction lengthl
introduced in our simulation, the analytical equation forVB

obtained above describes fairly closely our data in the upper
panel of Fig. 8sad, showing that the dragging effect attains a
maximum for a certain value ofAdc. Introducing the pair
interaction between the particles of the same typesWasyd

FIG. 8. Dragging particlesB by auxiliary particlesA in the case ofno
substrate, U=0, and interaction strengthg= ±0.02.fsad, upper panelg Sym-
bols are from MD simulationssred open and blue solid symbols for repul-
sive and attractiveA–B interactions, respectivelyd with time step dt
=0.000 47; black lines are the results of analytical calculations.fa, lower
panelg The green opensmagenta solidd circles and olive opensorange solidd
squares are data fornA=40, g= +0.02 sg= –0.02d and nonzero attractive
srepulsived interactions between the same particles with
gA=gB= –0.005sgA=gB= –0.01d. sbd The mobility of A andB particles vs
dc forceAdc obtained from the MD simulations for lower temperature, and
repulsive interactions. The different numbers of particles in a cluster are
chosen assNA,NBd=s1,1d red, s2,2d orange,s2,1d magenta,s3,1d pink.

FIG. 9. The net velocitiesVA and VB, from numerically solving Langevin
equations24d, vs driving amplitudeA spanel bd or frequenciesv2/v1 spanel
cd for l=0.075. The time-asymmetric signal used insbd is shown inspanel
ad. Red open and blue solid symbols insbd correspond to repulsive and
attractive interactions, respectively. The black line insbd and black solid
squares inscd representVB calculated analytically.sdd Vortex pump uses the
time asymmetric electrical currentJstd pushing Josephson vorticessJVsd,
shown in green, back and forth. Due to the attraction between JVs and
pancake vortex stackssPVsd, shown in red, this time asymmetric drive re-
sults in dc motion of both JVs and PVs. The densities of JVs and PVs can be
easily controlled by an externally applied magnetic field having both in-
planeHab and out-of-planeHc components.
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=gasl− uyud /l2 if uyu,l and Wa=0 otherwised, we found a
similar dependence ofVB on Adc fsee the lower panel in Fig.
8sadg also for the case when interactions between particles of
the same typesi.e., A–A and B–B interactionsd are taken
into account. With decreasing temperature, the solution of
the derived transcendental equation forVB vanishes, signal-
ing the occurrence of a dynamical phase transition. Indeed,
for weak driving forces, all theA and B particles tend to
cluster togetherssee the lower schematic diagram in Fig. 7
for a cluster having three drivensred Ad particles and one
sblue Bd nondriven particled. In order to estimate both the
maximum driving forceAdc

crit for the clusters to be stable and
their translational velocityVclust, we introduce force-balance
equations for clusteredNA particles of typeA, andNB par-
ticles of typeB at T=0:

VA = Vclust= fA − NBf int; VB = Vclust= NAf int s35d

with interaction forcef intømaxu]yWu= ugu /l2. Thus, we ob-
tain

Vclust=
NAfA

NA + NB
s36d

for a dc driving forceAdc,Adc
crit and

Adc
crit = sNA + NBd · maxu]yWu. s37d

This gives the cluster mobility mclust=Vclust/Adc

=1/2,1/2,2/3,3/4 and critical force Adc
critsugu=0.02,l

=0.05d=16,32,24,32 for clusters with sNA,NBd
=s1,1d ,s2,2d ,s2,1d ,s3,1d, respectivelyssee the table in Fig.
7d. These numbers are in good agreement with the simulation
results of Fig. 8sbd.

2. Rectifying the ac dragging

The dragging effect may be used to induce a net motion
of both A and B particlesin the absence of a substrate, U
=0: As an additional ingredient, atime asymmetric zero-
average force, like sinusoidal forces

fAstd = fA
cossv1,v2d = Ascosv1t + cosv2td s38d

with v2=2v1,
36 or the rectangular waveform of Fig. 9sad,

must be applied to one species, say the auxiliary particlesA.
Indeed, applying the alternate signalsfA=−GA and fA=A,
during the time intervalst1=1/s1+Gdn and t2=G / s1+Gdn,
respectively, forces time-periodic particle flows with fre-
quencyn. The netB current can be written as

kVBlt =
VBsfA = GAd + GVBsfA = − Ad

1 + G
s39d

with time-asymmetry factorG. The averagekVBlt can be eas-
ily calculated through our analytical expression for the ther-
mally averagedVB as well as from simulations; data and
analytical results compare very wellfFig. 9sbdg. The rectifi-
cation due to theA–B dragging can also be seen asspikesor
resonancesfFig. 9scdg on the dependence of the net veloci-
ties VB and VA on the frequencyv2, if the signal fA

= fA
cossv1,v2d with two-frequencies is applied. When chang-

ing v2/v1, the change of the sign of the net velocities allows
to effectively control the motion of both species.

