
The effect of gravity on liquid plug propagation
in a two-dimensional channel

V. Suresh and J. B. Grotberga!

Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109

sReceived 21 May 2004; accepted 5 October 2004; published online 1 March 2005d

The effect of plug propagation speed and gravity on the quasisteady motion of a liquid plug in a
two-dimensional liquid-lined channel oriented at an anglea with respect to gravity is studied. The
problem is motivated by the transport of liquid plugs instilled into pulmonary airways in medical
treatments such as surfactant replacement therapy, drug delivery, and liquid ventilation. The
capillary numberCa is assumed to be small, while the Bond numberBo is arbitrary. Using matched
asymptotic expansions and lubrication theory, expressions are obtained for the thickness of the
trailing films left behind by the plug and the pressure drop across it as functions ofCa, Bo, a and
the thickness of the precursor films. When the Bond number is small it is found that the trailing film
thickness and the flow contribution to the pressure drop scale asCa2/3 at leading order with
coefficients that depend onBo anda. The first correction to the film thickness is found to occur at
OsCad compared toOsCa4/3d in the Bo=0 case. Asymmetry in the liquid distribution is quantified
by calculating the ratio of liquid volumes above and below the centerline of the channel,VR˙. VR

=1 atBo=0, indicating a symmetric distribution, and decreases withBo andCa, but increases with
the plug lengthLp. The decrease ofVR with Ca suggests that higher propagation speeds in small
airways may result in less homogenous liquid distribution, which is in contrast to the expected effect
in large airways. For given values of the other parameters, a maximum capillary numberCac is
identified above which the plug will eventually rupture. When the Bond number becomes equal to
an orientation-dependent critical valueBoc, it is found that the scaling of the film thickness and
pressure drop change toCa1/2 andCa1/6, respectively. It is shown that this scaling is valid for small
increments of the Bond number over its critical value,Bo=Boc+BCa1/6, but for higher Bond
numbers the asymptotic approach breaks down. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1863853g

I. INTRODUCTION

Liquid is instilled into the lungs during medical treat-
ments such as surfactant replacement therapysSRTd,1–3 par-
tial liquid ventilation sPLVd,4–7 and pulmonary drug/genetic
material delivery.8–13 The instilled liquid may form a menis-
cus in the trachea14 and be transported through the airways in
the form of air-blown plugs; it may also drain gravitationally
through the larger airways and form plugs in the smaller
airways.15 The effectiveness of the treatment can depend on:
s1d delivery to the desired location via liquid deposition in
films left behind by propagating plugs ands2d the homoge-
neous distribution of liquid through the branching airway
network as plugs split at airway bifurcations. In turn, these
factors are influenced by a number of parameters including
liquid and interfacial properties, propagation speed, gravity,
and airway orientation.15–17 An understanding of the fluid
dynamics of plug propagation would therefore be useful in
devising strategies to ensure optimal liquid distribution in the
lung.

In this paper we focus on the effect of gravitational ac-
celerationg on plug propagation. Gravitational effects can be
important since the Bond numberBo=rga2/s, based on the
airway radiusa, liquid densityr, and surface tension at the

air-liquid interfaces, can vary in the range 10−4–102 in typi-
cal clinical situations.18 In addition, airway orientation with
respect to gravity must also be considered since the human
airway network has a three-dimensional branching
structure.19 Consider a plug that moves through a liquid-
lined airway oriented at an anglea to gravity and splits at an
airway bifurcation as shown in Fig. 1. Gravity affects the
volume of liquid delivered to each downstream branch in
two ways. First, less liquid enters the upper branch since
work needs to be done against gravity. Second, gravity
causes a larger fraction of the plug to be presentbelow the
centerline of the parent airway prior to the bifurcation com-
pared toabove, and this asymmetry predisposes a larger frac-
tion of the plug volume to enter the lower branch. This un-
equal splitting is repeated at each subsequent bifurcation,
leading to an overall nonhomogeneous liquid distribution in
the lung. One of the aims of this work is to quantify the
plug’s prebifurcation asymmetry in the liquid distribution
and determine its dependence on various parameters.

Gravity and airway orientation also affect the thickness
of the films deposited by the plug, which ultimately influ-
ences liquid distribution. If the films are thick, the plug loses
volume more rapidly and may rupture before it reaches the
intended delivery site. On the other hand, if plugs persist
over an entire cycle of breathing or are created prior to ex-adAuthor to whom correspondence should be addressed.
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piration, liquid may be blown out of the lung during exhala-
tion. Therefore, a second aim of this work is to determine
how gravity and airway orientation affect the possibility of
plug rupture.

In the smaller distal airways, the plug propagation speed
U is typically slow and the capillary numberCa=mU /s,
wherem is the liquid viscosity, is small. The problem of plug
propagation in a cylindrical geometry in the presence of
gravity is highly complicated due to the lack of azimuthal
symmetry. In order to simplify the analysis we study the low
capillary number, pressure driven motion of a liquid plug
through a two-dimensional channel oriented at an anglea
with respect to gravity. This simplification neglects the de-
stabilizing radial component of interfacial curvature that is
responsible for a Rayleigh instability of the liquid film that
can lead to the formation of liquid plugs in airways. The

focus of this work is on preexisting plugs that are either
introduced into airways during a medical procedure or form
due to instabilities. In particular, the prebifurcation asymme-
try and liquid deposition depend on the effect of gravity on
the longitudinal curvature of the interface, which is retained
in the two-dimensional model.

An analysis of the low capillary number motion of a
long bubble through a tube was carried out by Bretherton20

who found that the thickness of the liquid film separating the
bubble and the tube wall and the pressure drop across the
bubble both scaled asCa2/3. His work was formalized in the
terminology of matched asymptotic expansions by Park and
Homsy.21 Other authors have examined flow in polygonal
capillaries,22,23 surfactant effects24–28 and thermocapillary
migration.29,30 In the context of airway plug propagation,
small capillary number asymptotic theory has been used to
study problems in airway reopening in rigid31 and
flexible32,33channels and tubes and surfactant effects on plug
propagation.34 None of these studies considered the effects of
gravity.

Jensenet al.35 examined the effect of gravity on the dis-
placement of liquid by an air finger in a horizontal Hele–
Shaw cell using theory and experiment. ForBo,1 they
found that the film thickness followed theCa2/3 scaling of
Bretherton withBo dependent coefficients, while the pres-
sure jump across the air-liquid interface was independent of
Bo. For Boù1 the lower film was anOs1d quantity indepen-
dent of Ca. Both the film thickness and pressure jump in-
creased withBo. The experimentally observed meniscus
shapes were in agreement with the theory. Lasseux and
Quintard36 and Lasseux37 studied gravitational gas-liquid
drainage in vertical Hele–Shaw cells and capillary tubes and
also found that the Bretherton scaling applies withBo depen-
dent coefficients.

