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The effect of gravity on liquid plug propagation
in a two-dimensional channel
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The effect of plug propagation speed and gravity on the quasisteady motion of a liquid plug in a
two-dimensional liquid-lined channel oriented at an anghlith respect to gravity is studied. The
problem is motivated by the transport of liquid plugs instilled into pulmonary airways in medical
treatments such as surfactant replacement therapy, drug delivery, and liquid ventilation. The
capillary numbeiCais assumed to be small, while the Bond numBeiis arbitrary. Using matched
asymptotic expansions and lubrication theory, expressions are obtained for the thickness of the
trailing films left behind by the plug and the pressure drop across it as functidds, &o, « and

the thickness of the precursor films. When the Bond number is small it is found that the trailing film
thickness and the flow contribution to the pressure drop scal€a&S at leading order with
coefficients that depend dBo and . The first correction to the film thickness is found to occur at
O(Ca) compared tdd(Ca*?) in the Bo=0 case. Asymmetry in the liquid distribution is quantified

by calculating the ratio of liquid volumes above and below the centerline of the chafnel/s

=1 atBo=0, indicating a symmetric distribution, and decreases Wiland Ca, but increases with

the plug lengthL,. The decrease dfg with Ca suggests that higher propagation speeds in small
airways may result in less homogenous liquid distribution, which is in contrast to the expected effect
in large airways. For given values of the other parameters, a maximum capillary n@aper
identified above which the plug will eventually rupture. When the Bond number becomes equal to
an orientation-dependent critical val@®,, it is found that the scaling of the film thickness and
pressure drop change @a? andCa'/6, respectively. It is shown that this scaling is valid for small
increments of the Bond number over its critical vallBn=Bo.+BCa’6, but for higher Bond
numbers the asymptotic approach breaks dowr2005 American Institute of Physics

[DOI: 10.1063/1.1863853

I.  INTRODUCTION air-liquid interfaceo, can vary in the range 16-10 in typi-
S . _ cal clinical situations® In addition, airway orientation with
Liquid is instilled into the lungs during medical treat- yespect to gravity must also be considered since the human
ments such as surfactant replacement thetSRT),"* par- airway network has a three-dimensional branching
tial liquid ventilation (PLV),*”" and pulmonary drug/genetic ¢ cture® Consider a plug that moves through a liquid-
material delivery’ **The instilled liquid may form a menis- ;o airway oriented at an angieto gravity and splits at an
cus in the trachéd and be transported through the airways INqirway bifurcation as shown in Fig. 1. Gravity affects the

the form of air-blown plugs; it may also drain gravitationally volume of liquid delivered to each downstream branch in

through the larger airways and form plugs in the smaller, . S .

) 15 . two ways. First, less liquid enters the upper branch since
airways:” The effectiveness of the treatment can depend on: K d4s to be d inst i S q i
(1) delivery to the desired location via liquid deposition in work needs 1o be done against gravity. >econd, gravity

films left behind by propagating plugs af#) the homoge- causes a larger fraction qf the plgg to be pr_eskmibyvthe
neous distribution of liquid through the branching ainNaycenterllne of the parent airway prior to the bifurcation com-

network as plugs split at airway bifurcations. In turn, thesePared toabove and this asymmetry predisposes a larger frac-
factors are influenced by a number of parameters includin§©n ©of the plug volume to enter the lower branch. This un-
liquid and interfacial properties, propagation speed, gravityequal splitting is repeated at each subsequent bifurcation,
and airway orientation>” An understanding of the fluid leading to an overall nonhomogeneous liquid distribution in
dynamics of plug propagation would therefore be useful inthe lung. One of the aims of this work is to quantify the
devising strategies to ensure optimal liquid distribution in thePlug’s prebifurcation asymmetry in the liquid distribution
lung. and determine its dependence on various parameters.

In this paper we focus on the effect of gravitational ac-  Gravity and airway orientation also affect the thickness
celerationg on plug propagation. Gravitational effects can beof the films deposited by the plug, which ultimately influ-
important since the Bond numbBo=pga?/ o, based on the ences liquid distribution. If the films are thick, the plug loses
airway radiusa, liquid densityp, and surface tension at the volume more rapidly and may rupture before it reaches the

intended delivery site. On the other hand, if plugs persist
dAuthor to whom correspondence should be addressed. over an entire cycle of breathing or are created prior to ex-
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focus of this work is on preexisting plugs that are either
introduced into airways during a medical procedure or form
due to instabilities. In particular, the prebifurcation asymme-
try and liquid deposition depend on the effect of gravity on
the longitudinal curvature of the interface, which is retained
in the two-dimensional model.

An analysis of the low capillary number motion of a
long bubble through a tube was carried out by Brethéfton
who found that the thickness of the liquid film separating the
bubble and the tube wall and the pressure drop across the
bubble both scaled &3a?’. His work was formalized in the
terminology of matched asymptotic expansions by Park and
Homsy.21 Other authors have examined flow in polygonal
capillaries?®?® surfactant effect§™® and thermocapillary
migration?**% In the context of airway plug propagation,
small capillary number asymptotic theory has been used to
study problems in airway reopening in ridfd and
flexible***3channels and tubes and surfactant effects on plug
propagatiort* None of these studies considered the effects of
gravity.

o Jenseret al® examined the effect of gravity on the dis-

\ placement of liquid by an air finger in a horizontal Hele—
(b) g Shaw cell using theory and experiment. FBo<<1 they
found that the film thickness followed th@a?/® scaling of
Bretherton withBo dependent coefficients, while the pres-
sure jump across the air-liquid interface was independent of
Bo. ForBo=1 the lower film was a©(1) quantity indepen-
dent of Ca Both the film thickness and pressure jump in-
creased withBo. The experimentally observed meniscus
shapes were in agreement with the theory. Lasseux and
Quintard® and LasseuX studied gravitational gas-liquid
drainage in vertical Hele—Shaw cells and capillary tubes and
also found that the Bretherton scaling applies vidthdepen-
dent coefficients.

