
WAITING FOR THE PROTON TO DECAY: 
1983 RESULTS FROM THE NEW DEDICATED EXPERIMENTS* 

21 

Lawrence R. Sulak 
University of Michigan, Ann Arbor, Michigan 48109 

ABSTRACT 

Three new dedicated experiments searching for proton decay came 
on the a i r  during the last year or so. Orders of magnitude more 
neutrino events, as well as possible nucleon decay candidates, have 
been recorded. Significant new l imits have been placed on many 
modes of nucleon decay. Representative lower l imits at 90% C.L. for 
the lifetime/branching ratio for p§ ~ of 2.0x1032 years, p§ ~ of 
3.1x1031 years, p+~+K ~ of 2.6x1031 years, and n~K ~ of 0.8x1031 
years have been set by the IMB group. Many other l imits have 
also been set by the HPW, IMB, Kamioka, Kolar, and Mont Blanc 
experiments. Contained interactions have been observed in four 
detectors at rates expected from atmospheric neutrino induction, 
within the 30-50% errors on the calculations. The status I of the 
operational experiments is discussed, and typical restr ict ive 
results are reviewed. Detectors under construction are also 
mentioned. 

I .  INTRODUCTION 

In the past year, three new dedicated water Cherenkov 
experiments to measure the proton l i fet ime (HPW, IMB and Kamioka) 
have come on l ine and already have produced new results. The two 
pioneering fine grained experiments (Kolar and Mont Blanc) continue 
to accumulate data. A large tracking calorimeter (Frejus) is 
par t ia l ly  operational and the technology for another (Soudan) is 
being developed. This review concentrates on the two experiments 
with extensive new l imits (IMB and Kamioka) and presents a status 
report on the others. 

The burgeoning effort on proton decay experiments was 
stimulated by compelling physics arguments that challenge the 
permanence of the proton. Speculation on the possible demise of the 
nucleon was in i t iated by Sakharov's precocious work 2 in 1967: the 
baryon excess in the universe implied proton ins tab i l i t y .  An 
independent l ine of reasoning, based on the desire to unify the 
theories of the strong interaction and the electroweak force, 
inspired several other authors 3 (Pati and Salam; Georgi and Glashow; 
Georgi, Quinn, and Weinberg) to include both quarks and leptons in 
the same multiplets. Within these multiplets, virtual transitions 
of quarks into leptons and antiquarks, albeit slow, naturally give 
rise to an unstab�88 nucleon. 

The l i fet ime (4.5x1029• years) predicted by SU(5), the 
simplest grand unified theory, is tantal iz ingly close to the 
experimental bound derived from past cosmic ray neutrino 
experiments. This predicted rate and the dominant p § e+~ ~ decay 
mode are well within the capabil it ies of the new detectors. These 
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detectors are large enough to both yield a signif icant event rate 
and to to ta l ly  contain the events. They are based on technologies 
developed for large neutrino experiments at accelerators. At this 
time the most restr ict ive lifetime/branching ratio l imi t  5 (2.0x1032 
years by the IMB group) does not support the predictions of the 
simplest grand unified theory. Further, the ultimate sensi t iv i ty  of 
the experiment to the simplest model could be a factor of f ive 
better than this value. Thus a def in i t ive statement about minimal 
SU(5) appears to be forthcoming. The preliminary values of the 
several new l imits on p+e+~ ~ are compared in Table I .  

In contrast with SU(5), supersymmetric models and those 
incorporating supergravity suggest decays with unknown rates into 
modes with much different characteristics, e.g., a kaon and a 
lepton. These modes are much more d i f f i cu l t  to distinguish from 
neutrino background. Apparent candidates have been recorded by 
several of the experiments. A given event can generally be 
interpreted as a candidate for several different proton decay modes. 
I i l l us t ra te  the status of the work by showing the preliminary 
values of the 90% confidence level l imits or the rates in Tables I I  
and I l l  for p§ ~ and p+-~K + resp. (At this stage of the 
experiments we assume that a rate can be measured by a single 
event!) Each of these modes contrasts with the characteristic "two" 
body p§ ~ decay, where al l  the mass of the proton appears as 
electromagnetic energy. For p§ ~ the signature can be the 
three-tracks of the ~+~+~- f inal state,or two ~+ew delayed decay 
chains, or a signif icant amount of isotropic l ight  from the ~+ oxo 
f inal state. For the p~K + mode, perhaps the most d i f f i cu l t  yet 
accessible mode, a monochromatic u+ from the K + decay and a 
subsequent u decay signature may be all that is available. 