B. Mediated ratchet effect

If the A particles move on an asymmetric substrate, the
equation forG becomes complicated. Thus, we will now
consider a mean-field sMFd approximation when
G=1.31,32,34,35Even though dragging is lost in such an ap-
proximation sb=0d, the effective potential acting upon the
targetB particles can be qualitatively reproduced.

When only one species of particlesssay, Ad feels the
substrate potentialssee Fig. 10d, active particlesA accumu-
late in the potential wells and repel passive particlesB away
from these locations towards the maximum of the substrate
potential. This results in distributions ofA and B particles
having different asymmetryfFig. 11sadg for repulsiveA–B
interactions. In contrast, for attractiveA–B interactions, both
particles accumulate in the substrate minima as shown in our
simulationsfsee Fig. 11sbdg. This can be described using the
effective potential approach discussed above for the one spe-

FIG. 10. Schematic diagram showing the mechanism of
the mediated ratchet effect: The activeA particles
sshown in redd occupy the potential minima and repel
passivesinsensitive to the substrated B particlessshown
in blued to the maxima of the substrate for the case of
repulsiveA–B interactions. This can be interpreted as
the creation of an effective substrate forB particles with
opposite polarity with respect to the substrate felt by the
A particles.
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cies case. Namely, using a perturbation approach to Eq.s28d,
we derive the effective potentials and temperatures for mov-
ing fraction of particles as

Ua
eff = Ua + gaAfA

s0d + gaBfB
s0d, kBTa

eff = kBT + gaafa
s0d,

s40d

wherefa
s0d are equilibrium distributions. The renormalization

of the diffusion constantsor effective temperatured and the
potential experienced by the fractionca of moving particles

accounts for their interaction with the remaining particles of
bothspecies. Thus, the effective potentials have the opposite
polarity for repulsiveA–B speciesfFig. 12sadg and the same
polarity for attractiveA–B speciesfFig. 12sbdg.

C. Gating effect: Flashing effective potential

In the adiabatic approximation1 Eqs. s28d yield for the
net current of thea-species

Ja = nE
0

1/n

dtjasfAstd, fBstdd, s41d

with

ja = nalkBT
1 − exps− l f a/kBTd

E
0

l

dxE
x

x+l

dzexpsfUa
*szd − Ua

*sxdg/kBTd
, s42d

whereUA
* =UA and

UB
* sx, fAd = gMFFAsx, fAd − fBx,

with gMF=edyWsyd. The polaritysor asymmetryd of gMFFA

coincides with the polarity of the original substrateU for
attractive interaction,gMF,0, and vice versa for repulsive
A–B potentials,gMF.0. Therefore, the ac motion ofB par-
ticles can be rectified on this potentials“mediated” ratchet
effectd, i.e., theB particles, which do not originally feel any
substrate, perceive a spatial asymmetry due to theA–B in-
teraction. Thus, when the motion ofB particles is governed
by a “mediated” ratchet effect, one expects theA andB net
currents flowing in the same directions ifgMF,0, or in the
opposite direction ifgMF.0. However, there is an additional
effect controlling theB motion as the effective potential
gMFFA changes with time. When the forcefAstd points
against the steeper substrate slopessthe “hard-motion direc-
tion”d, theA particles tend to accumulate near theU minima.

FIG. 11. Distribution of active A and passive B particles for the repulsivesad
or attractivesbd interspecies interactions. The other parameters are:Q=1,
l1=0.9, nA=200,nB=12, l=0.05.

FIG. 12. Spatial dependence of the ef-
fective potentialsUA

eff, UB
eff at different

densities of theA and B particles. In
both panels, particles of the same type
repel one another; the interaction be-
tween particles of different species is
repulsive in sad and attractive insbd.
There is no “bare” potential for theB
particles,UB;0, whereas the ratchet
potential UAsxd is piece-wise linear
s19d and hereQ=1, l1=0.8. The other
coupling parameters are:gAA=gBB

= ugABu=1 andkBT=1.
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Thus, due to the repulsivesattractived A–B interactions, this
strongly nonuniform distribution ofA particles causes high
peakssdeep wellsd in the effective potential acting on theB
particlesfFig. 13sadg. The ensuing high potential barriers of
UB

eff significantly slow down theB particle motionsgating
effectd when theA particles move in their “hard” direction.
In contrast, the relatively faster motion of theA particles as

fAstd pushes them in the opposite, “easy” direction, corre-
sponds to shallowerUB

eff barriers fblue solid line in Fig.
13sadg and, thus, to a higherB mobility. The time-correlation
of these stopping intervals forB particlesswhen theAsmove
in the “hard” directiond and ac–drivingfBstd of Bs results in
another way to control the motion ofBs.