Plug propagation in a tube or channel is closely related
to coating flow, a classical example of which is the with-
FIG. 1. Schematic of plug motion through an airway bifurcati¢m. A drawalgof a leer or plate from a “q_UId bath'_T_he r_EV|eW by
liquid plug moves through a liquid lined airway. The plug volume is asym- QUéré provides an excellent overview of existing literature.
metrically distributed about the centerline of the airway due to gray. Early work found the film thickness to scale 692/3 when
The plug enters an airway bi_fu_rcation Elo) sgbsequently splits _into two gravitational drainage in the entrained fim was
with a larger fraction of the original plug entering the lower, gravity-favored 9.40 .
branch. neglectecf. ™ These results were recast in the form of

matched asymptotic expansions by Wilsband extended to

account for nonvertical withdrawal. In the gravity dominated
piration, liquid may be blown out of the lung during exhala- case a thickness proportional @a’? was predicteé‘.2 Ap-
tion. Therefore, a second aim of this work is to determineproximations for the crossover between the two regimes
how gravity and airway orientation affect the possibility of showed reasonable agreement with experirﬁ%‘}ﬁ.
plug rupture. The smallCa asymptotic analysis of gas-liquid displace-
__Inthe smaller distal airways, the plug propagation speednent and coating flows shows that the same scaling laws
U is typically slow and the capillary numbeZa=uU/q, arise in both situations: When gravitational effects are small
wherep is the liquid viscosity, is small. The problem of plug a static meniscus is connected to a thin film of thickness
propagation in a cylindrical geometry in the presence of~Ca?® by a dynamic meniscus of lengih- Ca'. When
gravity is highly complicated due to the lack of azimuthal gravitational effects are strong, crossover to a different scal-
symmetry. In order to simplify the analysis we study the lowing regime witht~ Ca'/? occurs in coating flows. In this
capillary number, pressure driven motion of a liquid plugpaper we show that a similar crossover occurs wBeris
through a two-dimensional channel oriented at an amgle increased for plug propagation in an inclined channel. The
with respect to gravity. This simplification neglects the de-paper is organized as follows. In Sec. Il we describe the
stabilizing radial component of interfacial curvature that ismodel and discuss the basic equations and scaling arguments
responsible for a Rayleigh instability of the liquid film that in different regimes. In Secs. Il and IV we provide a sys-
can lead to the formation of liquid plugs in airways. The tematic development of the asymptotic equations and their

(© 8
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FIG. 3. Schematic showing) the statics region close to the body of the
FIG. 2. Schematic of the model showing the propagating plug and thirplug; (11) four transition regions close to the upper and lower walls at the
films. The dashed lines represent the static solutions for the rear and frorfitont and rear meniscus; argtl) trailing and precursor thin films.
interfaces, an&=0 is located at the intersection of the static rear interface
with the upper wallL, is the distance between the contact points of the rear
and front static solutions with the upper wall, is the length of the plug and
is equal to the distance between the tips of the two interfdgeandL, are
not independent parameters, see Sec. Il A for explanation.

ciently slow that inertial effects can be neglected and set the
Reynolds numbeRe=pUa/u equal to zero. Then the rel-
evant dimensionless groups are the capillary numBar
solutions. We conclude in Sec. V with a discussion of the=#U/o and the Bond pumbeBo:pgazla. Dropping the
results and their applicability to human airways. super;cnpt, the dimensionless steady Stokes and continuity
equations are

Il. FORMULATION - Vp+CaV?u+Boj=0, (1)
A. Model description V.u=0, 2
whereg=[coq«),-sin(«)] is the unit vector in the direction

A schematic of the model is shown in Fig. 2. It consists gravity. The boundary conditions are
of a plug of incompressible, Newtonian fluid of viscosjiy

and densityp moving at constant speed in the laboratory u=-lp=0aty=+1, ©)
frame through a two-dimensional channel of thickneas 2

The channel is oriented at an anglewith respect to the u-f=0 aty=h*(x), (4)
gravitational acceleratiory and lined with thin precursor R

films of the plug fluid. The plug separates two semiinfinite ~ f- o -fi=0 aty=h*(x), 5
air fingers of negligible viscosity and density. The surface

tension at the air-liquid interface is assumed to be constant P—Pa—N- o A=V - aty=h*(x). (6)

and equal tas.

Dimensional variables are denoted by superscripie
use a Cartesian coordinate systéxn,y’) with the channel
walls located aty’=+a and seek a steady solution in the
frame of the moving plug. Fluid velocity and pressure in thethe outward pointing unit normat, is the tangent to the

plug fluid are dgnoted by =(u’,v") andp respectively. Air inferface, andv -n is the interfacial curvature.
pressures behind and ahead of the plug are constant an

equal*top;,’R and p;i,'F. The air-liquid interface is located at
y =h* (x'). Superscript” and ~ denote quantities in the up- ¢ Asymptotic scaling and regimes
per and lower parts of the channel, respectively. As the plug
moves through the channel, it deposits t[ailing fiI[ns on the
upper and lower walls, whose thicknesi;é% andh;, ; will

be determined. The corresponding precursor*film thiclfness

ahead of the plug are specified and equahlg andh;, .
Subscript R" and “F” denote quantities behinrean and
ahead(front) of the plug, and will be dropped when an ex-
pression applies both ahead and behind the plug.

These represent, respectively, no-slip and no penetration at
the channel walls, and the kinematic condition, shear, and
normal stress balances at the air-liquid interfageh*(x).
Here o=Ca(Vu+VuT") is the fluid extra stress tensat,is

We seek an asymptotic solution of the governing equa-
é'&ons in the limitCa— 0. The analysis closely follows that of
previous work€32**3°For smallCa the flow domain can
be divided into three regions as shown in Fig(I3:a statics
region close to the body of the plug in which surface tension
and gravitational body forces are important, but viscous
forces are negligible(ll) thin transition regions close to the
walls in which viscous, surface tension, and gravitational
body forces are important; aritl ) flat thin films away from
the plug.

Two different force balances are possible in the transi-

Lengths are scaled by the channel half-widthveloci-  tion regions, which lead to different scalings for the film
ties by the propagation speét and pressures by the capil- thickness as explained below. Suppose that the transition re-
lary scaleo/a. We assume that the plug motion is suffi- gion is a thin layer of length and thicknesg, such thatt

B. Dimensionless groups and governing equations



031507-4 V. Suresh and J. B. Grotberg Phys. Fluids 17, 031507 (2005)

<a. Then the interfacial curvature in the transition region islarger andp, smaller byO(Ca'®) compared to the viscocap-
ky ~1/1? leading to a surface tension pressure scale illary scaling, (11). We will show in the following sections
that the viscocapillary scaling holds for smBIlb and that for

~ ~ at/l?. 7 . : ; » : .
Peap™ 0t = ™ each orientationy, there is a criticaBo at which the scaling
The viscous pressure scale in the transition region is changes td14). Note thatt<<| for both scalings, and so the
2 hydrostatic variation of pressure over the depth of the tran-
Pyis ~ pUI/E. tS)

sition region can be neglected.
First consider the casg=0 In the absence of gravity, the
viscous and surface tension pressure scales must balance and
setting Peap=Pyis 1€ads to D. Perturbation expansion

t/l ~ Cal’s. 9

. . . \elocities, pressures, interface position, and film thick-
Ky must match the curvature of the meniscus in the Stat'cfﬁes b P

region 1/a. when these regions overlap and so equat s are written in terms of a perturbation expansion for
region, ks ' 9 P AUasmall ca. From the preceding analysis a natural choice for
ing the two curvatures results in

the expansion parameter@® with a=1/3 for theviscocap-

t/12 ~ 1/a. (10 illary regime anda=1/6 for thegravitational regime. Thus
Equations(7)—(10) lead to the scaling&?!3434
quations(7)~(10) g = fo+ Cabfy + Cofp 4 (15
l/la~ Cal’®,
253 where f can beu, v, p, h, or t. In the transition regions,
ta~Ca™, rescaled variables are defined as
Py/(ofa) ~ 1, (11

where p, ~ p,is~ Pt iS the pressure scale in the transition X= ca ' Y= ca H* = ca F:F’
region. We call this theviscocapillary regimebased on the
dominant forces in the transition region.