General agreement among the experiments for the l imits is 
apparent from Tables I I  and I l l .  However, the alternative 
interpretations of each event and the evaluation of the neutrino 
background for each candidate are under intense scrutiny. The f lux 
of atmospheric neutrinos 6 is uncertain within a factor of • 
Most importantly, the characteristics of multipion production are 
d i f f i c u l t  to calculate. The IMB experiment has used the Gargamelle 
neutrino data 7 to simulate the background. This is fraught with the 
uncertainty in scaling from the pion reabsorption in the freon of 
the bubble chamber to the oxygen in a water detector. On the other 
hand, the Mont Blanc experiment evaluates the neutrino background 
with the results of a neutrino beam test at CERN. However, the 
neutrinos were incident at 90 ~ and 45 ~ to the iron plates of that 
anisotropic detector, leaving uncertainties for neutrinos at 0 ~ to 
the plates. 

Perhaps the most important indication of the i n i t i a l  success of 
the experiments is the number of recorded atmospheric 
neutrino-induced events (-250). This number has been increased by 
about two orders of magnitude over the last year. Table IV records 
the preliminary s tat is t ics.  Remarkably, a neutrino event rate of 
-100 events/kiloton year of f iducial volume is observed by four 
experiments. The neutrino rate in each experiment is consistent 
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with the expected value calculated by each group, within the • 
flux uncertainty. 

Let me also say a word about the depth of the detectors. The 
greater the shielding above an experiment, the lower the cosmic ray 
muon rate, and the slower the data acquisition system must work. On 
the other hand, the detectors at the greatest depths are generally 
forced (by the limited size of the cavities there) to have a source 
material with a high density to achieve a sufficient detector mass. 

Another depth dependent consideration is the necessity of 
distinguishing cosmic ray muon-induced background from potential 
proton decay events. At the relatively shallow depth of the three 
experiments in the U.S., typically 10 B muons traverse a detector per 
year. This places a burden on pattern recognition i f  one is to 
eventually glean a few proton decay events per year. In practice 
the muon-induced background has presented no problem for the shallow 
detectors to date. In the deep Alpine tunnels of Europe, and the 
s t i l l  deeper Kolar gold fields, muons and muon-induced background 
are rare. On the other hand, monitoring the minute-by-minute 
integrity of the detector is much more d i f f icu l t  without frequent 
muon traversals. 

2. RING-IMAGING CHERENKOV CALORIMETERS 

The new detectors fall into two classes: totally-active 
ring-imaging Cherenkov detectors with light collected from water by 
phototubes, and sampling calorimeters with particle ionization 
tracked by gas tube arrays. The features of the seven detectors 
mentioned above are compared in Tables V and VI. 

For both ring-imaging calorimeters and dense-tracking devices, 
I will f i rs t  consider in detail one detector for i l lustrat ive 
purposes. ( I t  turns out that the techniques used within each 
detector class by the various groups are very similar.) Then I will 
contrast each of the other detectors in the class with the 
i l lustrat ive example. 

2.1 THE IRVINE-MICHIGAN-BROOKHAVEN DETECTOR 
IN THE MORTON-THIOKOL SALT MINE 

As a typical Cherenkov calorimeter, I f i r s t  discuss thoroughly 
the experiment which has ~roduced the most restrictive results this 
year, the IMB experiment. (I also know i t  best due to my 
association with the IMB group.) The detector is a large rectangular 
volume of water, 22.8 x 17.8 x 16.9 m, viewed by 2048 
photomultiplier tubes (PM's) coverinq all six faces. The fiducial 
volume of 3300 metric tons or 2.0xi033 nucleons begins 2.0 m in from 
the tube planes, which, in turn, begin nominally 0.5 m in from the 
walls. 

