CHEMSTRY

 A EUROPEAN JOURNAL

 A EUROPEAN JOURNAL}

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2011

Synthesis of Chondramide A Analogues with Modified $\boldsymbol{\beta}$-Tyrosine and Their Biological Evaluation

Alexander Zhdanko, ${ }^{[a]}$ Anke Schmauder, ${ }^{[a]}$ Christopher I. Ma, ${ }^{[b]}$ L. David Sibley, ${ }^{[b]}$ David Sept, ${ }^{[\mathrm{cc]}}$ Florenz Sasse, ${ }^{[d]}$ and Martin E. Maier* ${ }^{[a]}$

Supporting Information

Table of Contents

Experimental Section 2
Procedures for Scheme 2 2
Procedures for Scheme 3 6
ee-Determination for some of the diols 17 11
Chondramide A analogues 39
LC-MS-traces of some of the chondramide A analogues 49
Proof of structure of benzotriazolyl ether. 51
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the products 52

Experimental Section

General. All solvents used in the reactions were purified before use. Dry diethyl ether, tetrahydrofuran, and toluene were distilled from sodium and benzophenone, whereas dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dimethylformamide, methanol, ethyl acetate, benzene, and triethylamine were distilled from CaH_{2}. Distilled petroleum ether (petroleum ether) with a boiling range of $40-60^{\circ} \mathrm{C}$ was used. Reactions were generally run under argon or nitrogen atmosphere. All commercially available compounds (Acros, Aldrich, Fluka, Merck) were used without purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR: Bruker Avance 400 , spectra were recorded at 295 K ; chemical shifts are calibrated to the residual proton and carbon resonance of the solvent: $\mathrm{CDCl}_{3}(\delta \mathrm{H} 7.25, \delta \mathrm{C} 77.0 \mathrm{ppm}$), MeOD ($\delta \mathrm{H} 3.30, \delta \mathrm{C} 49.0 \mathrm{ppm}$), DMSO$\mathrm{d}_{6}(\delta \mathrm{H} 2.49, \delta \mathrm{C} 39.5 \mathrm{ppm})$. HRMS (FT-ICR): Bruker Daltonic APEX 2 with electron spray ionization(ESI). Column chromatography: J. T. Baker silica gel 43-60 $\mu \mathrm{m}$. Thin-layer chromatography: Machery-Nagel Polygram Sil G/UV 254 . Optical rotations: JASCO Polarimeter P1020 , sodium D line (589 nm) , $c=\mathrm{g} \times 100 \mathrm{~mL}^{-1}$. From the depsipeptides 22 onwards, chondramide A numbering was used.

Procedures for Scheme 2

(\boldsymbol{E})-Methyl 3-p-tolylacrylate (9b). To a solution of 4-methylbenzaldehyde ($\mathbf{1 0 b}$) ($2.00 \mathrm{~g}, 16.6$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(65 \mathrm{~mL})$ was added methyl (triphenylphosphoranylidene) acetate ($6.66 \mathrm{~g}, 19.9$ mmol) in one portion. The mixture was stirred at room temperature for 3 d and then concentrated in vacuo. The residue containing $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ and the acrylate was purified by flash chromatography (petroleum ether/EtOAc, 20:1) to give the cinnamate ${ }^{1,2} \mathbf{9 b}(2.73 \mathrm{~g}, 96 \%)$ as a colorless solid, m.p. $=$ $85{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}=0.34$ (petroleum ether/EtOAc, 20:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.36(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.39(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.41(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.66(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.4\left(\mathrm{CH}_{3}\right), 51.6$ $\left(\mathrm{OCH}_{3}\right), 116.7(\mathrm{C}-2), 128.0(\mathrm{Ar}), 129.6(\mathrm{Ar}), 131.6(\mathrm{Ar}), 140.7(\mathrm{Ar}), 144.8(\mathrm{C}-3), 167.6(\mathrm{CO}) ;$ HRMS (ESI): m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}[M+\mathrm{Na}]^{+}$: 199.07295 ; found: 199.072842.

(\boldsymbol{E})-Methyl 3-(4-methoxyphenyl)acrylate (9c). To a solution of anisaldehyde $\mathbf{1 0 c}(2.00 \mathrm{~g}, 14.7$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added methyl (triphenylphosphoranylidene) acetate ($5.90 \mathrm{~g}, 17.6$ mmol) in one portion. The mixture was stirred at room temperature for 3 d and then concentrated in vacuo. The residue containing $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ and the acrylate was purified by flash chromatography (petroleum ether/EtOAc, 5:1) to give the cinnamate ${ }^{1} \mathbf{9 c}(2.73 \mathrm{~g}, 96 \%)$ as a colorless solid, m.p. $=86$ ${ }^{\circ} \mathrm{C} . R_{\mathrm{f}}=0.38$ (petroleum ether/EtOAc, $5: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.30(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 6.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.46(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.64(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=51.5\left(\mathrm{OCH}_{3}\right), 55.3$

[^0]$\left(\mathrm{OCH}_{3}\right), 114.3(\mathrm{Ar}), 115.2(\mathrm{C}-2), 127.1(\mathrm{Ar}), 129.7(\mathrm{Ar}), 144.5(\mathrm{C}-3), 161.4(\mathrm{CO}), 167.7(\mathrm{CO}) ;$ HRMS (ESI): m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}\left[M^{+N a}\right]^{+}: 215.06787$; found: 215.06788 .