D. Interplay between gating, mediated-ratchet,
and dragging effects in a rocked ratchet

Let us consider ac drives of the form

fAstd = AA sgnfcossvAt + fAdg

and

fBstd = AB sgnfcossvBt + fBdg. s43d

If the frequencies and amplitudes of both signals coincide
vA=vB=v, AA=AB=A, we can restrict the discussion to
three main cases depending on the relative phase of the ac
forces: sid In-phase drives:fA=fB; sii d opposite-phase
drives: fA=fB+p; and siii d p /2-shifted drives:fA=fB

+p /2. In the first two cases the gating effect is dominant and
the direction of theB current does not depend on the polarity
of gMFFA, i.e., the sign ofVB is insensitive to the sign of the
A–B interactionssattractive or repulsived. Indeed, theA par-
ticles, when pushed against the steeper slopes ofU, create
the high barriers ofUB

eff fFig. 13sadg that lock the motion ofB
particles as long asfB pushes them to the right or to the left
in the case of in-phase or opposite-phase ac drives. Thus, the
A and B particles drift necessarily to the same or opposite
direction for casessid or sii d, respectively. In contrast, when
fAstd and fBstd are phase shifted byp /2, theB particle mo-
tion is governed by the asymmetry of the effective potential
gMFFA. During the half ac cycle when the effective potential
UB

eff develops highslowd barriers, theB particles are being
pushed directly byfBstd to the right and to the left for the
same amount of time. Thus, theB particles are driven back
and forth on the asymmetric ratchet potentialsgMFFAsx, fA

=Ad andgMFFAsx, fA=−Ad, alternately. Since the polarity of
these potentialssdue to “mediated” ratchet effectd depends
on the sign of the interactiongMF, attractiveA andB particles
move togetherfsgnsJAd=sgnsJBdg, while repulsive particles
travel in opposite directionsfsgnsJAd=−sgnsJBdg.

Examples of MF calculations for in-phase, opposite-
phase andp /2-shifted drives are shown in Fig. 13sbd. Our
numerics prove that dragging effects may correct the MF
estimates ofVB, so as to break the symmetry with respect to
the interaction signfsee Fig. 13scd for casessid and sii d and
Fig. 13sdd for siii dg. Nevertheless, the main MF picture re-
mains valid. In order to clearly separate dragging and recti-
fication effects, we performed simulations withAAÞ0, AB

=0 fFig. 2sedg and with AA=0, ABÞ0. For the first case
sdraggingd, theA andB particles drift in the same direction,
while in the second casesmediated ratchetd the sign ofVB is
determined by the sign of theA–B interactions. Finally, if
we fix amplitudes and phases, for instance,AA=AB and fA

=fB, and change the frequency ratiovA/vB, we obtain ve-
locity spikes for commensurate values ofvA andvB. Indeed,
in the incommensurate case the gating effect is irrelevant and

FIG. 13. How to control the net velocitiesVA, VB by ac forcesfA and fB on
an asymmetric substrate potentialfgreen profile insadg coupled to theA
particles, only. We setl=0.075,nA=50, nB=1, dt=0.000 47,ugu=0.02, Q
=−1, l1=0.9. sad The effective MF potentialsred dashed and blue solid
landscapesd felt by theB particles when theA particles are forced towards
the “hard” sto the rightd or to the “easy”sto the leftd directions, respectively.
sbd VA and VB vs the ac amplitudeA of fA and fB calculated in the MF
approximation Eqs.s41d, s42d for the repulsivesattractived A–B interaction
and in-phasesred solid and blue dashedd, out-of-phasespink solid and light
blue dashedd andp /2-shiftedsorange solid and violet dashedd ac forces.scd
The MD data ofVB for repulsivesattractived species and in-phasesred open
sblue solidd trianglesd and opposite-phasesred opensblue solidd circlesd
driving forces; black symbols markVA. sdd The same as inscd with red open
sblue solidd squares for repulsivesattractived interactions andp /2-shifted ac
forces, black symbols areVA. sed The ac force is applied only to theA
speciessi.e., fB=0d. VB is marked by red opensblue solidd up-triangles for
repulsivesattractived interactions, the correspondingVA marked by down-
trianglesscirclesd. sfd The ac force is applied only toB particlessfA=0d, VA