Above the threshold B of 0.75, charged particles in the water 
give off Cherenkov light. A stopping track lights up a ring of PM's, 
each at about the one photoelectron level. By ut i l iz ing the 
relative timing of the l i t  PM's and their geometric pattern, the 
vertex position of single tracks can be reconstructed to an accuracy 
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of ~ 1 m. For multi-track nucleon decay events with opening angles 
greater than 90 ~ (so that the Cherenkov cones do not overlap), the 
vertex can be reconstructed to within 50 cm. 

Three independent analysis chains find events with their  vertex 
in the fiducial volume. These events could be atmospheric neutrino 
interactions, possible proton decay candidates, or other new 
physics. The details of one of these analysis chains are presented 
here; the results are consistent with those of the other chains. 

Whenever 12 tubes anywhere in the detector f i re within 50 ns of 
each other, the detector is triggered. Since the energy calibration 
yields 4 MeV/photoelectron, this corresponds to a threshold of 
50 MeV. There are 2.3xlO5/triggers per day, predominantly straight 
through cosmic ray muons. A requirement of 30-300 l i t  PM's, 
reduces the data by a factor of three. This range includes 
most nucleon decay modes. Under the hypothesis that the l i t  tubes 
were illuminated by a single point source of l ight ,  the second step 
locates that point. By requiring that this point lies within the 
fiducial volume, a factor of 100 of the entering tracks is 
eliminated, while saving 80% of neutrino interactions originating in 
the fiducial volume. Over 90% of multitrack events, e.g., most 
nucleon decay modes, are saved. 

The remaining triggers are primarily short stopping muons or 
tracks that clip the corners. The l ight illuminating a PM is then 
required to emanate at the Cherenkov angle of 41 ~ from a 
hypothesized track. I f  the likelihood is high that the vertex is at 
the surface of the detector, the event is rejected as an entering 
track. About 3 events per day remain with a best f i t  in or near the 
fiducial volume and with ) 40 PM's. Physicists scanning with a 
color graphics system help the f i t t e r  to optimize the vertex. This 
reduces the number of contained events to - I event per day. The 
combined efficiency to keep the predominantly low energy, single 
track ~ events (averaged over v types and energies) is 75%. 

The number of contained events, 169 in 204 l ive days, is 
consistent w~th that predicted using either of two neutrino flux 
calculations and the above detection efficiency. Neutrino events 
observe d by the Gargamelle collaboration in a freon-f i l led bubble 
chamber are used to simulate what is expected in the detector. The 
Gargamelle events are weighted to mimic the expected atmospheric 
neutrino energy spectrum, and electron neutrino events are generated 
by changing the observed u to an electron of the same momentum. The 
characteristics of the contained events are consistentswith those 
expected from ~ interactions. The energy distribution agrees well, 
and the event vertices are distributed uniformly in the detector 
and are reasonably isotropic in direction. 

A muon decay electron is identified by a coincidence of 5 or 
more PM's in a 60 ns window up to 7.5 ~sec after the main event. 
Using a sample of entering stopping tracks, the efficiency is 
measured to be 66• for ~+ decay detection. About 30% of the 
neutrino events are expected to have an identified ~ decay, 
compared to 30• observed. 