Plug propagation in a tube or channel is closely related
to coating flow, a classical example of which is the with-
drawal of a fiber or plate from a liquid bath. The review by
Quéré38 provides an excellent overview of existing literature.
Early work found the film thickness to scale asCa2/3 when
gravitational drainage in the entrained film was
neglected.39,40 These results were recast in the form of
matched asymptotic expansions by Wilson41 and extended to
account for nonvertical withdrawal. In the gravity dominated
case a thickness proportional toCa1/2 was predicted.42 Ap-
proximations for the crossover between the two regimes
showed reasonable agreement with experiment.43,44

The smallCa asymptotic analysis of gas-liquid displace-
ment and coating flows shows that the same scaling laws
arise in both situations: When gravitational effects are small
a static meniscus is connected to a thin film of thicknesst
,Ca2/3 by a dynamic meniscus of lengthl ,Ca1/3. When
gravitational effects are strong, crossover to a different scal-
ing regime with t,Ca1/2 occurs in coating flows. In this
paper we show that a similar crossover occurs whenBo is
increased for plug propagation in an inclined channel. The
paper is organized as follows. In Sec. II we describe the
model and discuss the basic equations and scaling arguments
in different regimes. In Secs. III and IV we provide a sys-
tematic development of the asymptotic equations and their

FIG. 1. Schematic of plug motion through an airway bifurcation.sad A
liquid plug moves through a liquid lined airway. The plug volume is asym-
metrically distributed about the centerline of the airway due to gravity.sbd
The plug enters an airway bifurcation andscd subsequently splits into two
with a larger fraction of the original plug entering the lower, gravity-favored
branch.
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solutions. We conclude in Sec. V with a discussion of the
results and their applicability to human airways.

II. FORMULATION

A. Model description

A schematic of the model is shown in Fig. 2. It consists
of a plug of incompressible, Newtonian fluid of viscositym
and densityr moving at constant speedU in the laboratory
frame through a two-dimensional channel of thickness 2a.
The channel is oriented at an anglea with respect to the
gravitational accelerationg and lined with thin precursor
films of the plug fluid. The plug separates two semiinfinite
air fingers of negligible viscosity and density. The surface
tension at the air-liquid interface is assumed to be constant
and equal tos.

Dimensional variables are denoted by superscript*. We
use a Cartesian coordinate systemsx* ,y*d with the channel
walls located aty* = ±a and seek a steady solution in the
frame of the moving plug. Fluid velocity and pressure in the
plug fluid are denoted byu* =su* ,v*d andp* respectively. Air
pressures behind and ahead of the plug are constant and
equal topair,R

* andpair,F
* . The air-liquid interface is located at

y* =h±*
sx*d. Superscript1 and2 denote quantities in the up-

per and lower parts of the channel, respectively. As the plug
moves through the channel, it deposits trailing films on the

upper and lower walls, whose thicknessesh`,R
+*

andh`,R
−*

will
be determined. The corresponding precursor film thicknesses

ahead of the plug are specified and equal toh`,F
+*

and h`,F
−*

.
Subscript “R” and “F” denote quantities behindsreard and
aheadsfrontd of the plug, and will be dropped when an ex-
pression applies both ahead and behind the plug.

B. Dimensionless groups and governing equations

Lengths are scaled by the channel half-widtha, veloci-
ties by the propagation speedU, and pressures by the capil-
lary scales /a. We assume that the plug motion is suffi-

ciently slow that inertial effects can be neglected and set the
Reynolds numberRe=rUa/m equal to zero. Then the rel-
evant dimensionless groups are the capillary numberCa
=mU /s and the Bond numberBo=rga2/s. Dropping the
superscript*, the dimensionless steady Stokes and continuity
equations are

− = p + Ca¹2u + Boĝ = 0, s1d

= ·u = 0, s2d

whereĝ=fcossad ,−sinsadg is the unit vector in the direction
of gravity. The boundary conditions are

u = − 1,v = 0 aty = ± 1, s3d

u · n̂ = 0 aty = h±sxd, s4d

t̂ · s · n̂ = 0 aty = h±sxd, s5d

p − pair − n̂ · s · n̂ = = · n̂ at y = h±sxd. s6d

These represent, respectively, no-slip and no penetration at
the channel walls, and the kinematic condition, shear, and
normal stress balances at the air-liquid interface,y=h±sxd.
Here s=Ca(=u+ =uT) is the fluid extra stress tensor,n̂ is
the outward pointing unit normal,t̂ is the tangent to the
interface, and= ·n̂ is the interfacial curvature.

C. Asymptotic scaling and regimes

We seek an asymptotic solution of the governing equa-
tions in the limitCa→0. The analysis closely follows that of
previous works.21,32,34,35For smallCa the flow domain can
be divided into three regions as shown in Fig. 3:sId a statics
region close to the body of the plug in which surface tension
and gravitational body forces are important, but viscous
forces are negligible;sII d thin transition regions close to the
walls in which viscous, surface tension, and gravitational
body forces are important; andsIII d flat thin films away from
the plug.

Two different force balances are possible in the transi-
tion regions, which lead to different scalings for the film
thickness as explained below. Suppose that the transition re-
gion is a thin layer of lengthl and thicknesst, such thatt

FIG. 2. Schematic of the model showing the propagating plug and thin
films. The dashed lines represent the static solutions for the rear and front
interfaces, andx=0 is located at the intersection of the static rear interface
with the upper wall.L0 is the distance between the contact points of the rear
and front static solutions with the upper wall.Lp is the length of the plug and
is equal to the distance between the tips of the two interfaces.L0 andLp are
not independent parameters, see Sec. III A for explanation.

FIG. 3. Schematic showingsId the statics region close to the body of the
plug; sII d four transition regions close to the upper and lower walls at the
front and rear meniscus; andsIII d trailing and precursor thin films.
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!a. Then the interfacial curvature in the transition region is
ktr , t / l2 leading to a surface tension pressure scale

pcap, sktr , st/l2. s7d

The viscous pressure scale in the transition region is

pvis , mUl/t2. s8d

First consider the caseg=0 In the absence of gravity, the
viscous and surface tension pressure scales must balance and
settingpcap=pvis leads to

t/l , Ca1/3. s9d

ktr must match the curvature of the meniscus in the statics
region,kst,1/a, when these regions overlap and so equat-
ing the two curvatures results in

t/l2 , 1/a. s10d

Equationss7d–s10d lead to the scalings20,21,32,34

l/a , Ca1/3,

t/a , Ca2/3,

ptr/ss/ad , 1, s11d

where ptr ,pvis,pst is the pressure scale in the transition
region. We call this theviscocapillary regimebased on the
dominant forces in the transition region.

