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Abstract.  
We argue that the appearance of the Landau pole in the running coupling of 

QCD introduces 1/Q 2 power corrections in current correlator functions. These 
terms are not accounted for by the standard operator product expansion and is 
the price to be paid for the lack of a unique definition of the running coupling 
at the 1/Q 2 level. We review also possible phenomenological implications of the 
1/Q 2 terms in an alternative language of ultraviolet renormalon. 

1. Renormalons by construction are a part of the dynamics of the standard 
model since they are simply a set of perturbative graphs existing within, say, 
QED or QCD [1] (for a review see, e.g., Ref. [2]). Nevertheless, there are links 
of renormalons to the physics beyond the standard model. For example, one 
may consider renormalons within theories going beyond the standard model, 
in particular, supersymmetric gauge theories [2]. In this part  of the talk 
we shall choose another route and concentrate on hints to the non-standard 
dynamics revealed by renormalons. More specifically, we will consider 1/Q 2 
terms which are absent from the standard operator product expansion [3] but 
are indicated by the ultraviolet (UV) renormalons [4-8]. The material we are 
presenting is to a great extent of a review nature. There are also some new 
points, in particular, the relation of the 1/Q 2 terms to the Landau ghost has 
not been emphasized so far. 

2. To explain, why the 1/Q 2 terms could signal a kind of non-standard 
dynamics let us first outline schematically the standard picture. For our pur- 
poses, it is most coveniently formulated in terms of the QCD sum rules. The 
basic features of the sum rules is the emphasis on the power-like corrections. 
In a simplidfied form, one derives the sum rules of the type: 

f ( - -  <0'as(G~)2l~ ) ezp(-s/M2)R(s)ds ~ (patton modal) 1 + ~8(M2) + cG M4 ~ ' 
7r 

( 1 )  

where R(s) is the total cross section of e+e - annihilation into hadrons in the 

CP415, Beyond the Standard Model V: Fifth Conference 
edited by G. Eigen, E Osland, and B. Stugu 

�9 1997 The American Institute of Physics 1-56396-735-9/97/$10.00 

274 



standard units, M s is a large mass parameter and < 01as(G~)ul0 > is the so 
called gtuon condensate, Ca is a coefficient calculable perturbatively. 

Moreover, in analyzing the sum rules one assumes that it is the power- 
like corrections of order M -4 which signal breaking of asymptotic freedom at 
moderate M 2 of order _< ( G e V )  2. Phenomenologically, this breaking is due 
to appearances of resonances. Note the absence of 1 / M  2 corrections from Eq. 
(1). This is a direct consequence of the OPE since the first gauge invariant 
operator, that is c~s(G~) e has dimension d = 4. 

It is important to emphasize that the matrix element < > 

is saturated by infrared contributions. In particular, the 1 / M  4 corrections 
can be traced by means of infrared renormalons [9]. Within the renormalon 
approach the gluon condensate manifests itself as n! growth of the coefficients 
a~ of perturbative expansions in the running coupling as(Q2): 

~0 ~Q~ ,.~ k2dk21bo~nln,C~2n.2~n~ j t,,~ /,~ / ,.~ Oo z-n--nn.., (an)in (2) 

Here n is the order of perturbative expansion considered to be large, bo is 
the first coefficient of the ~-function which is positive in QCD, k 2 is virtual 
mometum flowing through gluon line and Q is an external momentum such 
that Q2 >> A~CD" The large numerical value of a~ is due to the contribution 
of characteristic momenta of order 

k2h~r ~ e-n /2Q 2. (3) 

Independent of whether one is using the general OPE or IR renormalons, 
the resulting picture can be described in a very simple way: the presence 
of low-lying resonances on the phenomenological side is signaled by power 
corrections of infrared narure derivable within fundamental QCD. 