(E)-Methyl 3-(4-fluorophenyl)acrylate (9d). To a solution of 4-fluorobenzaldehyde (10d) (2.00 g, 16.1 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(65 \mathrm{~mL})$ was added methyl (triphenylphosphoranylidene) acetate $(6.45 \mathrm{~g}$, 19.3 mmol) in one portion. The mixture was stirred at room temperature for 3 d and then concentrated in vacuo. The residue containing $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ and the acrylate was purified by flash chromatography (petroleum ether/EtOAc, 20:1) to give the cinnamate ${ }^{2,3} 9 \mathbf{d}(2.73 \mathrm{~g}, 94 \%)$ as a colorless solid, m.p. $=74{ }^{\circ} \mathrm{C} . R_{\mathrm{f}}=0.29$ (petroleum ether/EtOAc, 20:1); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.34(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 7.06(\mathrm{dd}, J=8.7,8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, $7.49(\mathrm{dd}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.64(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $51.7\left(\mathrm{OCH}_{3}\right), 115.6(\mathrm{~d}, J=22.0 \mathrm{~Hz}, \mathrm{Ar}), 117.5(\mathrm{~d}, J=2.2 \mathrm{~Hz}, \mathrm{C}-2), 129.9$ (d, $\left.J=8.8 \mathrm{~Hz}, \mathrm{Ar}\right), 130.6$ (d, $J=3.7 \mathrm{~Hz}, \mathrm{Ar}), 143.5(\mathrm{C}-3), 163.9$ (d, $J=251.0 \mathrm{~Hz}, \mathrm{Ar}$), 167.3 (CO); HRMS (ESI): m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FO}_{2}[M+\mathrm{Na}]^{+}: 203.04788$; found: 203.04768 .

(\boldsymbol{E})-Methyl 4-nitrocinnamate (9e) (by Knoevenagel reaction). A solution of nitrobenzaldehyde $(1.51 \mathrm{~g}, 0.01 \mathrm{~mol})$, malonic acid ($1.14 \mathrm{~g}, 1.1$ equiv), and pyridine ($0.25 \mathrm{~mL}, 0.31$ equiv) in ethanol $(2 \mathrm{~mL})$ was heated at reflux. Already after $10-15 \mathrm{~min}$ a white solid began to precipitate. After 1.5 h , when TLC (EtOAc/petroleum ether, 1:2) indicated complete consumption of the aldehyde, the reaction mixture was cooled and acidified with diluted aqueous HCl . The precipitate was filtered, washed with water and dried in vacuo to afford crude but pure (2E)-3-(4-nitrophenyl)acrylic acid in quantitative yield (note: the free acid is soluble in acetone, DMSO, but hardly soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, EtOAc). It was taken up in methanol (20 mL), thionyl chloride (1.3 equiv) was carefully added and the resulting suspension was heated at reflux for 1 h . At this time TLC (EtOAc/petroleum ether, $1: 2$) indicated complete consumption of the acid and the volume of precipitates visually increased. The product was obtained by crystallization directly from the reaction mixture as follows. The reaction mixture was concentrated in vacuo till a thick suspension resulted, that was filtered on a glass frit and the precipitate was washed with a small amount of cold methanol to afford 1.52 g (93%) of pure methyl ($2 E$)-3-(4-nitrophenyl)acrylate ($\mathbf{(9 e)}$) as a slightly yellow solid. Analytical data are in agreement with literature data. ${ }^{4}$

[^1](E)-Methyl 4-nitrocinnamate (9e) (by Wittig reaction). Taking advantage of the low solubility of the product in cold methanol, the following one-step Wittig reaction procedure was efficiently applied. A solution of nitrobenzaldehyde $(1.51 \quad \mathrm{~g}, 0.01 \mathrm{~mol})$, methyl (triphenylphosphoranylidene)acetate ($4.0 \mathrm{~g}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred overnight (slighty exothermic at the beginning) at room temperature. Then it was concentrated in vacuo to dryness, the residue was suspended in a small amount of methanol, enough to dissolve the bulk of triphenylphosphineoxide, the precipitate was filtered and washed with cold methanol to afford pure methyl (2E)-3-(4-nitrophenyl)acrylate (9e) ($1.68 \mathrm{~g}, 81 \%$).