is very weaksblack symbolsd, but the ac motion ofB particles is rectified by
an effective asymmetric potentialsVB is plotted by red opensblue solidd
symbols for repulsivesattractived interactionsd. sgd The dependence of the
net velocitiesVA sblack squares from MDd andVB sred open symbols from
MD and green filled circles calculated analytically and linearly scaled to fit
MD datad on the frequency ratiovB/vA sodd ratios provide peaksd for
repulsive interactions andAA=AB=8, fA=fB=0.
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the net motion is determined by a combination of mediated
ratchet and dragging effect. However, if the frequencies of
the driving signals are commensurate, the modulation of the
effective potentialUB

eff gets time-correlated with the direct ac
drive fBstd, thus resulting in large deviations ofVB from its
incommensurate baselinefsee Fig. 13sgdg. Note that the ve-
locity spikes38 shown in Fig. 13sgd result from spatial asym-
metriessi.e., they disappear ifU=0d; in contrast, the velocity
spikesfsee Fig. 9scdg for commensurate values ofv1 andv2

in the absence of a substrate, are caused by the residual non-
linearity of the symmetric problemVBsfAd=−VBs−fAd. fAs a
result, in Fig. 9scd spikes happen at different winding num-
bers with respect to Fig. 13sgd.g

V. CONTROLLING VORTEX MOTION USING EITHER
TIME-ASYMMETRIC DRIVE OR SPATIAL-
ASYMMETRIC SUBSTRATE

As one of the possible experimental realizations of our
proposal, let us now consider an interesting vortex system39

in layered superconductors like Bi2212 placed in an external
oblique magnetic fieldsFig. 14d. Theab-field componentHab

generates Josephson vorticessJVsd trapped between super-
conducting layersfgreen vortices in Fig. 9sddg. JVs are usu-
ally very weakly pinned and can be driven by the electrical
current Jcstd flowing along thec axis. This results in the
rocked potential

UJV = F0Jcstdx/c,

with flux quantaF0 and light speedc. Note, that this prob-
lem can be reduced to one-dimensionals1Dd because of the
translational invariance alongHab. Thec axis magnetic field
component generates pancake vortex stackssPVsd fred vor-
tices in Fig. 9sddg, which can be easily driven by an in-plane
ac currentJabstd and subject to a periodic pinning potential

Upin fabricated by using irradiation or lithography. This re-
sults in the rocking potential for PVs:

UPV = F0Jabstdx/c + Upin.

The mutual interactionWPV–JV between PVs and JVs is the
short-range attraction interaction.11 The parameters of vortex
interactions and pinning can be easily controlled by tempera-
ture and magnetic fields. Since vortex dynamics is described
by overdamped equations, the problem of the mutual PV–JV
transport is reduced to the one considered in this paper. Thus,
the binary mixture of PVs and JVs is an experimentally ac-
cessible system where the effects discussed above can be
observed. For instance, several devices which drag PVs by
JVs using time-asymmetric drives have been discussed11 ssee
Fig. 14d. Recent experiments13,14 confirm our theoretical
predictions.11

Another vortex system exhibiting features of binary mix-
tures was studied on a superconducting/magnetic hybrid with
magnetic triangles and a superconducting film.12 The vorti-
ces, pinned by magnetic traps and jumping from one triangle
to another, play the role of an active species for such system,
while the interstitial vorticessmoving outside trapsd can be
considered as a passive speciesssee Fig. 15d. The mediated
ratchet effect produces the rectification in such a
superconducting/magnetic hybrid. This allows us to
interpret12 the observed current inversion.

VI. CONCLUSIONS

The stochastic transport of interacting particles, for
single species and binary mixtures, is described both analyti-
cally susing Fokker–Planck-type equations for many-particle
distribution functionsd and numericallyssimulating Langevin
equationsd. The rectification power of one-species ratchet
devices can be tuned by changing the particle density and

FIG. 14. Three different devicessRef.
11d use time-asymmetric drives to rec-
tify motion of two vortex species: Jo-
sephson vortices and pancake vortex
stacks.
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described using effective potentials accounting for both
substrate and particle interactions. Moreover, a huge en-
hancement of the rectification can be obtained for attracting
particles near and above the condensation transition when a
macroscopic amount of particles pile up or condense in the
substrate minima. We describe ways to control the motion of
passivesinsensitive to substrate and/or driving forcesd spe-
cies in binary mixtures, including dc and ac dragging passive
species by active ones, mediated ratchet effect, and gating
sflashingd mechanisms for guiding both components of the
binary mixture.

We study here the net motion of interacting particles,
while the other interesting issue—their diffusion—calls for
further investigation. Note that even the diffusion of a single
particle in a washboard potential exhibits very intriguing
properties,40 which become more complex for interacting
particles.
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