When g# 0 there is also a hydrostatic pressure scale v p
based on the length of the transiti i UV)=\u—pz) P=5 (16)
ased on the length of the transition region, ca Cat

Py = pgl coga), (12)

where b=2/3, ¢c=0 for the viscocapillary regime and
=1/2,¢c=1/6 for thegravitational regime. The uppéower)
sign in +, = refers to the uppeflower) transition regions.
The origins of the transition regions are locateddt, +1)
Ynd the interface is located ¥t H*(X). The velocity scaling
follows from the continuity equatiorf2) and the no-slip
boundary condition(3). U, V, P, H%, and T* are also ex-
panded in a perturbation series of the fofh%).

and k; is affected by gravity, i.e.x5=xs(B0O, ). However,
the viscocapillary scalingll) is valid if the following two
conditions are satisfiedi) the dominant balance in the tran-
sition region is between the viscous and surface tensio
terms[Eq. (9) is valid] and gravitational effects are small
compared to these terms, i.e.,

%- ~Pa_cairge coja) <1, (13)
vis cap E. Matching conditions

and (ii) x¢(Bo,@) remainsO(1/a), i.e., (10) holds. These N ) .

conditions determine constraints &o and a for which the ‘The transition regions must be maiched to the statics

asymptotic analysis is valid and we will show later that thef®9ion and the thin films at either end. The matching to the

restriction on(Bo, ) is more critical. Fora=/2 Jensen thin films requires that the transition region thickness equal
S ’ .

et al2® found that the conditions are satisfied wgo<1, the film thickness far from the plug, i.eH*(X)—T*, X
Ca<1. — F oo, The limits -ec and +o are valid in the rear and front

transition regions, respectively. At the other end, the transi-

When is the same size ag,s and and
Po Pois Peap tion regions overlap with the statics region ¥s- + and

Bocoga)=0(1) a different scaling is obtained by equating

7), (8), and(12), Xx—Xg. Therefore, the matching criterion is obtained from
y ol (16) to be
a~Ca™,
limh*(x)=lim  +(1-Ca’H*(X)). 17
Ya~ Cal”, Imig= Jm |, 0. an
- (front)
py/(ola) ~ Cal’®. (14

As described by Park and Hom@ymatching conditions
We call this thegravitational regimeto emphasize the role of at each order are found by expandimigx) in a Taylor series
gravity in determining the scaling. In this case the curvatureaboutx=xg, rewriting in terms of the transition region vari-
in the overlap region is smallgg~t/1°~Ca®/a<1/a.  ables and comparing term by term with the right-hand side of
Also the film thicknesg and transition region lengthare  (17).
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Ill. THE VISCOCAPILLARY REGIME
A. O(Ca%) equations in the statics region

Viscous terms are negligible if1) up to O(Ca), and the
pressure is hydrostatic at leading order,

po(X,y) = Boxcoq a) — Boysin(a) + c;. (18)

The normal stress boundary conditit®) takes the form
+
+ O,XX (19)
t—,
(1 + ha’x)3/2

Boxcod @) — Boh(x)sin(a) — dpg

where dpp= dPg = Pair k—Co fOr the rear meniscus andp,
= dPo £ = Pair,r — Co for the front meniscus. Thud9) provides

Phys. Fluids 17, 031507 (2005)

conditions results in a third-order ordinary differential equa-
tion for the interface location. The details of the derivation
have been discussed by previous autl®fé,and carry
through with minor modifications when gravity is included.
Therefore, we do not repeat the details here and only present
the final result that the interface shape is given by the
Landau—Levich equation

_3(%-1

o= @R (23
where
JE=HITE, &= (X+X3)/TE. (24)

differential equations to determine the shape of the two meHereXj is an arbitrary translation of the coordinates, which

nisci. A Taylor series expansion &f(x) up to o(ca'’® in

(17) gives the boundary conditions
ho(g) = £1, (20

hg (%) = O. (22)

In addition, hj(x) and hg(x) must join smoothly at the “tip”

of the meniscusx=x;, where their derivatives are un-

bounded, i.e.,

hg = h, (22)

hi T o0 XY=
O,XH -+ X—Xt.

Equation(22) applies at all orders iifCa. For the rear

will be determined by matching to the statics region. Appro-
priate initial conditions for integratin@23) are obtained from
the asymptotic behavior af; in the limit §— - in the rear
and é— +o0 in the front, where the interface must match the
constant film thickness. The initial conditions are of the form

Jo~ 1+expné), &— —oo(reap,

Jo~1+Aexp- A§/2)cos(y"§A§/2), &— +oo(front),
(25)

wherex=3Y3 andA is a free parameter that depends on the
precursor film thickness as explained below.

interface, the origin of the coordinate system is specified by  Numerical integration of23) shows that the asymptotic

choosingxg r=0. SpecifyingL, then fixesxg ¢ for the front

interface(see Fig. 2 For each interface, the four constraints

(20) and (21) along with the smoothness conditiqi22)
specify boundary conditions fdd9) and determineSp, and

form of J; close to the statics region is
Jo ~ (A2 &+ ATE+ A, (26)
Applying the matching conditiori17) at O(Ca®’®) the

E— oo,

Xo- Equations(20) and (21) state that the static solution at film thicknessT; and T, on the upper and lower walls, re-
O(Ca0 apparently meets the channel walls with a zero conspectively, are found to be

tact angle. For any giveh,, the plug lengthLp can be de-

termined after solving for the static interfaces. The difference

in air pressures between the rear and front of the pdpg
= Pair R~ Pair,/ = SPo g~ 9P depends or, (equivalently, the

plug lengthLp) and counteracts the gravitational body force

acting on the plug, preventing it from accelerating.

It can be shown that the front interface satisfies the sam
equations and boundary conditions as the rear interface wht%g

(X,a,8pp ) are replaced bylLo—x, 7= a, dpgr+Locoda)].
Therefore, if the solution for the rear interfage haR(x) and
the pressure jumppg r are known for soméBo, ) andL, is
specified, the solution for the front interfage-hg ((x) and
the pressure jum@pgr are known for(Bo,7-a). In con-
trast to theBo=0 case(19—(21) do not admit an analytical

solution. The system is transformed to arc-length coordinate
as described in the Appendix and integrated numerically u

ing the boundary value solveoLmoD which is available for
download from the internet at http:/Aww.netlib.cif*®

B. O(Ca° equations in the transition regions

As
hg %)