When gÞ0 there is also a hydrostatic pressure scale
based on the length of the transition region,

pg = rgl cossad, s12d

andkst is affected by gravity, i.e.,kst=kstsBo,ad. However,
the viscocapillary scalings11d is valid if the following two
conditions are satisfied:sid the dominant balance in the tran-
sition region is between the viscous and surface tension
terms fEq. s9d is validg and gravitational effects are small
compared to these terms, i.e.,

pg

pvis
,

pg

pcap
, Ca1/3Bocossad ! 1, s13d

and sii d kstsBo,ad remainsOs1/ad, i.e., s10d holds. These
conditions determine constraints onBo anda for which the
asymptotic analysis is valid and we will show later that the
restriction onkstsBo,ad is more critical. Fora=p /2 Jensen
et al.35 found that the conditions are satisfied whenBo,1,
Ca!1.

When pg is the same size aspvis and pcap and
Bocossad=Os1d a different scaling is obtained by equating
s7d, s8d, ands12d,

l/a , Ca1/6,

t/a , Ca1/2,

ptr/ss/ad , Ca1/6. s14d

We call this thegravitational regimeto emphasize the role of
gravity in determining the scaling. In this case the curvature
in the overlap region is small,kst, t / l2,Ca1/6/a!1/a.
Also the film thicknesst and transition region lengthl are

larger andptr smaller byOsCa1/6d compared to the viscocap-
illary scaling, s11d. We will show in the following sections
that the viscocapillary scaling holds for smallBo and that for
each orientationa, there is a criticalBo at which the scaling
changes tos14d. Note thatt! l for both scalings, and so the
hydrostatic variation of pressure over the depth of the tran-
sition region can be neglected.

D. Perturbation expansion

Velocities, pressures, interface position, and film thick-
ness are written in terms of a perturbation expansion for
small Ca. From the preceding analysis a natural choice for
the expansion parameter isCaa with a=1/3 for theviscocap-
illary regime anda=1/6 for thegravitational regime. Thus

f = f0 + Caaf1 + Ca2af2 + ¯, s15d

where f can beu, v, p, h, or t. In the transition regions,
rescaled variables are defined as

X =
x − x0

±

Caa , Y =
1 7 y

Cab , H± =
1 7 h±

Cab , T± =
h`

±

Cab ,

sU,Vd = Su,
v

Cab−aD, P =
p

Cac , s16d

where b=2/3, c=0 for the viscocapillary regime andb
=1/2,c=1/6 for thegravitational regime. The upperslowerd
sign in ±, 7 refers to the upperslowerd transition regions.
The origins of the transition regions are located atsx0

± , ±1d
and the interface is located atY=H±sXd. The velocity scaling
follows from the continuity equations2d and the no-slip
boundary conditions3d. U, V, P, H±, and T± are also ex-
panded in a perturbation series of the forms15d.

E. Matching conditions

The transition regions must be matched to the statics
region and the thin films at either end. The matching to the
thin films requires that the transition region thickness equal
the film thickness far from the plug, i.e.,H±sXd→T±, X
→ 7`. The limits −̀ and +̀ are valid in the rear and front
transition regions, respectively. At the other end, the transi-
tion regions overlap with the statics region asX→ ±` and
x→x0

±. Therefore, the matching criterion is obtained from
s16d to be

lim
x→x0

±
h±sxd = lim

X→H+` sreard
−` sfrontd

± „1 − CabH±sXd…. s17d

As described by Park and Homsy,21 matching conditions
at each order are found by expandingh±sxd in a Taylor series
aboutx=x0

±, rewriting in terms of the transition region vari-
ables and comparing term by term with the right-hand side of
s17d.
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III. THE VISCOCAPILLARY REGIME

A. O„Ca0
… equations in the statics region

Viscous terms are negligible ins1d up toOsCad, and the
pressure is hydrostatic at leading order,

p0sx,yd = Boxcossad − Boysinsad + c0. s18d

The normal stress boundary conditions6d takes the form

Boxcossad − Boh0
±sxdsinsad − dp0 = ±

h0,xx
±

s1 + h0,x
±2

d3/2
, s19d

where dp0=dp0,R=pair,R−c0 for the rear meniscus anddp0

=dp0,F=pair,F−c0 for the front meniscus. Thuss19d provides
differential equations to determine the shape of the two me-
nisci. A Taylor series expansion ofh0

±sxd up to OsCa1/3d in
s17d gives the boundary conditions

h0
±sx0

±d = ± 1, s20d

h0,x
± sx0

±d = 0. s21d

In addition,h0
+sxd andh0

−sxd must join smoothly at the “tip”
of the meniscus,x=xt, where their derivatives are un-
bounded, i.e.,

h0
+ = h0

−, h0,x
± → 7 ` x = xt. s22d

Equations22d applies at all orders inCa. For the rear
interface, the origin of the coordinate system is specified by
choosingx0,R

+ =0. SpecifyingL0 then fixesx0,F
+ for the front

interfacessee Fig. 2d. For each interface, the four constraints
s20d and s21d along with the smoothness conditions22d
specify boundary conditions fors19d and determinedp0 and
x0

−. Equationss20d and s21d state that the static solution at
OsCa0d apparently meets the channel walls with a zero con-
tact angle. For any givenL0, the plug lengthLP can be de-
termined after solving for the static interfaces. The difference
in air pressures between the rear and front of the plugDp0

=pair,R−pair,F=dp0,R−dp0,F depends onL0 sequivalently, the
plug lengthLPd and counteracts the gravitational body force
acting on the plug, preventing it from accelerating.

It can be shown that the front interface satisfies the same
equations and boundary conditions as the rear interface when
sx,a ,dp0,Fd are replaced byfL0−x,p−a ,dp0,R+L0 cossadg.
Therefore, if the solution for the rear interfacey=h0,R

± sxd and
the pressure jumpdp0,R are known for somesBo,ad andL0 is
specified, the solution for the front interfacey=h0,F

± sxd and
the pressure jumpdp0,F are known forsBo,p−ad. In con-
trast to theBo=0 case,s19d–s21d do not admit an analytical
solution. The system is transformed to arc-length coordinates
as described in the Appendix and integrated numerically us-
ing the boundary value solverCOLMOD which is available for
download from the internet at http://www.netlib.org.45,46

B. O„Ca0
… equations in the transition regions

To derive the transition region equations, the rescaled
variabless16d and the perturbation expansions15d are sub-
stituted into s1d–s6d. The momentum and continuity equa-
tions reduce to the lubrication equations. Using the lubrica-
tion velocity field in the kinematic and normal stress

conditions results in a third-order ordinary differential equa-
tion for the interface location. The details of the derivation
have been discussed by previous authors,20,21 and carry
through with minor modifications when gravity is included.
Therefore, we do not repeat the details here and only present
the final result that the interface shape is given by the
Landau–Levich equation

J0,jjj
± =

3sJ0
± − 1d

sJ0
±d3 , s23d

where

J0
± = H0

±/T0
±, j = sX + X0

±d/T0
±. s24d

HereX0
± is an arbitrary translation of the coordinates, which

will be determined by matching to the statics region. Appro-
priate initial conditions for integratings23d are obtained from
the asymptotic behavior ofJ0

± in the limit j→−` in the rear
andj→ +` in the front, where the interface must match the
constant film thickness. The initial conditions are of the form

J0
± , 1 + expsljd, j → − `sreard,

J0
± , 1 + A exps− lj/2dcossÎ3lj/2d, j → + `sfrontd,

s25d

wherel=31/3 andA is a free parameter that depends on the
precursor film thickness as explained below.