To look for e+~ ~ events with two tracks (each with more than 
40 tubes and an opening angle greater than 100 ~ ) are retained. 
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5 
Three events remain. Each has either too much energy to be a 
proton decay, or too small an opening angle, or a v is ible ~ decay. 
In oxygen, an intranuclear cascade program indicates that 40% of the 
~~ are lost outside of the cuts on energy and opening angle. This 
gives a l imi t  for a 250 l ive day exposure of 

~/B(p + e+~ ~ > (1 /2 .3)  x (250/365) x 2xi033 x (10/18) x 0.9 • 0.68 
= 2.0• years ,  

where 0.68 represents the p r o b a b i l i t y  fo r  ~~ to surv ive  nuclear  
i n t e r a c t i o n s  averaged over a l l  protons in water and 0.9 is the 
e f f i c i e n c y  fo r  recons t ruc t ing  events wi th  a back- to-back,  
equa l -energy-shar ing ,  I GeV energy depos i t i on .  Also no candidates 
remain for p § ~+~o, leading to 

z/B (p § u+~~ > 1.2 x 1032 years. 
One search for p + u+K ~ is based on the decay K~ + ~o~o, 

which gives off 4 y's producing a nearly isotropic source of 
Cherenkov l ight .  The rings from the four tracks overlap, so i t  is 
d i f f i c u l t  to separate the showers. Instead, the "isotropy" I of the 
event is measured. This is the magnitude of the vector sum ~f the 
unit vectors from the vertex to each l i t  PM, normalized by the 
total number of l i t  PM's. For an isotropic event, I is near O; 
for an event with a single short track, I - 0.7, th~cosine of the 
Cherenkov angle. 

Ec, the visible Cherenkov l ight  yield of a massless, 
nonshowering part ic le of total energy ET, is also measured. For 
an electron, photon, or n ~ E c = E T. For a muon, E c - E T -250 MeV 
due to the muon rest mass and the energy deposited below Cherenkov 
threshold. A scatterplot of E c vs I for the contained events allows 
isolation of a region in which 90%~f the events for the 
~+K ~ K~§176 ~ mode, but only one neutrino event, are expected. 
Three observed events fa l l  inside the region. The f i r s t  
has 600 MeV in one track, which is not possible for this decay 
mode. The second event has no evidence of a ~ in the backward 
direct ion. The third event is a possible candidate, although 
i t  could also be neutrino-induced. Setting a conservative 
l imi t  by not subtracting the neutrino background estimate 
of one event yields an i n i t i a l  l imit  for a 132 day exposure of 

~/B > (I~}.9) x (132/365) x 2xlO 33 x (10/18) x 0.21 x o.g x 0.95, 
or 1.8x10 ~I years at 90% C.L., where 0.21 is the branching ratio for 
K ~ § ~~176 (including those K~ interactions which also give a 
signal) and 0.9• is the detection eff iciency. The correction 
for nuclear absorption of K~ (and not l~ ' s )  is 0.95. 

A second method to search+for ~ § u+K ~ uses the decay 
K~ § ~+~- and the subsequent ~ § u decay. This mode gives two 
muon decays. Since the mean number of PM's h i t  is 45 for p § ~+K ~ 
K~ § ~+~-, at least 20 PM's are required to f i re .  The detection 
eff iciency for this mode is 0.83• the probabil i ty for the ~+ to 
stop and decay into a ~+ is 80%. The overall detection eff iciency 
is O.80xO.83x(O.66)2xO.94 = 0.27, where the 0.94 corrects for the 



26 

time overlap probability of two muon decays. Two events with two 
decays are observed. One event has only a single clean track with 
500 MeV total energy. One of the muon decays probably comes from a 
7 + produced below Cherenkov threshold by a v interaction. Since a 
simulation of 250 p § ~+K ~ K~ § events yields no event with a 
single track of energy this high, i t  is not a viable candidate. 
Based on the one remaining possible candidate, the 90% C.L. l imi t  
for this decay mode is T/B > 1.3x1031 years. 

Combining the limits on p § ~+K ~ into the two independent modes 
gives a 90% C.L. l imit of ~/B(p § ~K ~ > 2.6xi031 years. 

The expected region of energy vs isotropy space for n § ~K ~ 
K~ § ~o~o contains 3 candidates; again this number is consistent 
with the background expectation. Without subtracting the 
background, a conservative 90% C.L. l imit  of 

T/B(n § uK ~ > 0.8x1031 years, 
is obtained. 