For the trailing films the integration gives;=1.3375.
Note that 47, (X5) is the curvature axj sincehg,(X5)=0,
and thus the film thickness is inversely proportional to the
focal curvature of the statics solution. WhBD=0, it is easy
show thathj,(x5)=+1 and (27) reduces to the well-
known result of Bretherto’ Results forBo=0 and differ-
ent « are plotted in Figs. @) and 4b). On the lower wall,
Tor decreases with increasingo for «=0 and passes
through a slight maximum fow=m/4. For a=m/2, Ty
increases monotonically witBo and diverges at a finite criti-
cal valueBo=Bo_, whenhg,.(X) becomes equal to zero. The
Gpper film is thinner than the lower il o< Ty r), EXCEpt

T =

(27)

Sfor «=0 and = when Tor=Tog due to symmetryTg ., in

general, decreases wifBo and does not diverge except for
a=1. These results can be summarized as follows: &or

< /2, viscocapillary solutions can be found for the rear
transition regions in which the film thickness on either wall

To derive the transition region equations, the rescaleds finite. Fora= /2, viscocapillary solutions only exist for

variables(16) and the perturbation expansi¢h5) are sub-

Bond numbers less than a critical valBe, at which the film

stituted into(1)—(6). The momentum and continuity equa- thickness on the upper/lower walls diverges. This critical
tions reduce to the lubrication equations. Using the lubricavalue marks the transition to the gravitational regime, which
tion velocity field in the kinematic and normal stressis discussed in greater detail in Sec. IV.
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FIG. 4. Trailing film thickness in units of half-channel width B® on the
(@) lower and(b) upper wall atO(C&0).

i
15 2
+ +
TO,F /TO,R

FIG. 5. Flow contribution to pressure drop across the plug as a function of
(a) Bo and(b) precursor film thickness.

+

- £ 25— = 3py(x = Xy, (29)
In the front of the plug, the precursor film thlckne'% (1+hg X)
is a specified quantity an@7) serves as an equation f .
Thus, to solve for the front transition regions, the consfant with boundary conditions
in (25) is used as a shooting parameter that is iterated until 4 1 (Af)2 .
h5(%0) == | =0 ~ Az (30
(27) is satisfied for the particular choice ofge. If 0 he (5 \ 2

OXX(XO r) =0 for the rear interface for som@o, a), then
Oxx(XO £)=0 for the front interface fo(Bo,, w—«). There-
fore whena=< /2 solutions for the front transition region

only exist forBo<Bo,.

C. Higher-order corrections: Statics region

It can be shown that th@&(Cal’®) corrections to the in-
terface shape and pressuné,andp,, are both equal to zero.
As a result the coordinate translation (24) is found from
the matching conditions @(Ca?®) to be

A+
- _lTO .

X =
A5

(28)

Since h;=0, the normal stress balance @{C&?®) in the
statics region can be simplified to

obtained by comparing terms independenXait O(Ca?"®) in
(17). As before,(29) and(30) are transformed to arc-length
coordinates and integrated numerically to deterndipe De-
tails can be found in the Appendix.

The pressure drop across the plug is

Ap = Pair,R ~ Pair,F
= (8por+ CadpaR) — (Spgf + Ca?30p, ) + O(Ca)
= Apy+ Ca?*Ap, + O(Ca), (31)

where Ap, is the hydrostatic contribution andp, is the
leading-order flow contribution. Since we are primarily inter-
ested in the effects of flow, we examine hdy, depends on
the system parameters. In FigabAp, is plotted againsBo

for different « with the precursor film thickness on the lower
and upper walls equal to the corresponding trailing film
thickness. This corresponds to steady plug propagation in
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which the plug volume does not change. o /2 the  cursor film thickness increases. This is consistent with pre-
pressure drop increases wiBo. This is a result of greater vious result¥*3*that showed that it is easier to drive a plug
viscous stresses associated with the decreasing film thicknegifrough a tube with thicker precursor film.

at these orientationsee Fig. 3 Whena=/2 the thicken-

ing of the lower film exactly counteracts the thinning of the p. Higher-order corrections: Transition regions

upper and the pressure drop remains constant.oFetr/2

the pressure drop initially decreases with, but eventually In the transition regions lubrication equations still apply
increases and diverges as the film thickness diverges. Figuf$ O(Ca”® and the following third-order equation is found
5(b) shows that at any orientatiakp, decreases as the pre- for the correction ternH7(X):

3

3(2HE - 3TEHE + 3TEHE + Bocod a)HE(HE — T2)

H xxx= = o (32
Ho
|
Note that there is a contribution from the gravitational B:X: Bo cos(a)X*Z
component of the pressure gradient in tRedirection, hix(xé): F|BI+ _(I’_io— 5 o . (38)
0

Bocoga). The expression found by Wilshfor the dragout
problem reduces t(82) after some simplification. The result Equation(36) can be obtained fronil9) and (21) and pro-
of Park and Homs¥ is recovered wheiBo=0 or a=/2.  vides no new information. Sinc:, h, Ts, and X} are
Equation (32) is rescaled as if24) with J;=Hj/T;, T;  known, (37) and (38) and provide boundary conditions for

=Ty/ Ty, é=(X+X5)/ T, to get (33), which is solved by numerical integration usit@f) as

. Vo 2 3 the initial condition and choosing'Al'iR,A) or (A,B) to sat-

Eooo_ 3(23; - 3)J1 + 3T3J; + Bocod o) g J5(Jp - 1) isfy (37) and (38). Figures 6a) and &b) show theO(Ca)
Lege ™ Jgs ' correction to the trailing film thickness at the lower and up-

per walls, T,z and T 5, as a function oBo for different a.
Whena < 7/2 bothT; g and T, are negative, indicating that
this correction makes the film thinner. The opposite is true
when o> 7/2. In the former caseTl; ; and Ty  have slight
minima for some orientations, while in the latfgf ; passes
e~ ?{R+Aexp(>\§), £— —oo(rea, thrgugh_ a maximum fore=3w/4. Sin_ce (33) involves T;
' which diverges aBo=Ba,, T also diverges aBo,. When
Lo~ _ Bo=0 or a=/2 the gravitational term involvin@o coq «)
Jp ~ T+ exp(— N/2)(A cog V3NE/2) disappears froni33) and the boundary condition&37) and
L S 4 .
+Bsi n(\@)\ £2)), & — wo(front), (34) 23;8%.61/;\; :nr(;azucl)t;lé =0, which is consistent with the results

(33

Initial conditions for integrating33) are obtained from the
asymptotic behavior in the vicinity of the thin films,

where \=3' as before. Note thai'iR is unknown in the
rear, but:l'iF is specified in the front. Thus the initial condi-
tions involve two unknown constant(s‘Al’iR, A) in the rear
and (A, B) in the front, which are determined by matching
the transition region and statics region solutions. In the vi
cinity of the statics regiod; has the asymptotic form

IV. THE GRAVITATIONAL REGIME

The analysis in Sec. Il breaks down when the curvature
of the static solution at the lower wall becomes zero and the
film thickness diverges. This occurs whet /2 for the
rear meniscus and < /2 for the front meniscus. In this
section we determine the critical Bond numbBo. for