Numerical integration ofs23d shows that the asymptotic
form of J0

± close to the statics region is

J0
± , sA0

±/2dj2 + A1
±j + A2

±, j → ± `. s26d

Applying the matching conditions17d at OsCa2/3d the
film thicknessT0

+ and T0
− on the upper and lower walls, re-

spectively, are found to be

T0
± =

A0
±

h0,xx
± sx0

±d
. s27d

For the trailing films the integration givesA0
±=1.3375.

Note that ±h0,xx
± sx0

±d is the curvature atx0
± sinceh0,x

± sx0
±d=0,

and thus the film thickness is inversely proportional to the
local curvature of the statics solution. WhenBo=0, it is easy
to show thath0,xx

± sx0
±d= 71 and s27d reduces to the well-

known result of Bretherton.20 Results forBoù0 and differ-
ent a are plotted in Figs. 4sad and 4sbd. On the lower wall,
T0,R

− decreases with increasingBo for a=0 and passes
through a slight maximum fora=p /4. For aùp /2, T0,R

−

increases monotonically withBo and diverges at a finite criti-
cal valueBo=Boc whenh0,xx

− sx0
−d becomes equal to zero. The

upper film is thinner than the lower filmsT0,R
+ ,T0,R

− d, except
for a=0 andp when T0,R

+ =T0,R
− due to symmetry.T0,R

+ , in
general, decreases withBo and does not diverge except for
a=p. These results can be summarized as follows: Fora
,p /2, viscocapillary solutions can be found for the rear
transition regions in which the film thickness on either wall
is finite. Foraùp /2, viscocapillary solutions only exist for
Bond numbers less than a critical valueBoc at which the film
thickness on the upper/lower walls diverges. This critical
value marks the transition to the gravitational regime, which
is discussed in greater detail in Sec. IV.
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In the front of the plug, the precursor film thicknessT0,F
±

is a specified quantity ands27d serves as an equation forA0
±.

Thus, to solve for the front transition regions, the constantA
in s25d is used as a shooting parameter that is iterated until
s27d is satisfied for the particular choice ofT0,F

± . If
h0,xx

± sx0,R
± d=0 for the rear interface for somesBoc,ad, then

h0,xx
± sx0,F

± d=0 for the front interface forsBoc,p−ad. There-
fore whenaøp /2 solutions for the front transition region
only exist forBo,Boc.

C. Higher-order corrections: Statics region

It can be shown that theOsCa1/3d corrections to the in-
terface shape and pressure,h1

± andp1, are both equal to zero.
As a result the coordinate translation ins24d is found from
the matching conditions atOsCa2/3d to be

X0
± = −

A1
±

A0
±T0

±. s28d

Since h1
±=0, the normal stress balance atOsCa2/3d in the

statics region can be simplified to

±
h2,x

±

s1 + h0,x
±2

d3/2
= dp2sx − xtd, s29d

with boundary conditions

h2
±sx0

±d = −
1

h0,xx
± sx0

±d
S sA1

±d2

2
− A0

±A2
±D , s30d

obtained by comparing terms independent ofX atOsCa2/3d in
s17d. As before,s29d and s30d are transformed to arc-length
coordinates and integrated numerically to determinedp2. De-
tails can be found in the Appendix.

The pressure drop across the plug is

Dp = pair,R − pair,F

= sdp0,R + Ca2/3dp2,Rd − sdp0,F + Ca2/3dp2,Fd + OsCad

= Dp0 + Ca2/3Dp2 + OsCad, s31d

where Dp0 is the hydrostatic contribution andDp2 is the
leading-order flow contribution. Since we are primarily inter-
ested in the effects of flow, we examine howDp2 depends on
the system parameters. In Fig. 5sad Dp2 is plotted againstBo
for differenta with the precursor film thickness on the lower
and upper walls equal to the corresponding trailing film
thickness. This corresponds to steady plug propagation in

FIG. 4. Trailing film thickness in units of half-channel width vsBo on the
sad lower andsbd upper wall atOsCa0d.

FIG. 5. Flow contribution to pressure drop across the plug as a function of
sad Bo and sbd precursor film thickness.
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which the plug volume does not change. Fora,p /2 the
pressure drop increases withBo. This is a result of greater
viscous stresses associated with the decreasing film thickness
at these orientationsssee Fig. 3d. Whena=p /2 the thicken-
ing of the lower film exactly counteracts the thinning of the
upper and the pressure drop remains constant. Fora.p /2
the pressure drop initially decreases withBo, but eventually
increases and diverges as the film thickness diverges. Figure
5sbd shows that at any orientationDp2 decreases as the pre-

cursor film thickness increases. This is consistent with pre-
vious results32,34 that showed that it is easier to drive a plug
through a tube with thicker precursor film.

D. Higher-order corrections: Transition regions

In the transition regions lubrication equations still apply
at OsCa1/3d and the following third-order equation is found
for the correction termH1

±sXd:

H1,XXX
± = −

3s2H0
± − 3T0

±dH1
± + 3T1

±H0
± + BocossadH0

±sH0
±3

− T0
±3

d

H0
±4 . s32d

Note that there is a contribution from the gravitational
component of the pressure gradient in thex direction,
Bocossad. The expression found by Wilson41 for the dragout
problem reduces tos32d after some simplification. The result
of Park and Homsy21 is recovered whenBo=0 or a=p /2.

Equation s32d is rescaled as ins24d with J1
±=H1

± /T0
±, T̂1

±

=T1
± /T0

±, j=sX+X0
±d /T0

± to get

J1,jjj
± = −

3s2J0
± − 3dJ1

± + 3T̂1
±J1

± + BocossadT0
±2

J0
±sJ0

±3
− 1d

J0
±3 .

s33d

Initial conditions for integratings33d are obtained from the
asymptotic behavior in the vicinity of the thin films,

J1
± , T̂1,R

± + A expsljd, j → − `sreard,

J1
± , T̂1,F

± + exps− lj/2d„A cossÎ3lj/2d

+ B sinsÎ3lj/2d…, j → `sfrontd, s34d

where l=31/3 as before. Note thatT̂1,R
± is unknown in the

rear, butT̂1,F
± is specified in the front. Thus the initial condi-

tions involve two unknown constants,sT̂1,R
± , Ad in the rear

and sA, Bd in the front, which are determined by matching
the transition region and statics region solutions. In the vi-
cinity of the statics regionJ1

± has the asymptotic form

J1
± , − „BocossadsT0

±d2/6…j3 + sB0
±/2dj2 + B1

±j + B2
±,

s35d
j → ± `.