2.2 THE HARVARD-PURDUE-WISCONSIN DETECTOR 
IN THE SILVER KING MINE 

The Harvard-Purdue-Wisconsin Group e has constructed a O.7kT 
(metric) cylindrical water Cherenkov detector in a former si lver 
mine at Park City, Utah at about the same depth as the IMB detector. 
Their phototubes are distributed throughout the counter volume so as 
to be as close as possible to the emission point of the l ight .  In 
addition, the walls of the tank are covered with mirrors to permit 
capture of l ight that would ordinarily be lost at the walls. This 
requires multihit recording electronics to register the pulses of 
l ight in the same PM from several bounces. Typically a factor of 
four more photoelectrons per MeV of dE/dx are collected by this 
geometry than that in the IMB detector. This leads to a factor of 
two better energy resolution. The fiducial volume is limited by the 
small size of the cavity. To use as much as possible of the O.7kT 
as fiducial volume, the water tank is surrounded by an external veto 
of tube counters to tag entering and exiting particles. 

The superior l ight collection and the multihit time electronics 
makes this detector ideal for sensing the double muon decay 
signature discussed earlier to isolate events such as ~+K ~ K~+~+~ -. 
I n i t i a l l y  they use a 0.42 kT fiducial volume, lm in from the 
cylindrical sides of the detector and 1.5 m from the top. Their 0.27 
year run yields one contained double muon decay candidate with a 
preliminary value of T/B=2x10 ~ years. Interpreted as a ~% C.L. 
l im i t ,  this data yields a preliminary l imit  of T/B>O.gx10 j l  years i f  
this event is not a candidate. 

2.3 THE TOKYO-KEK-TSUKUBA DETECTOR 
IN THE KAMIOKA METAL MINE 

A large underground project has been developed in Japan by a 
Tokyo-KEK-Tsukuba group. 9 Containing 3000 total tons of water, the 
Cherenkov detector is surrounded by 1056 specially-developed 20" 
diameter phototubes. I t  has been operational at 2.7 kmwe since July 
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1983. The greater depth of this detector decreases the muon flux by 
a factor of 15 relative to the IMB device. This decreases the 
number of triggers at proton decay l ight  level to the point where, 
with simple total photoelectron cuts, 65,000 events are le f t  for 
hand scanning by physicists. 

The remarkable advantage of this detector is i ts  20% 
photocathode coverage of the surfaces of the detector, a factor of 
12 greater than the IMB detector. This translates into one 
photoelectron produced for a dE/dx loss of 0.3 MeV at B=I. 
For example, the energy resolution on the ~+ in a p+-~K +, K++v~ + 
decay is calculated to be 9%, and the position resolution on the e + 
from the ~+ decay is suff icient to l ink the two tracks together 
spat ia l ly .  The observed energy spectrum of electrons from stopping 
muons f i t s  the V-A hypothesis well. 

The detector is triggered on a ) 5 MeV energy deposition. In 
0.32 kT years of exposure, the detector has recorded 57 contained 
events, 40 with a single ring and 17 with mult i-r ings. Contrasting 
this with the 117 single and 3 double rings seen in the i n i t i a l  IMB 
run shows the power of high photocathode coverage in resolving 
overlapping rings. A further advantage of the Kamioka detector 
relative to IMB is the ab i l i t y  at 90% confidence level to + 
distinguish showering tracks (n~ e • from meson tracks (~• 
The amount of scattering of the l ight  about the major Cherenkov cone 
is used to separate particle type. 

In a manner similar to the IMB cuts on E c and ~, the Kamioka 
group places cuts on the total energy deposited and the energy 
distr ibut ion (lepton side vs hadron side) to isolate decay 
candidates. They use their  ab i l i t y  to resolve individual rings and 
to identify particle type to decrease the neutrino background below 
the levels achieved in the IMB detector: They require that the 
invariant mass of a combination of two or more rings f i t  the mass of 
the hypothesized intermediate particle (K,p,m,n). 