Ji ~ — (Bocoga)(Ty)%6) € + (By/2) € + Bié + B3, breakdown and examine the structure of the solution in the
(35) lower transition region where this occurs. This analysis ap-
E oo, plies to either the rear or front interface for appropriate val-

ues of @, while the viscocapillary analysis applies to the
Comparing terms involvingé, X2, andX in the O(Ca)  other interface.

matching condition we find

+ + A. Critical Bond number
ho xxdXp) = £ Bocoda), (36)

Since the curvature in the lower transition region be-

+ + comes small aBo=Bao,, the gravitational scaling14) ap-
e (xé)—( By BOCOS(a)X5) O g ¢14) ap
1 ,xX - ’

5 (37) plies in this region while the viscocapillary scalifgl) ap-
2T,

plies in the upper transition region. The perturbation
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0.25 1
— a=0
0.2t — - a=rn/4 | 0.9r b
L ——a=n2 | Visco-capillary (rear) Visco-capillary (front)
0.1 — o = 3n/4 0.8 No thin film solution (front) No thin film solution (rear) 7]
01f Ho=m | 07
Visco-capillary (rear) Gravitational (rear)
0.05F B 06} Gravitational (front) Visco-capillary (front)
= | o
e 0 g 05} .
0.05 - 0.4+ i
-0.1 4 0.3} Visco-capillary (rear and front) 4
0.15 q oot 4
0.2 B 0.1 4
-0.25 T s L s . s . . .
0 1.5 2 % 20 40 60 80 100 120 140 160 180
@ o (degrees)
0.25
— a=0 FIG. 7. Critical Bond numbeBo, for different orientations. FoBo<Bo,
0.2r — - a=n/4 || the viscocapillary scalingll) is valid in all transition regions. In the lower
015 —~—a=n2 || transition regions, foBo=Bo,+BCa’® and o> 7/2, the gravitational scal-
' — o=3n/4 ing (14) holds behind the plug and the viscocapillary scaling holds in front
0.1 —a=m 5 of the plug—these scalings are reversed whens/2. The upper transition
0.05 regions follow the viscocapillary scaling for &l (except fora=0, = when
: - Bo=Bo,), however corresponding ta< 7/2 or o> /2, this scaling ap-
L= 0 plies either to the rear or the front meniscus, and the opposite meniscus has
= —_————-— no thin film solution.
-0.05+ .
0.1t g
-0.15F . - . . .
plotted in Fig. 7. It is seen tha&Bo. has two minima ai
0.2r T ~ /4, 3w/4, and a maximum value of 1 at=7/2.
025, 05 1 15 2 0 ; ; " ;
(b) : 8o : B. O(Ca") equations in the transition region

FIG. 6. Trailing film thickness in units of half-channel width B® on the . The, upper transition region 'IS., descrl'bed @p). Rescal'_
(a) lower and(b) upper wall ato(Cal’3). ing variables in the lower transition region leads to lubrica-

tion equations, which are solved to obtain the following
equation for the interface location:

expansior(15) for both regions proceeds in powers@&-/®. _ _3(J5-1) Bo.coga)(Ty)A((J)*-1)
In the statics region, the normal stress condition is identical Jo,eee = (30)3 B ()3 ' (43)
to (19 at leading order and is reproduced below: 0 0

N where Jo=Hy/ Ty, £=(X+Xy)/ Ty as in(24). This equation
Baogx cod a) — Bohg(X)sin(a) — dpy = * hO—-X;_ with a=0 was obtained by Derjaguifito describe the thick-
(1+h5 )32 ness of the liquid film on a plate withdrawn from a fluid
(39) reservoir. In the context of that problem, different approxi-
mations have been used to find solutiong48) that match
Boundary conditions are obtained by considering termso the flat fluid interface in the reservdit** Here we de-
involving hi(x) up to O(Ca® in the matching condition scribe a solution that uses exact matching conditions to con-

(17), nect the film to the plug in the statics region.
O(Ca): hi() = 1, (40) forn:n the vicinity of the thin filmsJ; has the asymptotic
O(Ca""®): hy (%) =0, (41) Jo~1+Aexp\é), &— oo(rear/fron), (44)
o(cad): hS,X(XS) -0 (422 and\ satisfies
\3-3(1-(T,)?Ba, coga)) = 0. (45)
hB,xx(X(_)) =0. (42b

For the rear transition regiof43) is valid whena> /2. In
Equationg40), (41), and(423 are identical tq20) and(21), this case the single real root of45), N=Ag=[3(1
but (42b) is an additional condition that requires the curva-—(Tg)?Bo, cod«))]*3, is positive and initial conditions that
ture of the statics solution to vanish at the lower wall anddecay asf— —» can be found. The constaAtis arbitrarily
provides a constraint to determilB®.. The system is trans- set equal to 1 because of the translafignin contrast to the
formed to arc-length coordinates as explained in the Appenviscocapillary regime, the unknown film thickneggexplic-

dix and Bo. is determined as a function ai. Results are itly appears in the equation and initial conditions. It is there-
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fore treated as a shooting parameter and determined br 12 T ' ' ' ' : ' '

matchingJ, to the statics region, where it has the asymptotic — Tor
form 104 —4h |
Bo. coda)(Ty)?E A 8| |
- BRSO Aot
6 2 2.”
46 = ° 1
& — too(rear/fron}. .
4 L
Rewriting (46) in terms ofX and matching to appropriate J
terms atO(Ca'’? in the Taylor series expansion bf(x) we ol — |
find
0 I 1 1 1 1 1 I I
hA )= +B 47 90 100 110 120 130 140 150 160 170 180
O,XXX(XO) Oc coda), (47) (a) o (degrees)
~ 1
[P _
hy xd(X0) = - Bo. coga)X; |, (48)
0

. A _Bo, cos{a)X(;z) |

hEx(XB) = (Al T(_) 2 (49)

Equation(47) follows from (39) and(41) and does not pro-

vide new information. Thus higher-order corrections in the
statics regionh;(x) andhy(x), are required to complete the

transition region solution. It can be shown tHgi(x) and 01} i
h3(x) satisfy homogeneous equations and boundary condi-
tions and are equal to zero. Th&4B) and(49) provide con- 0.1 0.2 03 04 05 06 07 0.8
ditions to determind, andX; and complete the solution for () oF
‘JO' Figure ga) ShOWSTO as a function ofw whenBo= Ba. FIG. 8. (a) Trailing film thickness and flow contribution to pressure drop

Note that(43) reduces to the Landau-Levich equati(28), across rear meniscus Bo=Bo, and (b) flow contribution to pressure drop
when a=7/2 and(48) indicates thafl, diverges unlesg\,  across front meniscus as a function of precursor fim thickne&oaBo.