Comparing terms involvingX3, X2, andX in the OsCad
matching condition we find

h0,xxx
± sx0

±d = ± Bocossad, s36d

h1,xx
± sx0

±d = S B0
±

2T0
± −

BocossadX0
±

2
D , s37d

h2,x
± sx0

±d = 7 SB1
± +

B0
±X0

±

T0
± −

BocossadX0
±2

2
D . s38d

Equations36d can be obtained froms19d and s21d and pro-
vides no new information. Sinceh1

±, h2
±, T0

±, and X0
± are

known, s37d and s38d and provide boundary conditions for
s33d, which is solved by numerical integration usings34d as

the initial condition and choosingsT̂1,R
± ,Ad or sA,Bd to sat-

isfy s37d and s38d. Figures 6sad and 6sbd show theOsCad
correction to the trailing film thickness at the lower and up-
per walls,T1,R

− andT1,R
+ , as a function ofBo for different a.

Whena,p /2 bothT1,R
− andT1R

+ are negative, indicating that
this correction makes the film thinner. The opposite is true
whena.p /2. In the former case,T1,R

− andT1,R
+ have slight

minima for some orientations, while in the latterT1,R
+ passes

through a maximum fora=3p /4. Since s33d involves T0
±

which diverges atBo=Boc, T1,R
± also diverges atBoc. When

Bo=0 or a=p /2 the gravitational term involvingBocossad
disappears froms33d and the boundary conditions,s37d and
s38d. As a resultT1,R

± =0, which is consistent with the results
of Park and Homsy.21

IV. THE GRAVITATIONAL REGIME

The analysis in Sec. III breaks down when the curvature
of the static solution at the lower wall becomes zero and the
film thickness diverges. This occurs whenaùp /2 for the
rear meniscus andaøp /2 for the front meniscus. In this
section we determine the critical Bond numberBoc for
breakdown and examine the structure of the solution in the
lower transition region where this occurs. This analysis ap-
plies to either the rear or front interface for appropriate val-
ues of a, while the viscocapillary analysis applies to the
other interface.

A. Critical Bond number

Since the curvature in the lower transition region be-
comes small atBo=Boc, the gravitational scalings14d ap-
plies in this region while the viscocapillary scalings11d ap-
plies in the upper transition region. The perturbation
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expansions15d for both regions proceeds in powers ofCa1/6.
In the statics region, the normal stress condition is identical
to s19d at leading order and is reproduced below:

Bocx cossad − Boch0
±sxdsinsad − dp0 = ±

h0,xx
±

s1 + h0,x
±2

d3/2
.

s39d

Boundary conditions are obtained by considering terms
involving h0

±sxd up to OsCa1/3d in the matching condition
s17d,

OsCa0d: h0
±sx0

±d = ± 1, s40d

OsCa1/6d: h0,x
− sx0

−d = 0, s41d

OsCa1/3d: h0,x
+ sx0

+d = 0 s42ad

h0,xx
− sx0

−d = 0. s42bd

Equationss40d, s41d, ands42ad are identical tos20d ands21d,
but s42bd is an additional condition that requires the curva-
ture of the statics solution to vanish at the lower wall and
provides a constraint to determineBoc. The system is trans-
formed to arc-length coordinates as explained in the Appen-
dix and Boc is determined as a function ofa. Results are

plotted in Fig. 7. It is seen thatBoc has two minima ata
,p /4, 3p /4, and a maximum value of 1 ata=p /2.

B. O„Ca0
… equations in the transition region

The upper transition region is described bys23d. Rescal-
ing variables in the lower transition region leads to lubrica-
tion equations, which are solved to obtain the following
equation for the interface location:

J0,jjj
− =

3sJ0
− − 1d

sJ0
−d3 −

Boc cossadsT0
−d2

„sJ0
−d3 − 1…

sJ0
−d3 , s43d

where J0
−=H0

−/T0
−, j=sX+X0

−d /T0
− as in s24d. This equation

with a=0 was obtained by Derjaguin40 to describe the thick-
ness of the liquid film on a plate withdrawn from a fluid
reservoir. In the context of that problem, different approxi-
mations have been used to find solutions ofs43d that match
to the flat fluid interface in the reservoir.43,44 Here we de-
scribe a solution that uses exact matching conditions to con-
nect the film to the plug in the statics region.

In the vicinity of the thin filmsJ0
− has the asymptotic

form

J0
− , 1 + A expsljd, j → `srear/frontd, s44d

andl satisfies

l3 − 3„1 − sT0
−d2Boc cossad… = 0. s45d

For the rear transition region,s43d is valid whena.p /2. In
this case the single real root ofs45d, l=lR=f3(1
−sT0

−d2Boc cossad)g1/3, is positive and initial conditions that
decay asj→−` can be found. The constantA is arbitrarily
set equal to 1 because of the translationX0

−. In contrast to the
viscocapillary regime, the unknown film thicknessT0

− explic-
itly appears in the equation and initial conditions. It is there-

FIG. 6. Trailing film thickness in units of half-channel width vsBo on the
sad lower andsbd upper wall atOsCa1/3d.

FIG. 7. Critical Bond numberBoc for different orientations. ForBo,Boc

the viscocapillary scalings11d is valid in all transition regions. In the lower
transition regions, forBo=Boc+BCa1/6 anda.p /2, the gravitational scal-
ing s14d holds behind the plug and the viscocapillary scaling holds in front
of the plug—these scalings are reversed whena,p /2. The upper transition
regions follow the viscocapillary scaling for allBo sexcept fora=0, p when
BoùBocd, however corresponding toa,p /2 or a.p /2, this scaling ap-
plies either to the rear or the front meniscus, and the opposite meniscus has
no thin film solution.
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fore treated as a shooting parameter and determined by
matchingJ0

− to the statics region, where it has the asymptotic
form

J0
− , −

Boc cossadsT0
−d2j3

6
+

A0
−j2

2
+ A1

−j + A2
−,

s46d
j → ± `srear/frontd.

Rewritings46d in terms ofX and matching to appropriate
terms atOsCa1/2d in the Taylor series expansion ofh−sxd we
find

h0,xxx
− sx0

−d = ± Boc cossad, s47d

h1,xx
− sx0

−d = SA0
−

T0
− − Boc cossadX0

−D , s48d

h2,x
− sx0

−d = SA1 +
A0X0

−

T0
− −

Boc cossadX0
−2

2
D . s49d

Equations47d follows from s39d and s41d and does not pro-
vide new information. Thus higher-order corrections in the
statics region,h1

−sxd andh2
−sxd, are required to complete the

transition region solution. It can be shown thath1
±sxd and

h2
±sxd satisfy homogeneous equations and boundary condi-

tions and are equal to zero. Thens48d ands49d provide con-
ditions to determineT0

− andX0
− and complete the solution for

J0
−. Figure 8sad showsT0

− as a function ofa whenBo=Boc.
Note thats43d reduces to the Landau–Levich equation,s23d,
when a=p /2 ands48d indicates thatT0

− diverges unlessA0
−

=0. It was not possible to find a solution withA0
−=0 for a

=p /2. This case has been treated by Jensenet al.35 and we
will discuss their results later in this section.