The data has been analyzed to set l imits on over 35 possible 
nucleon decay modes, including the multihody leptonic modes 
suggested by Pati and Salam. In general, their  preliminary 90% C.L. 
l imits are the following: 

1GeV electromagnetic modes (e+~ ~ e+n ~ e+m~ 

muon + 0.5 GeV electromagnetic modes (~+n~ 

neutrino + meson modes (~+,~p+,vK+...) 

> 2x1031 yr 

> lx1031 yr 

0.5x1031 yr 

The l imits for complementary neutron decay modes are similar. 
Despite the fact that the Kamoika and IMB detectors look 

mechanically similar, they have quite different systematics. The 
Kamioka people have superior energy resolution and achieve 
background discrimination through high dynamic range on the pulse 
heights of the PM tubes. They have no timing on individual PM's. 
In contrast, the PM's of the IMB detector essentially provide only 
topological formation since they each operate at the 1 photoelectron 
level. On the other hand, good timing on each tube that f ires 
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provides the information necessary to reconstruct tracks with the 
IMB technique. 

3. DENSE TRACKING DEVICES 

The dense detectors and Cherenkov devices are complementary. 
The f i r s t  responds to dE/dx rather than B, and produces event 
"pictures" of the tracks of the event, rather than the less familiar 
rings of l ight produced by tracks in the Cherenkov detectors. The 
trade off is that the dense detectors generally cannot determine the 
sense of direction of a track. Therefore i t  is d i f f i cu l t  to 
establish the vertex and to prove the back-to-back nature of a 
decay. One recognizes the vertex of a two-body decay originating 
inside a heavy nucleus by the angle between the two exiting 
particles. This is due to the Fermi motion of the decaying 
nucleon. 

The sensi t iv i ty of dense detectors to decay modes with greater 
than two bodies can be superior to that of Cherenkov detectors i f  
the granularity is fine enough. The abi l i ty  to define a vertex in a 
tracking detector (and to distinguish the tracks in multibody 
events) is determined by the cell size, which can be as small as 
0.5 cm. Contrast this with the -50 cm resolution of the Cherenkov 
devices. 

The dense detectors also generally lack u+ decay sensi t iv i ty,  
or have a low efficiency for them. Negative muons are not seen at 
al l  since they are absorbed by the iron nucleus before decaying. 
This deficiency with respect to particle identif ication can be 
turned into an asset. The differential sensit iv i ty to electric 
charge could provide a means of change identif ication. 

The high cost per unit of mass of sampling detectors makes 
fine-grain calorimeters above the planned 1.0-1.5 kT mass of the 
Frejus and Soudan detectors prohibitively expensive. This is a 
substantial disadvantage i f  the l i fetime, as i t  now appears, is 
)5x1031 years, which necessitates detectors of a minimum total 
mass of -10 kT for reasonable event rates. 

A potential advantage of the dense detectors using iron is the 
possibi l i ty of implementing a magnetic f ield throughout the 
detector. This could fac i l i ta te both charge determination and 
measurement of muon polarization. 

I wil l  f i r s t  examine in detail the pioneer dense tracking 
experiment in the Kolar Gold Fields, and then contrast the other 
detectors with i t .  

3.1 THE INDIAN-JAPANESE DETECTOR IN THE KOLAR GOLD FIELDS 

The Indian-Japanese Collaboration has reported I0 data from 
2.5 years of operation of their 140T detector in the Kolar gold 
f ie lds. The device consists of horizontal slabs of iron, 1/2" 
thick, separated by proportional tubes (10 cm x 10 cm in cross 
section) in an alternating x-y grid. The 1600 tube detector has a 
horizontal area of 4 m x 6 m and a height of 4 m. 