=0. It was not possible to find a solution witl=0 for a

=/2. This case has been treated by Jereteal > and we

will discuss their results later in this section. .
) Ir12the front transition region(43) applieg fora< 77/2. If hi() = T (A2T5 + A+ AO(XE))

(Top)Bo; coda) <1, (45) has two roots with negative real 2T,

part, A\ =\g(-1+iy3)/2, which provide decaying solutions as -3

&£— +o and a solution fod, can be found for each choice of - m),

Tor- On the other hand, ifT; )?Bo, coga)>1 there is a 6

single root with negative real pan=Ag. TreatingT, - as an N . _

unknown quantity the procedure used for the rear transitionvhere all the quantities on the right side are known. At the

region was followed; however no solutions satisfyi)  upper wall matching conditions of the viscocapillary regime

and (49) could be found. Thus there is an upper limit to the a2pply and lead to the homogeneous condition

precursor film thickness for which solutions of the front tran-

sition region exist, and within this limiT, - can be chosen h3(xg) = 0. (52)

arbitrarily.

(51)

Equations(51) and(52) specify boundary conditions for
h3(x) andh3(x) and the requirement that they join smoothly
at x=x; determinessp;. Whena=0 or 7, the symmetry con-

Since hi(x)=h3(x)=0, the normal stress balance in the dition h3(x)=0 is used along with eithe(51) (for the rear
statics region aO(Ca*’?) can be simplified to interface whenw=; front interface wherw=0) or (52) (for

the rear interface whea=0; front interface whemnx=).
hix B The flow contribution to the pressure drop across the plug is
+ L) Sps(x =Xy (50 dominated by thed(Cal’?) contribution from either the rear
0x or front meniscus, since the drop across the other meniscus is

Matching terms independent of at O(Ca® in (17)  O(Ca?®). dp; for the rear meniscus is plotted in Fig(aB

yields versusa and increases witly as the film becomes thinner.

C. Higher-order corrections: Statics region
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For a< /2, Fig. 8b) showsédp; across the front meniscus A. Prebifurcation asymmetry
as a function off, . As beforedp; decreases with increasing
Tor-

It remains to discuss the structure of the solution for
Bo>Bo.. For small increments oveBa,, the Bond number
can be expanded in powers 685, i.e., Bo=Bo,+BCa®, he = hi(x) + Ca?®h3(x) + [ 1 - Ca?3(HE(X)
B=0(1)>0; and the preceeding approach applies. In this 17304+ B
case, theD(Ca’®) and O(Ca'®) statics solutionshj(x) and +Cat*Hi(x)] - c.p, (54)
h3(x), will be nonzero and modify the matching conditions where the common pactp.was determined from the match-
that determine the film thickness. The flow contribution tojng conditions to be
the pressure drop will b®(Ca'/6) while the film thickness

A composite solution for the shape of the interface ac-
curate toO(Ca?®) was obtained by using the method of ad-
ditive compositior{®

remainsO(Cal’?). We do not present such an analysis here i NS X5)? + o (X= xp)°
: . . ’ .p.=h +h +h —_—
but only note that a consistent asymptotic solution can be €-P-=ho00) * Nood>0) 2 000(%0) 6
found. I3[t + oot Lt
For higherBo, when the systertB9)—(42) was solved by +ce [hz(x‘)) *1,%) (X XO)]' (55)
relaxing (40), the interface did not contact the lower wall, Sample interface shapes for different parameter values

but passed through an inflection point B§(x;)=y;, =1  are graphed in Fig. 9. In this figure and the results to follow,
<y;<1. The origin of the transition region is thus located atthe precursor film thickness on either Wéﬂﬁyp. is fixed at
a distanceg(1+y;) above the lower wall and the film thick- 0.1. In each panel the interface Bo=0, which is symmet-
ness isO(1). However, a consistent solution cannot be foundric about the centerline of the chanrg=0), is shown for
because the viscous and body force terms do not balane®mparison. WheBo> 0, the interface is distorted as more
each other in th& momentum equation in the lower film,  liquid pools below the centerling/<0). The asymmetry in-
creases with increasin@a and depends on: The shape of
Fu the rear interface is most sensitive to changeBarand Ca
Ca— +Bocoda) =0, (83)  for a>m/2, while the front interface is most sensitive for
% a< /2. Since the precursor film thickness is independent of
Bo andCa, the shape of the front interface does not vary as
if the film thickness i90 (1) andCa<1. This inconsistency much as that of the rear.
is the result of neglecting the viscous terms in the normal An interesting feature of the interface Shape is the “neck-
stress condition that are comparable in size to the other termgg in” seen at the front meniscus. The nonmonotonic shape
in the vicinity of the inflection point. Thus it is necessary to represents a capillary wave at the interface and is a result of
solve for the velocity field and the asymptotic approachthe oscillatory initial conditiong25) and (34) required for
breaks down. An exception is the special casew/2 for  the solution 0f(23) and(33), respectively. Such profiles have
which the gravitational term vanishes (83). ForBo=Bo;,  peen described by other authors for the motion of long
it can be shown that all derivatives bf(x) vanish aty=y;,  bubble® and plugs in tube®>* The capillary wave causes
the transition region vanishes and the static interface joinghe minimum distance between the interface and the channel
smoothly to a film of thicknesgl +y,) that is independent of wall, h,;, to be less than the constant film thickness far from
the capillary numbet’ the plug. The dependence bf;, on Bo and @ mirrors the
variation of the trailing film thickness with these parameters:
on the lower wallh,, passes through a slight maximum as
V. DISCUSSION Bois increased fow=m/4, whereas it decreases monotoni-
cally with Bo for a=m/2, 37x/4. On the upper wallh,,
To discuss the application of these results to human airdecreases monotonically wito for a=w/4, 7/2, 3m/4.
ways, we examine the effect of gravity and propagation  When the plug splits at an airway bifurcation, the asym-
speed on two features of physiological significance, namelymetric liquid distribution can play a role in determining the
prebifurcation asymmetry in the liquid distribution and plug volume of liquid delivered to each downstream braiisbe
rupture. We estimate values for the dimensionless parameteFsg. 1). In order to quantify the prebifurcation asymmetry, a
for two cases based on physical properties and airway divolume ratio \4 is defined as the ratio of the liquid volume
mensions and speeds from Cassétiyal'® and Kinget al:*’  above the centerline of the channel to that below per unit
(1) SRT using the surfactant Survanfa=1.16 g/cmi, »  width of the channel and is equal to
=0.52 gfcm 9, ando=48 dyn/cnj and(2) PLV using per- .
flurorcarbon liquidgp=1.93 g/cni, ©=0.021 g{cm 9, and R = Vit LP,
=18 dyn/cnj. Under these conditions Bond and capillary V' +Lp
numbers vary in the range 0.61Bo< 0.2, 0.0 Ca<0.1
(SRT); 0.04<B0<0.6, 0.00kCa<0.01 (PLV) between
generations 11 and 17 of the adult human lung. In the dis- . %2R X e
cussion to follow we use the results of the viscocapillary Y =f+ hc,R(X)dX"’f he p()dX+ (% = X2 )
regime over the parameter range €.Bo<0.4, 0.0<Ca 1R “F
<0.05 which is relevant to SRT and PLV in small airways. + (X=X,

(56)

wherelp is the plug length and
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4 e B0=0, Ca=0.01
— Bo0=0.2, Ca=0.01
— - Bo0=0.2, Ca=0.05
o =W
Ly=1

y = B0=0, Ca=0.01
— Bo0=0.2, Ca=0.01
— - Bo0=0.2, Ca=0.05
o =2
L, =1

# | = Bo0=0, Ca=0.01
—— Bo=0.2, Ca=0.01
— - Bo=0.2, Ca=0.05

o = 34
1

Phys. Fluids 17, 031507 (2005)

FIG. 9. Composite solution showing the shape of the
plug for three combinations oBo and Ca at (a) «
=m/4, (b) a=m/2, and(c) a=3w/4. Other parameter
values are fixed ah? -=0.1, L,=1. The interface for
Bo=0 (dotted ling in each panel is symmetric about
y=0, but becomes distorted 8® andCa increase.