In the front transition region,s43d applies fora,p /2. If
sT0,F

− d2Boc cossad,1, s45d has two roots with negative real
part,l=lRs−1±iÎ3d /2, which provide decaying solutions as
j→ +` and a solution forJ0

− can be found for each choice of
T0,F

− . On the other hand, ifsT0,F
− d2Boc cossad.1 there is a

single root with negative real part,l=lR. TreatingT0,F
− as an

unknown quantity the procedure used for the rear transition
region was followed; however no solutions satisfyings48d
and s49d could be found. Thus there is an upper limit to the
precursor film thickness for which solutions of the front tran-
sition region exist, and within this limitT0,F

− can be chosen
arbitrarily.

C. Higher-order corrections: Statics region

Sinceh1
±sxd=h2

±sxd=0, the normal stress balance in the
statics region atOsCa1/2d can be simplified to

±
h3,x

±

s1 + h0,x
−2

d3/2
= dp3sx − xtd. s50d

Matching terms independent ofX at OsCa1/2d in s17d
yields

h3
−sx0

−d = 7 SA2T0
− + A1X0

− +
A0sX0

−d2

2T0
−

−
Boc cossadsX0

−d3

6
D , s51d

where all the quantities on the right side are known. At the
upper wall matching conditions of the viscocapillary regime
apply and lead to the homogeneous condition

h3
+sx0

+d = 0. s52d

Equationss51d ands52d specify boundary conditions for
h3

+sxd andh3
−sxd and the requirement that they join smoothly

at x=xt determinesdp3. Whena=0 or p, the symmetry con-
dition h3

−sxtd=0 is used along with eithers51d sfor the rear
interface whena=p; front interface whena=0d or s52d sfor
the rear interface whena=0; front interface whena=pd.
The flow contribution to the pressure drop across the plug is
dominated by theOsCa1/2d contribution from either the rear
or front meniscus, since the drop across the other meniscus is
OsCa2/3d. dp3 for the rear meniscus is plotted in Fig. 8sad
versusa and increases witha as the film becomes thinner.

FIG. 8. sad Trailing film thickness and flow contribution to pressure drop
across rear meniscus atBo=Boc and sbd flow contribution to pressure drop
across front meniscus as a function of precursor film thickness atBo=Boc.
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For a,p /2, Fig. 8sbd showsdp3 across the front meniscus
as a function ofT0,F

− . As beforedp3 decreases with increasing
T0,F

− .
It remains to discuss the structure of the solution for

Bo.Boc. For small increments overBoc, the Bond number
can be expanded in powers ofCa1/6, i.e., Bo=Boc+BCa1/6,
B=Os1d.0; and the preceeding approach applies. In this
case, theOsCa1/6d and OsCa1/3d statics solutions,h1

±sxd and
h2

±sxd, will be nonzero and modify the matching conditions
that determine the film thickness. The flow contribution to
the pressure drop will beOsCa1/6d while the film thickness
remainsOsCa1/2d. We do not present such an analysis here,
but only note that a consistent asymptotic solution can be
found.

For higherBo, when the systems39d–s42d was solved by
relaxing s40d, the interface did not contact the lower wall,
but passed through an inflection point ath0

−sx0
−d=y1, −1

,y1,1. The origin of the transition region is thus located at
a distances1+y1d above the lower wall and the film thick-
ness isOs1d. However, a consistent solution cannot be found
because the viscous and body force terms do not balance
each other in thex momentum equation in the lower film,

Ca
]2u

]y2 + Bocossad = 0, s53d

if the film thickness isO s1d andCa!1. This inconsistency
is the result of neglecting the viscous terms in the normal
stress condition that are comparable in size to the other terms
in the vicinity of the inflection point. Thus it is necessary to
solve for the velocity field and the asymptotic approach
breaks down. An exception is the special casea=p /2 for
which the gravitational term vanishes ins53d. For BoùBoc,
it can be shown that all derivatives ofh0

−sxd vanish aty=y1,
the transition region vanishes and the static interface joins
smoothly to a film of thicknesss1+y1d that is independent of
the capillary number.35

V. DISCUSSION

To discuss the application of these results to human air-
ways, we examine the effect of gravity and propagation
speed on two features of physiological significance, namely,
prebifurcation asymmetry in the liquid distribution and plug
rupture. We estimate values for the dimensionless parameters
for two cases based on physical properties and airway di-
mensions and speeds from Cassidyet al.18 and Kinget al.:47

s1d SRT using the surfactant Survantafr=1.16 g/cm3, m
=0.52 g/scm sd, ands=48 dyn/cmg ands2d PLV using per-
flurorcarbon liquidsfr=1.93 g/cm3, m=0.021 g/scm sd, and
s=18 dyn/cmg. Under these conditions Bond and capillary
numbers vary in the range 0.01,Bo,0.2, 0.01,Ca,0.1
sSRTd; 0.04,Bo,0.6, 0.001,Ca,0.01 sPLVd between
generations 11 and 17 of the adult human lung. In the dis-
cussion to follow we use the results of the viscocapillary
regime over the parameter range 0.0,Bo,0.4, 0.0,Ca
,0.05 which is relevant to SRT and PLV in small airways.

A. Prebifurcation asymmetry

A composite solution for the shape of the interface ac-
curate toOsCa2/3d was obtained by using the method of ad-
ditive composition,48

hc = h0
±sxd + Ca2/3h2

±sxd ± f1 − Ca2/3
„H0

±sXd

+ Ca1/3H1
±sXd…g − c.p., s54d

where the common partc.p.was determined from the match-
ing conditions to be

c.p.= h0
±sx0

±d + h0,xx
± sx0

±d
sx − x0

±d2

2
+ h0,xxx

± sx0
±d

sx − x0
±d3

6

+ Ca2/3fh2
±sx0

±d + h2,x
± sx0

±dsx − x0
±dg . s55d

Sample interface shapes for different parameter values
are graphed in Fig. 9. In this figure and the results to follow,
the precursor film thickness on either wall,h`,F

± , is fixed at
0.1. In each panel the interface forBo=0, which is symmet-
ric about the centerline of the channelsy=0d, is shown for
comparison. WhenBo.0, the interface is distorted as more
liquid pools below the centerlinesy,0d. The asymmetry in-
creases with increasingCa and depends ona: The shape of
the rear interface is most sensitive to changes inBo andCa
for a.p /2, while the front interface is most sensitive for
a,p /2. Since the precursor film thickness is independent of
Bo andCa, the shape of the front interface does not vary as
much as that of the rear.