The discriminators on the tubes are set to f i re  i f  a particle 
deposits an energy ) 1/2 of that of a minimum-ionizing particle. 
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The noise rate of a tube near the edge of the detector is 100 Hz due 
to the radioactivity in the rock. Inside the detector, this rate 
drops to 2 Hz because of the self-shielding of the iron. The 
radioactivity-induced rate is the basic measure of the health of the 
detector. (The cavity is so deep that only two muons per day 
traverse i t ! )  Not only is the muon rate insu f f i c ien t  for 
monitoring, but also the background that i t  might induce is 
orders of magnitude lower than that in any other detector. The 
pulse heights on each tube are recorded i f  a f i ve - fo ld  coincidence 
occurs between any f ive layers. Since the resolving time of the 
tubes is I ~sec, neither t ime-o f - f l i gh t  (d i rec t iona l )  information 
nor muon stop signature is avai lable.  

The authors have recorded nine contained interact ions in the 
detector, while 4-6 were expected, Indeed four of the events do not 
f i t  any of the neutrino hypotheses expected by the authors. The 
events are considered to be proton decay candidates. However the 
l imited detector resolution renders the events hard to in te rpre t .  
The proton decay candidates include tracks that have an abnormally 
high number ( re la t ive  to straight-through muon tracks) of 
proportional tubes that did not f i r e ,  pa r t i cu la r l y  next to the kink 
that is presumably the vertex. These gaps may be character is t ic  of 
electromagnetic showers in the detector. The authors argue that the 
candidates are not induced by electron neutr inos, although the 
expected rate is comparable to that of the observed candidates. 

The many non-contained events in the Kolar detector show that a 
140T detector, even when very well shielded by great depth, is 
l imi ted in i t s  a b i l i t y  to contain I GeV decay candidates (only an 
event in the inner I / I 0  of the detector is f u l l y  contained). I f  the 
events are considered as proton decay candidates, the l i fe t ime for 
several possible decay modes is ~/B=l . lx lO 31 years, where the 
authors make no background subtract ion. 

3.2 THE CERN-FRASCATI-MILAN-TURIN DETECTOR 
IN THE MONT BLANC TUNNEL 

A dense detector of 150T total mass has been operated in the 
Mont Blanc Tunnel for 1.5 years by the CERN-Frascati-Milan-Turin 
collaboration 11. Their advantage is a grid size (1 cm) ~ of limited 
streamer tubes which is substantially finer than that of the 
Indian-Japanese (10 cm) 2. The tubes have bidimensional readout 
(both x and y for each cell). Unlike the Kolar experiment where 
the dE/dx loss in each tube is recorded, the Mont Blanc tubes 
provide only position information in each plane. 

The group has studied showers and tracks from CERN calibration 
beams of electrons, pions, and neutrinos in a prototype module. The 
neutrino events were taken with a beam tuned to mimic the expected 
energy distribution of atmospheric muon neutrinos. (One cannot get 
~e events at an accelerator!). These u u events have provided a 
powerful method of evaluating the expected neutrino background to 
the various configurations observed in the detector. 
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The depth of this detector is a factor of three greater than 
that of the detectors in the U.S. (Alpine tunnels are an asset!), 
but a factor of two shallower than the depth of the Kolar detector. 

3.3 THE ORSAY-ECOLE POLYTECHNIQUE-SACLAY-WUPPERTAL DETECTOR 
IN THE FREJUS TUNNEL 

An order of magnitude improvement in mass over the I tal ian and 
Indian-Japanese detectors is the goal of the collaboration of 
Orsay-Ecole Polytechnique-Saclay-Wuppertal 12 in another Alpine 
tunnel. The granularity (3mm thick iron plates) is a factor of 
three finer than the Kolar and Mont Blanc experiments, giving i t  
superior tracking resolution. They have also improved the dense 
detector technology by interspersing planes of Geiger tubes in the 
detector. These tubes trigger flash chambers that are used for 
tracking. In addition, the time resolution of the Geiger tubes is 
suff ic ient to tag delayed ,+ decays. This detector is expected to 
be operational with an i n i t i a l  mass of 300T starting in the spring 
of 1984. A 1 kT mass should be running by the end of 1984. 