*2R X F
Vi=- f_ he rR(X)dx~ J he p(X)dX+ (X = X2 R)
X1 R

X2F

+ (Xop = Xp). (57) 0.8+

In (57), X, g andx; are the locations corresponding to the
centerline(y=h,=0) and “tip” (dh./dx— ), respectively. .= 07+
The other limits of integration; ¢, are chosen to be the
locations at which the distance between the wall and the st
interface reaches within 1% of the constant film thickness.
Figures 10 and 11 show the dependenc¥gbn differ- 05
ent parameters. In Fig. (@), Vg is plotted as a function of
Bo for different orientations withCa=0.01, L,=1. When

0.4
Bo=0, the plug is symmetric aboyt=0, andVg=1, indicat- 0

ing symmetric liquid distribution on either side of the cen-
terline. AsBoincreases, a progressively larger fraction of the 1

0.1 0.15 0.2 0.25 0.3 0.35 0.4
Bo

plug volume resides in the lower half of the chanitgl
< 0) andVg decreases. ThBo dependence strongly depends
on the orientationy, and fora= /2, Vi decreases rapidly,
leading to crossovers between the different curves.

Figure 1@b) shows thatVg depends strongly o@a and
decreases a€a is increased. The decrease is more pro- .
nounced at highdBo. WhenCa=0, the channel walls are dry
and Vg is calculated from the static solutioNy is less than
1 due to gravitational distortion of the static interface, and

this effect increases witBo When Ca>0, dynamic effects
enhance the gravitational distortion of the interface as seen ir

Fig. 9 and lead to a decreaseMp. These results indicate that

at low Cain small airways higher propagation speeds lead to %2
more asymmetric plug shapes. When such plugs split at air(b)
way bifurcations, the greater liquid volume below the center-

0.01 0.02 0.08 0.04 0.05

Ca

FIG. 10. Ratio,Vg, of liquid volumes per unit channel width above and

line may enhance the amount of liquid delivered to thepeow centerline, as a function ¢ Bo and (b) Ca for L,=1 and different

gravity-preferred branch and thus lead to more nonhomogeralues ofa.
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! ' ‘ : ; ' : : flux in the thin films. The velocity profile in the thin films is

N — L, =1
0.95} == —- LE =2 N parabolic since th&e momentum equation and boundary con-
ool ot —Lp=3 ] ditions reduce to
. S L =4 2
85| ~. - u
0.85 ~. Ca— +Bocoga) =0,
08} T~ i ay
ST 075} \‘\\\ e u
07k TS uy=+1)=-1, —(y==*(1-h))=0. (59
. ay
0.65 B
Then the flow rate per unit width of the channel in the pre-
06 1 . .
Ca =001 cursor films is computed to be
0551 ©=7/2 1
he g =01 o Bocog «) ht’
0.5 L : L L L L L + _ F_ _ + o,F
0 005 01 015 02 025 03 035 04 Q= =-Cah g+ ——F—, (59
(a) Bo F (uloa) F 3
1 . . . : where the first term represents the constant speed plug mo-
— tpz; tion and the second gravitational drainage. Using the pertur-
099 —_ LE:S i bation results of the previous sections the flow rate in the
—— Ly=4 trailing films is
0.8 1
Bo=0.4 + \3
- Bocoda)(T;R)
o =n/2 +_ _ ~S53TE + OR
07 W ooq Qr=-Ca*T5x Caz(TI’R s
>II
o6l +0(Ca’®). (60)
05k | Then the rate at which the plug volurivechanges with time
is
04}
dv _ _
i (Qr+ Q) — (QF + Qp). (61)
0'30 0.01 0.02 0.03 0.04 0.05
(b) Ca Figure 12a) shows a plot ofi\V/dt againstCa for a givenBo

FIG. 11. Ratio,Vg, of liquid volumes per unit channel width above and a,'nd .pre(_:ursor film thickness. Whm I_S small, the tr,a””_]g
below centerline, as a function &) Boand(b) Cafor a=/2 and different  film is thin and the volume flux is dominated by gravitational
values ofL,. drainage in the precursor films, which can cause the plug
volume to increasddV/dt>0) for > w/2 and decrease
(dVv/dt<0) for a<a/2. As Caincreases, two opposing ef-
fects come into play: the plug picks up more fluid from the
neous liquid distribution. This is in contrast to the expectedprecursor films, but also deposits more liquid as the trailing
effect of flow in large airways, in which inertial effects could films become thicker. Therefore, for a fixed value of the pre-
be important due to higher speeds and larger dimensionsursor film thicknessdV/dt passes through a positive maxi-
Increasing the flow rate under such conditions would countemum and then becomes negative at a critical capillary num-
gravitational effects, leading to more homogeneous pludgerCa. beyond which the plug volume always decreases and
splitting if the airway bifurcation is geometrically symmet- the plug eventually ruptures. Figure (b2 showsCa; as a
fic. function of Bo for different values ofa andhi .. When the
Finally, we consider the effect of plug length. Equa-  trailing films become thinner with increasifp (see Fig. 4,
tion (56) indicates, and Fig. 11 confirms, th¥ increases Ca. increases, while the opposite is true for orientations at
with L, as the liquid volume between the tips of the two which the trailing films become thicker with increasiBg.
interfaces increases. Thus the liquid distribution, and henc€a. also increases al:-r;jF increases. Thus plug rupture is
plug splitting, is likely to be more uniform for longer plugs. promoted by higher propagation speeds and thinner precur-
However, it must be noted that the asymptotic analysis isor films, and is more likely to occur in airways in which the
only valid for L,=0O(1) since it neglects the fluid mechanical plug motion is opposed by gravity.
coupling and viscous pressure drop between the front and
rear meniscus. These effects become important for very sho@. Summary

and very long plugs, respectively. We have shown that gravity and channel orientation can

have significant effects on the propagation of a liquid plug
through a liquid-lined channel. Two different scaling regimes
As the plug moves through the channel its volume dewere identified at low capillary number. In the viscocapillary
creases if the trailing film is thicker than the precursor filmregime which exists for Bond numbers less than an orienta-
and it eventually ruptures. The instantaneous rate of volumé&on dependent critical valuBa,, the trailing film thickness,
change of the plug is determined by computing the volumdength of the transition region, and flow contribution to the