3. This picture, which seems perfectly selfconsistent, is challenged by UV 
renormalons. Ultraviolet renormalons are known [1] to dominate perturbative 
expansions at large orders of perturbation theory. The expansion coefficient 
at large n is proportional to: 

~ d k  2 

(a, ,)vv ~ J~ ~ ( - t l%'dn! .  (4) 

Note that we will use a one-term fl-function for simplicity. In fact, evaluation 
of the UV renormalon can be pursued much further [5,10] but the improve- 
ments are not crucial for our purposes. 

Thus, there are two basic features of the UV renormalons which are impor- 
tant for our discussion: 

(i) the UV renormalon is Borel summable because of the sign oscillations, 
(-1)  n, 

(ii) UV renormalons are related to very large virtual momenta: 
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k~hor ~ e"@. (5) 

Both features seem to meet our intuition: because of asymptotic freedom the 
large momenta in QCD should represent no major prblems and, as a reflection 
of this, the contribution of the UV renormalons can be summed up. 

However, a paradox arises [4] once it is realized that the UV renormalons is 
Borel summable to a 1/Q ~ piece: 

oo A~CD 
b~(-1)nn!(~s(&))" -~ cUV Q---~ (6) 

ncr i t  

where n~.u is the critical value of the order of the perturbative expansion 
starting from which the perturbative contributions start to rise as function of 
n because the factor n! prevails over the factor (c~s(Q2)) n and cuy is a constant, 
while the arrow means that the standard Borel summation is applied to the 
asymptotical perturbative expansion. 

What is surprising about the Eq. (6) is that it defies the standard picture 
outlined above. Indeed, phenomenologically the A~cD/Q 2 piece would be 
associated with the contributions of low-lying resonances while the UV renor- 
malon is associated with large virtual momenta k s >> Q2 >> A2QCD" Thus, it 
appears that physics in the infrared should match physics in ultraviolet as far 
as power like corrections are involved. 

Another important point about the UV renormalons is that the Borel sum- 
mation is not the only way to deal with the divergence (4) of the perturbative 
expansions and the results of alternative procedures is not obviously the same. 
Namely, one can utilize either a conformal mapping [11] or expansion in the 
coupling normalized at a high scale #2 #2 >> Q2 [12] to avoid the divergence 
due to the UV renormalon. In particular, if one uses the expansion in c~(# 2) 
then the uncertainty of the perturbative expansion due to its asymptotical 
nature caused by the UV renormalons is of order [12]: 

A ~ c  D Q4 
A u v ( & )  ~ cur Q2 ~4 (7) 

and can be made arbitrarily small by choosing #2 >> Q2. Although this trick 
might appear to solve the problem of the UV renormalon it rather brings 
new problems in fact. Indeed, if one detects the presence of 1/Q 2 correction 
in one formulation of the perturbative expansion and looses track of it while 
using another formulation then this might imply either the inconsistency of 
the whole approach or existence of further consistency conditions to be yet 
established. 

4. The paradoxes are resolved, to our mind, by the simple observation that 
perturbatively the coupling is not well defined at the 1/Q ~ level because of 
the Landau pole. Indeed, if we use the running coupling in the standard form: 

c~s(Q2 ) _ 1 (8) 
bolnQ2 / A~cD 
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then we introduce a pole at QZ = A 2 which is a fake singularity in the QcD 
sence that all the perturbative graphs have only cuts which start from s = 0. 
The emergence of the Landau pole is an artifact of the summation procedure 
which leads to (8). This summation procedure is well known to be justified 
in the leading tog approximation and does not introduce any inconsistency at 
the logarithmic level. However, as far as the power like correction 1/Q 2 is 
concerned it is in fact not fixed by perturbation theory itself. Note that our 
simplifying use of the one-term/3-function is not crucial at this point, at least 
as far as the use of a more realistic/%function does not remove the Landau 
pole. 