3.4 THE ARGONNE-MINNESOTA-OXFORD-RUTHERFORD-TUFTS DETECTOR 
IN THE SOUDAN IRON MINE 

The University of Minnesota-Argonne group has constructed a 
prototype 30T detector in an iron mine in Minnesota. They used an 
inexpensive ferro-concrete medium which can be bu i l t  in small 
modules. Gas proportional counters made from thin steel tubes were 
embedded in the concrete. This prototype suffers because of i ts 
small mass. With the addition of Oxford, Rutherford Lab, and Tufts 
the group is developing a 1.2kT version of their  prototype. Since 
the concrete and gas tube array does not scale from 30T to IO00T, 
i t  wi l l  be replaced with corrugated steel d r i f t  chambers that have 
a O.5m dr i f t  length and readout at both ends. A 3T prototype is 
currently under study. This detector 13 is scheduled to start 
operation in the middle of 1985. 

4. CONCLUSIONS 

Within the coming year, we wi l l  clearly have a plethora of data 
concerning proton decay l imits (or measurements!) from a variety of 
detectors with very different systematic errors. In addition, the 
advent of the highly instrumented and shielded multikiloton 
detectors--with sensi t iv i t ies two orders of magnitude greater than 
previous efforts--do seem to save the capability of reaching to a 
sensi t iv i ty  of 1033 years for the e+~ ~ mode predicted by of the 
simplest grand unified theories. On the other hand, lurking at the 
5xI0 ml year level could be decays into a variety of multitrack, low 
energy decay modes. We need more exposure, better resolution 
detectors, and more sophisticated background evaluations to plumb 
th is  challenging region. 
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IMB 

Kamioka 

Kolar 

Mont Blanc 

TABLE I 

Typical Preliminary Values for p+e+x ~ Mode* 
January 1984 
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90% C.L. Limit 
or Va lue  Candidates* 

Expected v 
Background 

>20x1031 yr 0 -0.2 

>2,6x1031 yr 0 0.0 

=1.1xi031 yr 1 0.3 

>1x1031 yr 1 1 

Fiducial 
Exposure 

2.26 kT yr 

0.32 kT yr 

0.15 kT yr 

0.13 kT yr 

TABLE II 

Typical Preliminary Values for p§ ~ Mode* 
January 1984 

HPW 

IMB 

Kamioka 

Kolar 

90% C.L. Limit Expected 
or Value Candidates* Background 

=2x1031 yr 1 0.02 
>0.9xi031 yr 

>2.6xi031 yr 2 5 

3x1031 yr 1 0.0 
>0.8x1031 yr 

=1.1x1031 yr 1 0.3 

Fiducial 
Exposure 

0.11 kT yr 

1.2 kT yr 

0.32 kT yr 

0.15 kT yr 

Mont Blanc :3x1031 yr 
>1.3x1031 yr 

1 0.16 0.13 kT yr  
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TABLE I I I  

Typical Preliminary Values for p§ + Mode* 
January 1984 

Expected u Fiducial 
90% C . L .  Candidates* Background Exposure 

IMB >1.2x1031 yr 3 5 1.7 kT yr 

Kamioka >0.7xi031 yr 3 I 0.32 kT yr 

Mont Blanc >0.5x1031 yr 0 - 0.13 kT yr 

*The candidates in each experiment generally can also be 
interpreted as examples of other decay modes. 

TABLE IV 

Typical Preliminary Event Rates 
January 1984 

Observed Contained 
Events Live Time Fiducial Mass Events/KT yr 

IMB 169 0.56 yr 3.3 KT 91 

Kamioka 57 0.37 yr 1.0 KT 154 

Kolar* 9** 2.5 yr 0.06 KT 60* 

Mont Blanc 16 1.3 yr 0.1 KT 123 

*The expected geomagnetic suppression of the neutrino rate 
at 3 ~ N latitude is 40%. 

**Does not include 4 proton decay candidates. 
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