An interesting feature of the interface shape is the “neck-
ing in” seen at the front meniscus. The nonmonotonic shape
represents a capillary wave at the interface and is a result of
the oscillatory initial conditionss25d and s34d required for
the solution ofs23d ands33d, respectively. Such profiles have
been described by other authors for the motion of long
bubbles20 and plugs in tubes.32,34 The capillary wave causes
the minimum distance between the interface and the channel
wall, hmin, to be less than the constant film thickness far from
the plug. The dependence ofhmin on Bo and a mirrors the
variation of the trailing film thickness with these parameters:
on the lower wall,hmin passes through a slight maximum as
Bo is increased fora=p /4, whereas it decreases monotoni-
cally with Bo for a=p /2, 3p /4. On the upper wall,hmin

decreases monotonically withBo for a=p /4, p /2, 3p /4.
When the plug splits at an airway bifurcation, the asym-

metric liquid distribution can play a role in determining the
volume of liquid delivered to each downstream branchssee
Fig. 1d. In order to quantify the prebifurcation asymmetry, a
volume ratio VR is defined as the ratio of the liquid volume
above the centerline of the channel to that below per unit
width of the channel and is equal to

VR =
V+ + LP

V− + LP
, s56d

whereLP is the plug length and

V+ =E
x1,R
+

x2,R

hc,Rsxddx+E
x2,F

x1,F
+

hc,Fsxddx+ sxt − x2,Rd

+ sx2,F − xtd,
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V− = −E
x1,R
−

x2,R

hc,Rsxddx−E
x2,F

x1,F
−

hc,Fsxddx+ sxt − x2,Rd

+ sx2,F − xtd. s57d

In s57d, x2,R/F and xt are the locations corresponding to the
centerline sy=hc=0d and “tip” sdhc/dx→`d, respectively.
The other limits of integration,x1,R/F

± , are chosen to be the
locations at which the distance between the wall and the
interface reaches within 1% of the constant film thickness.

Figures 10 and 11 show the dependence ofVR on differ-
ent parameters. In Fig. 10sad, VR is plotted as a function of
Bo for different orientations withCa=0.01, Lp=1. When
Bo=0, the plug is symmetric abouty=0, andVR=1, indicat-
ing symmetric liquid distribution on either side of the cen-
terline. AsBo increases, a progressively larger fraction of the
plug volume resides in the lower half of the channelsy
,0d andVR decreases. TheBo dependence strongly depends
on the orientationa, and foraùp /2, VR decreases rapidly,
leading to crossovers between the different curves.

Figure 10sbd shows thatVR depends strongly onCa and
decreases asCa is increased. The decrease is more pro-
nounced at higherBo. WhenCa=0, the channel walls are dry
andVR is calculated from the static solution.VR is less than
1 due to gravitational distortion of the static interface, and
this effect increases withBo When Ca.0, dynamic effects
enhance the gravitational distortion of the interface as seen in
Fig. 9 and lead to a decrease inVR. These results indicate that
at low Ca in small airways higher propagation speeds lead to
more asymmetric plug shapes. When such plugs split at air-
way bifurcations, the greater liquid volume below the center-
line may enhance the amount of liquid delivered to the
gravity-preferred branch and thus lead to more nonhomoge-

FIG. 9. Composite solution showing the shape of the
plug for three combinations ofBo and Ca at sad a
=p /4, sbd a=p /2, andscd a=3p /4. Other parameter
values are fixed ath`,F

± =0.1, Lp=1. The interface for
Bo=0 sdotted lined in each panel is symmetric about
y=0, but becomes distorted asBo andCa increase.

FIG. 10. Ratio,VR, of liquid volumes per unit channel width above and
below centerline, as a function ofsad Bo andsbd Ca for Lp=1 and different
values ofa.

031507-11 The effect of gravity on liquid plug propagation Phys. Fluids 17, 031507 ~2005!



neous liquid distribution. This is in contrast to the expected
effect of flow in large airways, in which inertial effects could
be important due to higher speeds and larger dimensions.
Increasing the flow rate under such conditions would counter
gravitational effects, leading to more homogeneous plug
splitting if the airway bifurcation is geometrically symmet-
ric.

Finally, we consider the effect of plug lengthLp. Equa-
tion s56d indicates, and Fig. 11 confirms, thatVR increases
with Lp as the liquid volume between the tips of the two
interfaces increases. Thus the liquid distribution, and hence
plug splitting, is likely to be more uniform for longer plugs.
However, it must be noted that the asymptotic analysis is
only valid for Lp=Os1d since it neglects the fluid mechanical
coupling and viscous pressure drop between the front and
rear meniscus. These effects become important for very short
and very long plugs, respectively.

B. Plug rupture

As the plug moves through the channel its volume de-
creases if the trailing film is thicker than the precursor film
and it eventually ruptures. The instantaneous rate of volume
change of the plug is determined by computing the volume

flux in the thin films. The velocity profile in the thin films is
parabolic since thex momentum equation and boundary con-
ditions reduce to

Ca
]2u

]y2 + Bocossad = 0,

usy = ± 1d = − 1,
]u

]y
(y = ± s1 − h`

±d) = 0. s58d

Then the flow rate per unit width of the channel in the pre-
cursor films is computed to be

QF
± =

QF
p±

sm/sad
= − Cah̀ ,F

± +
Bocossadh`,F

±3

3
, s59d

where the first term represents the constant speed plug mo-
tion and the second gravitational drainage. Using the pertur-
bation results of the previous sections the flow rate in the
trailing films is

QR
± = − Ca5/3T0,R

± − Ca2ST1,R
± −

BocossadsT0,R
± d3

3
D

+ OsCa7/3d. s60d

Then the rate at which the plug volumeV changes with time
is

dV

dt
= sQR

+ + QR
−d − sQF

+ + QF
−d. s61d

Figure 12sad shows a plot ofdV/dt againstCa for a givenBo
and precursor film thickness. WhenCa is small, the trailing
film is thin and the volume flux is dominated by gravitational
drainage in the precursor films, which can cause the plug
volume to increasesdV/dt.0d for a.p /2 and decrease
sdV/dt,0d for a,p /2. As Ca increases, two opposing ef-
fects come into play: the plug picks up more fluid from the
precursor films, but also deposits more liquid as the trailing
films become thicker. Therefore, for a fixed value of the pre-
cursor film thickness,dV/dt passes through a positive maxi-
mum and then becomes negative at a critical capillary num-
berCac beyond which the plug volume always decreases and
the plug eventually ruptures. Figure 12sbd showsCac as a
function of Bo for different values ofa andh`,F

± . When the
trailing films become thinner with increasingBo ssee Fig. 4d,
Cac increases, while the opposite is true for orientations at
which the trailing films become thicker with increasingBo.
Cac also increases ash`,F

± increases. Thus plug rupture is
promoted by higher propagation speeds and thinner precur-
sor films, and is more likely to occur in airways in which the
plug motion is opposed by gravity.

