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I~ Introduction 

I want to talk about two probloms in grand unification and indicate their 

solutions. These are the decoupling problem and the gauge hierarchy problem. 

They are interrelated. This work has been performed with Kazama and Unger I. 

As is well-known, in grand unificatlon 2, we assume the existence of a 

symmetry G, such that sot~e scalar acquires a big vacuum expectation value V 

and then subsequently another scalar develops a vacuum expectation value v to 

bring the symmetry to SU(3)colo r x (SU(2)xU(1))E.M. 
weak 

V v 
G § G' �9 SU(3)colo r • (SU(2)xu(1))E.M. 

we ak 

Now, the problems are: 

(I) Gauge hierarchy issue: 3 There are two aspects: 

(a) why is V >> v. We have no deep answer for this. It is in our opinion the 

same kind of question "why is m~>> me?". They are just input par&~eters. 

(b} To us, a more serious problem is "can we define a light sector"? In 

other words, can we maintain light particles to have small mass to all orders 

in perturbation without fine tuning. The answer is yes, to all orders in 

ccupling expansion. 

(2) Decoupling theorem: 4 Having said that we know how to separate particles 

naturally into light and heavy sectors, we may ask "does there exist an 

effective local Lagrangian theory, such that we can use it to reproduce all 

the light particle physical matrix elements at ener~ and IPi~ << M? The 

answer is again yes, to all orders of perturbation in couplings, i.e. 

~(g,M,m,~) § r n (1 light particle irreducible) 

~* (g*, m*,~} § F *n (I particle irreducible) 
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we can show that 

I 
(I) F n = zn/2 F *n + 0 (--) 

M 2 
(2) g* = g (g,~.~ M/p} 

* ~'.n M/p) m = m f(g, 
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Besides, we knew how to calculate, to all orders in g, g* and m* via 

improved perturbation, i.e. renormalization group equation. The operator 

structure of ~* is obtained from ~by delecting all tetras involving 

heavy fields. 

Note ~at we do our physics in the low ener~ region throughout. We 

conslder ~ M/p effects to be radiative correction ~ne to heavy particles. 

This is in contradistinction to some other people's attitudes 5, in which they 

boost up the ener~ of the external particles and devise methods so that their 

effective theories, which may not be local, will Join smoothly with the full 

theory. 

IIo Model 

We need a model to make my statements more concrete. Let me now be more 

specific. Let us consider an 0(3) gauge model with ~qo scalar triplets 

I § § § 

4 

1 ( 3 P  ~I " e~p x ~1)  2 ~( x § 2 
2 2 

1 2 § 1 2 - ) -2  1 .,+2 2 

- 2 - m l  ~1 - 2-m2 ~ 2 -  -4 )'1 ( ~ 1 )  

1 �9 +2 2 1 - ,2 -+2  1 -).  . . ) .  

- - )'2 C4) ) - - ~'3 ~) ~ " - )'4 (~P1"(I)2)2 
4 1 2 1 2 2 

We assume that At, A 2 

potential. Now, we shall 

> 0 so that there is a lower bound for the 

assume that the vacuum is unstable, such that 

\ 3J 
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with v I >> v 2 (renormalized v I and v 2 are input parameters). The other 

parameters are adjusted to make the potential reach its absolute minimum. 

At the tree level, we have ~4 > 0 and 

2 2 

max , < ~3 < 

v 2 " v  2 / 

2 1 

The minimum vacuum conditons are 

2 2 2 
-m = ), v + ), v 

1 1 1  3 2  

2 2 2 
-m = Av + Av 

2 22 31 

2 2 
In this way, m and m are determined parameters. 

1 2 2 

pertrubation series can be organized such that m 
1 

calculation, to all orders. 

In fact, we can sh~ that a 

2 
and m never appear in any 

2 

Let us now talk about the spectrum which will bring out another problem 

which must be treated in discussing decoupling. We find that 0 and ~ m i x .  