Thus, when one demonstrates the absence of the 1/Q2 corrections by apply- 
ing the expansion in as(#2), #a --+ oo (see discussion above) one heavily uses in 
fact the analyticity properties of the perturbative graphs. On the other hand, 
the use of the running coupling a~(Q 2) to demonstrate the 1/Q 2 uncertainty 
due to the UV renormalon relies on a resummation procedure which does not 
observe these analyticuty properties on the level of the 1/Q 2 terms. As far 
as the problem of the Landau pole is not solved within the the perturbation 
theory there is no way to decide which derivation is preferable. 

One may introduced a running coupling with the Landau ghost removed: 

1 AaQCD 
&s(Q 2) - boinO2/A~c D + b0(h~c D _ 02 ) (9) 

which at large Q2 clearly differs from the "standard" coupling (8) by a 1/Q 2 
correction. This kind of redefinition of the coupling goes back to the fifties 
[13] and was reviewed very recently in the context of QCD in Ref. [14] where 
further references can also be found. One can of course introduce further 
modifications which in turn remove the 1/Q 2 term: 

' 2 1 AbCD AbeD (10) 
5ts(Q ) = bolnV2/A2QcD ~- b0(A~c D - 0 2 )  + boQ-------- 5- 

According to ref. [14] the advantage of this form is that the pole is shifted 
now from unphysical Qz to Q2 _ 0 which is the beginning of the physical cut. 
Moreover, the coupling (10) differs from the standard definition (8) only by 
1/ Q 4 terms. 

5. Thus, the 1/Q 2 terms are viewed now as arising from the uncertainties 
of the perturbative definition of (~s. Although the OPE says that there is no 
1/Q 2 correction this should be understood rather as a statement about the dif- 
ference of the full answer for the polarization operator ll(Q 2) (or its imaginary 
part proportional to R(s)) and its perturbative expansion (in finite orders). 
Since the perturbative expansion itself is in fact not defined at the 1/Q 2 level, 
the prediction on the absence of the 1/Q 2 terms is not well formulated yet. An 
extra hypothesis is to be made concerning the precise definition of as which 
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avoids 1/Q 2 corrections in the polarization operator. 1 Also, the interplay be- 
tween low and high momenta  revealed first by the UV renormalons (see above) 
becomes less surprising. Indeed, it is non-perturbative effects which presum- 
ably settle the problem of the Landau pole in the infrared. The  corresponding 
ultraviolet "tail  .... in the coupling behaves itself as 1/Q 2. 

It  is worth emphasizing that  various definitions of the coupling are not 
simply related by adding or removing 1/Q 2 in a universal way from all terms 
of different order in as. Consider as an example a te rm of second order in 
the running coupling -,~ a~(Q2). Imagine furthermore tha t  we would like to 
remove an unphysical singularity due to the Landau pole from the dispersive 
representation of as(Q2), i.e. to work out an expression similar to EQ. (9). 
To this end we should remove a single pole from: 

1 1 A2QCD (11) 
In2Q2/A2QcO ln2O2/A2Qco @ 2 - A2 Qco " 

Thus, we readily see that  as far as 1/Q 2 terms are concerned the uncertainty 
2 is no less than in as so that  the whole perturbat ive series collapses for in c~ s 

the power correction. A similar phenomenon occurs in fact in case of the 1/Q 
correction due to IR renormalons in event shapes (see, e.g., Ref. [2]). 

From the phenomenological point of view this collapse of the  per turbat ive  
expansion in the power-like corrections implies that  the value of the 1/Q 2 
correction is to be considered as am independent fit parameter .  In particular,  
relation between 1/Q 2 contributions to various observables can be established 
only a t  the price of new model dependant  assumptions. 

6. The  lack of guidance as to which model is to be selected has hindered the 
progress in the phenomenology of 1/Q 2 corrections and we conclude this note 
with a mini review of the a t tempts  to develop the phenomenology of 1/Q 2 
corrections made so far. 