C. Summary

We have shown that gravity and channel orientation can
have significant effects on the propagation of a liquid plug
through a liquid-lined channel. Two different scaling regimes
were identified at low capillary number. In the viscocapillary
regime which exists for Bond numbers less than an orienta-
tion dependent critical valueBoc, the trailing film thickness,
length of the transition region, and flow contribution to the

FIG. 11. Ratio,VR, of liquid volumes per unit channel width above and
below centerline, as a function ofsad Bo andsbd Ca for a=p /2 and different
values ofLp.
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pressure drop across the plug scale asCa2/3, Ca1/3, andCa2/3,
respectively. The first higher-order correction to the film
thickness occurs atOsCad compared toOsCa4/3d in the no-
gravity case. A crossover to the gravitational regime occurs
at Bo=Boc where these quantities scale asCa1/2, Ca1/6, and
Ca1/2, respectively. For small increments of the Bond number
over its critical valuesBo=Boc+Ca1/6Bd the scaling of the
film thickness and transition region length remain un-
changed, but the pressure drop scales asCa1/6. For higher
Bond numbers the small capillary number asymptotics break
down and the full Stokes equations must be solved.

The results of the asymptotic analysis were used to ex-
amine the effect of gravity on two features of physiological
interest, prebifurcation asymmetry in the liquid distribution
in the channel and criteria for plug rupture. Asymmetry in
the liquid distribution was quantified by calculating the ratio
of liquid volumes above and below the centerline of the
channel,VR. VR depends strongly ona and decreases with
Bo, but increases with the plug lengthLp. An interesting
result was thatVR decreases withCa, i.e., the asymmetry in
the liquid distribution increases with the plug propagation
speed. Thus higher propagation speeds may promote unequal
plug splitting at airway bifurcations and increase the inho-
mogeneity in the overall liquid distribution in the lung. This
result is valid in small airways at low speeds when liquid

inertia is negligible, and is in contrast to the behavior ex-
pected in large airways in which higher speeds would in-
crease inertial effects and result in a more uniform liquid
distribution.

Criteria for plug rupture were obtained by determining a
critical capillary numberCac as a function ofBo, a and the
precursor film thickness, above which the plug eventually
ruptures. Plug rupture limits the depth of penetration of in-
stilled liquid into the lung and thus affects the overall deliv-
ery. We found that, in general, plug rupture occurs at lower
speedsslower Cacd when the plug motion is opposed by
gravity and in channels with thinner precursor films.

These calculations are based on a two-dimensionals2Dd
channel geometry, whereas a real airway has a cylindrical
geometry in which the shape of the interface is not symmet-
ric about the airway axis and the trailing film thickness in a
cross-section normal to the axis varies with the azimuthal
angle. Analogously, in the 2D channel, gravitational effects
distort the interface shape and lead to different film thickness
on the upper and lower walls. Many of the interesting results
of our study, such as the nonhomogeneous liquid distribution
and thesBo, ad dependence of critical capillary number for
plug rupture are a result of this gravitationally induced asym-
metry and therefore will be present in cylindrical airways as
well. While the quantitative dependence of the results on the
system parameters will depend on the geometry, the scaling
relations in the limit of smallCa are identical in either case
and therefore the results for the 2D channel will provide
insight into the behavior in the cylindrical geometry as well.

The asymptotic analysis presented here provides insight
into the physical processes influencing the low capillary
number dynamics of plugs in small airways with plug
lengths comparable to the airway radius, and does not ad-
dress the transport of instilled liquid from large airways to
smaller ones. This initial transport process is important since
it determines input parameters to the current model such as
the plug length, which affects liquid distribution and plug
rupture. Since inertial effects become important at the length
and velocity scales prevalent in large airways, the equations
of motion need to be solved numerically. Recent studies have
examined finite Reynolds number effects in gravity-free
Bretherton type problems propagation using scaling
arguments49,50 and numerical computations.51–54 These stud-
ies, in general, have found that inertial effects lead to a slight
decrease in the trailing film thickness at Reynolds numbers
less than about 100; however, there is a large increase in the
driving pressure and significant changes in the flow and pres-
sure fields in the liquid.53,54
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APPENDIX

An arc-length coordinate system(s,ussd) is defined
wheres is the arc length along the air-liquid interface. The
origin is located at the contact point of the static interface

FIG. 12. sad Rate of change of volume of the plug vsCa and sbd critical
capillary numberCac vs Bo for eventual plug rupture.
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with the upper wall. The interface transforms as
(x,h±sxd)° (zssd ,hssd) with

dz

ds
= Hcossud sreard

− cossud sfrontd,
sA1d

dh

ds
= − sinsud. sA2d

The curvature is given by ±hxx
± / s1+hx

±2
d3/2=−du /ds and

the normal stress balance without the viscous term is

du

ds
= dp − Bozssdcossad + Bohssdsinsad. sA3d

zssd, hssd, ussd, and dp are expanded in the perturbation
seriess15d to obtain equations in the statics region at each
order.

1. Equations at O„Ca0
…

The equations at leading order are identical in the visco-
capillary and gravitational regimes,

dz0

ds
= Hcos„u0ssd… sreard

− cos„u0ssd… sfrontd,
sA4d

dh0

ds
= sin(u0ssd), sA5d

du0

ds
= Dp0 − Boz0ssdcossad + Boh0ssdsinsad. sA6d

Boundary conditionss20d, s21d, s40d, s41d, ands42ad become

z0 = 0,LP;h0 = 1;u0 = 0, s= 0,

h0 = − 1;u0 = p, s= sp, sA7d

which provide three conditions to integratesA4d–sA6d and
two more to determineDp0 and sp. The smoothness condi-
tion s22d implies that

u0 = p/2, ui = 0si . 0d, z0 = xt, s= sp/2. sA8d

The conditions42bd used to determineBoc in the gravita-
tional regime becomes

du0

ds
= 0, s= sp. sA9d

2. Equations at O„Ca1/2
… and O„Ca2/3

…

The first nonzero corrections to the statics region are
(z2ssd ,h2ssd ,u2ssd ,dp2) at OsCa2/3d in the viscocapillary re-
gime and(z3ssd ,h3ssd ,u3ssd ,dp3) at OsCa1/2d in the gravita-
tional regime, which satisfy the same equations

dz2/3

ds
= H− sinsu0du2/3 sreard

sinsu0du2/3 sfrontd,
sA10d

dh2/3

ds
= − cossu0du2/3, sA11d

du2/3

ds
= Dp2/3 − Boz2/3 cossad + Boh2/3 sinsad. sA12d

The boundary conditions follow froms22d, s30d and s51d,
s52d:

5z2/3 = 0

h2 = − sA0
+X0

+2
/2T0

+ + A1
+X0

+ + A2
+T0

+d
h3 = 0

6, s= 0,

sA13d

5
z2/3 = 0

h2 = sA0
−X0

−2
/2T0

− + A1
−X0

− + A2
−T0

−d

h3 = S−
Boc cossadX0

−3

6
+

A0
−X0

−2

2T0
− + A1

−X0
− + A2

−T0
−D 6, s= sp.

When a=0 or p, solutions are symmetric abouty=0, i.e.,
s=sp/2. The domain of integration isssp/2,spd and the condi-
tions ats=0 are replaced by

h2/3 = 0, s= sp/2,

z2/3 = 0, s= sp. sA14d
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