The mass eigenstates are 

H = O COS 8 - ~ sin 6 

h = O' sin 0 + (~ COS 8 

with masses 

2 2 2 2 
m -~ 2(~v + (~ /~ ) v 
H 1 1 3 1 2 

) Heavy 

2 2 2 
m -" 2(A - ~ /A ) v Light 

h 2 3 1 2 

sin 8 ~-- A v /(A v ) 
3 2 1 1 

Now, we quantize the theory in the 't Hooft-Feynman gauge 



1 p 

"~gauge = - 2~, ( a lP' l  - ~ v 2 # 3 ) 2  

I 
- 2U-- ( a~A2 - "~ ~3)2 

" 2u-- (aliA3 - ~  

+~ghost' Utree =I 
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Then we have the following spectrum 

Physical (mass) 2 would be Goldstone partner 
Particles 

AI e2v2 #3 
2 

A 2 e2v 2 w 3 
1 

2 2 2 2 1/2 
A 3 e2(v +v ) ~ffi(Vl~2-V2~l)/(v +v ) 

I 2 I 2 

H 

h 

2 2 2 
-" 2(~I v+(~ /~ )v ) 

I 3 I 2 

2 2 
-= 2(~2-A3/11) v 2 

2 2 1/2 2 2 
n = (v2w2+v1#1)/(v +v ) 14(Vl+V ) 

1 2 2 

The light particles are At, h, and @3 and the ghost of A I. Let us 

generically call these tree (masses) 2 m 2. Our solution to the gauge hierarchy 

problem is 

2 2 2 nl 2 2 ni-1 
m -m 2 (I + ~ [a i (lnv /~ ) +bi (lnV /~ ) + ...]) 
true i=loop 1 1 

to all orders. 

Now h and H will mix further when we carry out the loop expansion. We 

shall devise a set of Green's functions, such that mixing is automatically 

taken into account, To illustrate the natural choice, let us consider h-h 
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scattering. Zn the full theory we have 

Pl P2 

.>=i + 

H>>p i 
/ l ight theory 

So, the Green's functions in the full theory that we want are the one light 

particle Irreducible Green's functions. The decoupling theorem that we can 

prove to all orders in ccupling e~anslon is the following 

2 
~n (Pi} = zn/2 F*n (Pi) + 0 (1/v I ) 
ILPI IPI 

Pi << M 

in which F n is calculated via the full Lagrangian ~(g, A,Vl,V2, ~,u),while Y* is 

calculated from a light Lagrangian, the operator structure of which is that 

obtained when all heavy fields in ~ are all deleted. The coupling, mass and 

gauge parauneters are all functions of g, k,Vl,V2, ~ and u. 

~*light " ~*(g*, X*,v*, ~, ~'1 

~n v2/~ 2 ) g* " g*(g,X,~, 
1 

�9 . 2 
V " V 2 f(g,A,a,~ V /~2) 

I 

A* " A* (g,k,S, ~nV2/~ 2) 
I 

a* " a* (g,A,a, ~nV2/~ 2) 
I 

We do minimal subtraction in both theories. 
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IIIo Methodology 

How do we prove such results? 

(I) We first show that given any diagram with heavy internal lines, the 

corresponding integral can be rearranged so that the 0(1) terms all have the 

heavy lines shrunken into vertices.with no more than 4 light lines entering 

and/or leaving. The rest are negligible. This establishes the local 

renormalizable nature of the effective vertices. In fact, we can identify 

what these effective vertices are in relation to the light Lagrangian. 

However, a more economical way to show what the resulting local theory ensues 

is via BRS identities. 

(2) We can show that the relevant BRS identities in the full theory 

(Vl >> ~Pil, v2)+0(2) spontaneously ])token BRS identities. 

Thus, the limit of this 0(3) theory is just the Abelian Higgs model in 

its asymmetrical phase. Besides, only v 2 appears explicitly in the resulting 

identities, which is a confirmation of the stability of gauge hierarchy. 