In fact these a t tempts  were formulated mostly in terms of the UV renor- 
malons. On the other hand, one may notice that  the very existence of the 
1/Q 2 can be guessed simply on the basis of existence of the  Landau  pole. 
We do not think, however, that  this change of the language is indeed very 
significant. The central problem is working out a reasonable model and any 
approach to the 1/Q 2 terms would be the equally good as far as the model 
turns out to be adequate in describing the data. 

1) One of the present authors (V.Z.) discussed the Landau pole as an origin of the 1/Q 2 
terms in the coupling constant with M. Beneke and V. Braun in 1994. A critique of this 
point of view can be found in Ref. [15] where it is claimed that the Landau pole does not 
introduce any uncertainty of order 1/Q 2 in theoretical predictions for physical quantities. 
It is our understanding that this statement is based in fact on a tacit assumption that 1/Q 2 
terms do not enter OPE provided that the standard running coupling or its modification 
a la (10)is used. Because of the inconsistency of the perturbation theory revealed by the 
Landau pole this assumption cannot be proven, to our mind. 
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The most frequently discussed channel i s the e+e - annihilation into hadrons, 
see in particular Refs. [6,7,16], since the data are most rich in this channel. 
Estimates of 1/Q 2 terms in the tau-decays which arise from using various 
types of dispesion relations can be found in Ref. [7]. On the other hand. one 
can invert the problem and get constraints on possible 1/Q 2 terms from the 
data [16]. The bounds turn to be quite stringent. 

Relatively large 1/Q 2 would be welcome on phenomenological grounds in 
the pseudoscalar (pion) channel [6]. Moreover, the description of the 1/Q 2 cor- 
rections in terms of the UV renormalon can match in this case the description 
of low-energy physics in terms of the Nambu-Jona-Lasinio model. While this 
hypothesis is far from being firmly established let us mention developments on 
the theoretical side which do favour this possibility. First, it turns out that the 
UV renormalon is dominated by contribution of the same four-quark operators 
which are postulated within the NJL model [5]. This is not a trivial statement 
since these operators emerge first only on the level of two renormalon chains, 
not a single renormalon chain. This dominance of the four-quark operators in 
the UV renormalon is true for various further observables as well [10]. 

Although it is attractive to assume that a 1/Q 2 correction is actually the 
leading power-like correction in the pseudoscalar channel, at first sight this 
picture cannot recoinciled with the bounds on the 1/Q 2 in the vector channel 
(see discussion above). It seems indeed remarkable therefore that the direct 
evaluation of the two renormalon chains in the vector and pseudoscalar cahn- 
nels indeed indicates a substantial numerical disparity of these contributions 
[8]. More specifically it turns out that the contribution of the UV renormalon 
in these channels is related as [8]: 

(UV renormalon)ps = 18 (UV renormalon)y (12) 

where the large numerical factor emerges pure numerically. 
7. To summarize, the very existence of the Landau pole induces, generally 

speaking, 1/Q 2 corrections at large Q2. Alternatively, these corrections can 
be ascribed to the UV renormalons. Although the phenomenology of such 
corrections is still in its infancy there are some reasons to expect that the 
pion is in fact dual to the 1/Q 2 corrections of the fundamental QCD. 2 If this 
interpretation turns to be true it would provide with a new insight into the 
dynamics of hadrons and interplay of short and large distances in QCD which 
might be useful for understanding of the physics beyond the standard model 
as well. 

We would like to acknowledge useful discussions with V. Braun and A.I. 
Vainshtein. Very recently, similar remarks on the role of the Landau pole in 
generating 1/Q 2 terms were made by G. Marchesini and G. Grunberg and 
we are thankful to G. Marchesini for private communications on these matter. 
Finally, after this note was written there appeared a paper by G. Grunberg [17] 
devoted to the role of the Landau singularity in generating 1/Q 2 corrections. 

2) A possible connection to the Adler anomaly is worthy of investigation. 
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