B. Plug rupture
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gx10° . . ‘ . inertia is negligible, and is in contrast to the behavior ex-
o5l ooep. T | pected in large airways in which higher speeds would in-
’ T crease inertial effects and result in a more uniform liquid
0 ; distribution.
05} Criteria for plug rupture were obtained by determining a
T o critical capillary numbelCa, as a function oBo, « and the
= = n/4 precursor film thickness, above which the plug eventually
37 | == ruptures. Plug rupture limits the depth of penetration of in-
20 |07 Z:i"m stilled liquid into the lung and thus affects the overall deliv-
250 oo ery. We found that, in general, plug rupture occurs at lower
3l o speeds(lower Ca;) when the plug motion is opposed by
a5l - F gravity and in channels with thinner precursor films.
' I These calculations are based on a two-dimensi¢al
49 0005 001 0015 002 0025 003 channel geometry, whereas a real airway has a cylindrical
(a) Ca geometry in which the shape of the interface is not symmet-
0.1 ‘ . . . . : : ric about the airway axis and the trailing film thickness in a
oosl cross-section normal to the axis varies with the azimuthal
angle. Analogously, in the 2D channel, gravitational effects
0087 distort the interface shape and lead to different film thickness
0.07} on the upper and lower walls. Many of the interesting results
0.06 | of our study, such as the nonhomogeneous liquid distribution
< 0051 and the(Bo, a) dependence of critical capillary number for
© plug rupture are a result of this gravitationally induced asym-
0047 metry and therefore will be present in cylindrical airways as
0.03r well. While the quantitative dependence of the results on the
0.02 system parameters will depend on the geometry, the scaling
001l relations in the limit of smallCa are identical in either case
and therefore the results for the 2D channel will provide
% 005 01 015 02z 025 03 035 04  insightinto the behavior in the cylindrical geometry as well.
(b) Bo The asymptotic analysis presented here provides insight
FIG. 12. (a) Rate of change of volume of the plug @a and (b) criical  INt0 the physical processes influencing the low capillary
capillary numberCa, vs Bo for eventual plug rupture. number dynamics of plugs in small airways with plug

lengths comparable to the airway radius, and does not ad-
dress the transport of instilled liquid from large airways to

pressure drop across the plug scal€a¥3, Cal’3, andCa?3, smaller ones. This initial transport process is important since
respectively. The first higher-order correction to the filmit determines input parameters to the current model such as
thickness occurs ab(Ca) compared taO(Ca*) in the no-  the plug length, which affects liquid distribution and plug
gravity case. A crossover to the gravitational regime occurgupture. Since inertial effects become important at the length
at Bo=Ba, where these quantities scale @a'?, Ca'/5, and  and velocity scales prevalent in large airways, the equations
Cal’? respectively. For small increments of the Bond numbetof motion need to be solved numerically. Recent studies have
over its critical value(Bo=Bo,+Cal’®B) the scaling of the €xamined finite Reynolds number effects in gravity-free
film thickness and transition region length remain un-Bretherton type problems propagation using scaling
changed, but the pressure drop scale€a¥®. For higher arguments**®and numerical computatior$.>* These stud-
Bond numbers the small capillary number asymptotics break€s, in general, have found that inertial effects lead to a slight
down and the full Stokes equations must be solved. decrease in the trailing film thickness at Reynolds numbers
The results of the asymptotic analysis were used to exless than about 100; however, there is a large increase in the
amine the effect of gravity on two features of physiologicaldriving pressure and significant changes in the flow and pres-
interest, prebifurcation asymmetry in the liquid distribution sure fields in the liquid>>*
in the channel and criteria for plug rupture. Asymmetry in
the liquid distribution was quantified by calculating the ratio ACKNOWLEDGMENTS

of liquid volumes above and below the centerline of the This work was supported by NIH Grants No. HL41126,

channel,Vg. Vi depends strongly oa and decreases with No. HL64373. NSE Grant No. BES-9820967 and NASA
Bo, but increases with the plug length,. An interesting Grant No NA'GS-2196 '

result was thaVy decreases witlCa, i.e., the asymmetry in

the liquid distribution increases with the plug propagationAPPENDlx

speed. Thus higher propagation speeds may promote unequal

plug splitting at airway bifurcations and increase the inho-  An arc-length coordinate systers, 6(s)) is defined
mogeneity in the overall liquid distribution in the lung. This wheres is the arc length along the air-liquid interface. The
result is valid in small airways at low speeds when liquidorigin is located at the contact point of the static interface
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with the wupper wall. The interface transforms as
(X, h*(x)) = (&(s), 7(9)) with
ac _ cog6) (reap
ds_{—cos(a) (front), (A1)
dpg _
ds - sin(6). (A2)

The curvature is given byh,/(1 +h§2)3’2:—d0/ds and
the normal stress balance without the viscous term is

de

ds op — Bol(s)cod @) + Bop(s)sin(a). (A3)

£(s), n(s), 6(s), and sp are expanded in the perturbation

series(15) to obtain equations in the statics region at eachz'

order.

1. Equations at O(CaP)

The equations at leading order are identical in the visco
capillary and gravitational regimes,

dfo _ ) codbp(s))  (reap

ds {— cod6y(9) (front), (A4)
d _

f =sin(6y(9)), (A5)
d

O = Apy - Bog(cos@) + Bom(sine). (A

Boundary condition$20), (21), (40), (41), and(42a become
§0=0,Lp;7]0=1;0020, SZO,

{o3=0
o= — (A 12TE + A+ ASTE) (0 =0,
73=0

{o3=0
2 o
7= (AgXg 12T + Al Xy + A To)

B ( Bo, cos(a)xa3 . A5X52
3= 6 2T,

+ A X+ AET&)
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7]0:_1;00:77, S=S,, (A?)
which provide three conditions to integratd4)—(A6) and
two more to determinép, ands,. The smoothness condi-
tion (22) implies that

602 72, Hi = 0(| > 0), go =Xy, S=Sy2. (A8)
The condition(42b) used to determindo. in the gravita-

tional regime becomes

(A9)

Equations at  O(Ca'?) and O(Ca??)

The first nonzero corrections to the statics region are
(£a(9), 72(9), 05(9) , Op,) at O(Ca?’®) in the viscocapillary re-
gime and(Z5(s), 75(s), 65(S), dp3) at O(Ca’?) in the gravita-
tional regime, which satisfy the same equations

Aoz _ |~ sin(6p) Bz/3 (reay (AL0)
ds sin(6y) 653 (fron),
dnas _ _
4s cog ) O3, (A11)
s
d0—2/3 =A -B +B i Al2
qs _ ~Pas 04z/3c09 @) + B0y 3 sin(a). (A12)

The boundary conditions follow froni22), (30) and (51),

(52):

(A13)

When «=0 or 7, solutions are symmetric aboyt=0, i.e.,
s=s,». The domain of integration i&s,,,s,) and the condi-
tions ats=0 are replaced by

723=0, S=S.p,

{3=0, s=s

T

(A14)
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