To illustrate the first part, it is best to give an example. Consider a 

three point function 

PI+P2 

, , / /  
1 1 1 

I == M2fd4,t 
(~+pl)2"~2 (s s 

we define 

shrinking a (sub) graph to a point 

= setting all external momenta which go into/out of this graph to zero 

-- localization 
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There are two (sub)graphs which contains a heavy line 

1. 

I I 
(shrink operator TI) _ = -- 

r M 2 

2. 

(shrink operator T2)-- 
I I 1 

s (s 2 (s 2 

1 I 1 

s s s 

Then, we have an identity 

" (i'T2)(l'tl) [ I a' ~ ] 

Note that the resulting integrals are automatically renormalized. Only the 

second and third terms, which have been localized, contribute to order I. The 

first term is negligible. 

The proof of reduciton of BRS identities depends heavily on power 

counting. 

IV. Renormalization Group Equations 

I want to devote the remainder of the discussion to the renor- 

malization group equations which will be used to perform leading 

In sum of the dependence on l~ v~ / 2 of the effective parameters. 

As I said earlier, 
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we stay in low energy region to do our physics. Now when we work with the 

full theory, we. have the renormalization group equation 

YVl 3-~1 3v2 ~"AA~-nY) rn=0 

wi th 
d d 

m 8g = ,- g, YVl ~ Zn Vl, etc., 
dp d~ 

where r n has only light external lines. 

When we ~rk with the effective theory, we have 

(, -- + 8* -- + v* y* -- + y* - -  - ny*) r ' -  = 0 
@~ g* ~g* v* ~v* a* ~ ~* 

Now, we put the decoupling equation, which is 

1 
]~n .. zn/2 I'*n + 0 (~), 

M 2 

into the renormalization group equation of the full theory and demand that the 

resulting equation agree with that from the effective theoz~. We obtain 

many relations, which are basically chain rules for differentiation. For 

example 

This rather humble equation in fact allows us to sum up the leading 

contributions. For example, returning to 0(3) model, we have for the gauge 

c oupl ing, 

. 2 2 V2/i.12 ) e = e f(e 2 ~nv /p ) + e 3 f' (e 2 ~ + ... 
I 1 

e is considered to be small and e 2 ~v2/p 2 is 0(I). In leading order 
I 

2 2 
e* --" e f(e 2 ~v /~ ) 

1 
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e*3  
8 * ( e * )  ~ 1/3 , , 

16~ 2 

e 3 
8(e)  - ' -20 /3  

16', 2 

we have an equation 

( P - -  + B - - )  e *  = 6 * ( e * )  
3p 3e 

o r  

(~ ~ + B - - )  ( - 2 4 ~ 2 / e  . 2 )  = 1 
~e 

To solve this equation, we define a new running coupling constant with 

respect to the full theory where ~ = ~n Vl/". 

d 
- -  e = 13(e) 
dk: 

The solution is 

24.,2 24.,2 
- - . - -  = , + ~ V l / ~  
e*2 e--2 

or 

e*2 = 
e 2 

7 2 2 
1 + e 2 l n .  v / I J  

16 ' .  2 1 

This result, when generalized to an appropriate group, agrees with solutions 

of other people. 

In conclusion, we have shown that 

(a) Gauge hierarchy is a non-issue, by which we mean that there is no need for 

fine tuning to separate out the light sector. Once we divide heavy and light 
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2 2 
sectors at the tree level, then at every loop order only g2~nv /~ 

I 

corrections contribute to the light effective parameters. 

{b) We have a decoupling theorem, i.e. there exists a light Lagrangian, 

~*(g*,~*, v*,~*,~), which can be used to deal with low ener~ physlcJ. 

Besides, the dependence of g*, v*, ~*, ~* on the parameters in the full theory 

(g,A,vl,v2,~) can be determined by staying in low ener~ regions. 

There exist natural renormalization group equations to sum up the 

2 2 
Z, v /~ powers. 

I 

~is work is supported partially by the U.S. Department of Ener~. 
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