(\boldsymbol{E})-Methyl 4-phenylcinnamate ($\mathbf{9 k}$). This was obtained by the same procedure as (2E)-3-(4nitrophenyl)acrylate ($\mathbf{9 e}$). Thus, a solution of 4-biphenylcarbaldehyde ($\mathbf{1 0 k}$) ($1.09 \mathrm{~g}, 6.0 \mathrm{mmol}$) and methyl (triphenylphosphoranylidene)acetate (2.40 g , 1.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) was stirred at room temperature overnight. To monitor the progress of the reaction, a small sample was taken, evaporated and directly analyzed by NMR. (If the reaction was not finished completely, then additional methyl (triphenylphosphoranylidene)acetate should be added to achieve complete conversion.) The mixture was concentrated in vacuo to dryness, the residue was suspended in a small amount of methanol (but enough to dissolve the bulk of triphenylphosphineoxide), the precipitate was filtered and washed with cold methanol to afford pure methyl (2E)-methyl 4phenylcinnamate ($\mathbf{9 k}$) ($1.42 \mathrm{~g}, 99 \%$). The analytical data were in agreement with previously reported data. ${ }^{5}$

(\boldsymbol{E})-Methyl 4-formylcinnamate (13). A dry Schlenk vessel was charged with anhydrous NaOAc $(2.7 \mathrm{~g}, 33.0 \mathrm{mmol}), p$-bromobenzaldehyde ($5.55 \mathrm{~g}, 30.0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.6 \mathrm{mg}, 0.04 \% \mathrm{~mol})$ and anhydrous NMP (40 mL). Nitrogen atmosphere was applied and methyl acrylate ($3.9 \mathrm{~mL}, 43.3$ $\mathrm{mmol}, 1.4$ equiv) was introduced via syringe and the reaction mixture was heated at $115-120^{\circ} \mathrm{C}$ for $40-60 \mathrm{~min}$ to complete the reaction (TLC control EtOAc/petroleum ether, $1: 4, R_{\mathrm{f}} 0.45$). The resulting orange to red solution containing a white precipitate was diluted with water (100 mL) and extracted with ethyl acetate $(2 \times 70 \mathrm{~mL})$. The combined organic layers were washed twice with water, once with saturated NaCl solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was evaporated in vacuo to leave crude methyl ($2 E$)-3-(4-formylphenyl)acrylate ($5.63 \mathrm{~g}, 99 \%$) as a yellow solid, which was almost pure and was used in synthesis of cinnamate $9 \mathbf{g}$ without further purification. The analytical data were in agreement with the previously reported ones. ${ }^{6}$

[^2](E)-Methyl 4-[tert-butyldimethylsilyloxymethyl]cinnamate (9 g). To a stirred solution of methyl (2E)-3-(4-formylphenyl)acrylate (13) ($1.48 \mathrm{~g}, 7.8 \mathrm{mmol}$) in methanol $(10 \mathrm{~mL})$ was added NaBH_{4} $(0.3 \mathrm{~g}, 7.9 \mathrm{mmol})$ portionwise. The reaction mixture was stirred for 1 h at room temperature, and then it was concentrated, diluted with water and extracted with EtOAc. The organic phase was washed with saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford crude benzyl alcohol (1.42 g , quantitative yield, TLC: EtOAc/petroleum ether, $1: 2, \mathrm{R}_{\mathrm{f}} 0.2$). The alcohol was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and $\mathrm{TBSCl}(1.22 \mathrm{~g}, 8.1 \mathrm{mmol}, 1.1$ equiv) was added. Then, imidazole ($0.554 \mathrm{~g}, 8.1 \mathrm{mmol}, 1.1$ equiv) was added portionwise while cooling the reaction flask in a cold water bath. The reaction mixture was stirred for 1 h at room temperature (TLC: EtOAc/petroleum ether, 1:2, $R_{\mathrm{f}} 0.8$), the precipitate was filtered off and washed with portions of EtOAc. The filtrate was concentrated and the residue purified by flash chromatography (EtOAc/petroleum ether, 1:10) through a short column to afford the title compound ($1.95 \mathrm{~g}, 82 \%$) as an oil which crystallizes upon standing. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.09\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.94$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 6.41(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.68(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=-5.3\left(\mathrm{SiCH}_{3}\right), 18.4\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 25.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 51.7\left(\mathrm{OCH}_{3}\right), 64.6\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 117.2 \text {, }}\right.$ 126.4 (2C, Ar), 128.0 (2C, Ar), 133.0 (quat.), 144.1 (quat.), $144.8,167.6\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$.

(\boldsymbol{E})-Methyl 3-(4-cyanophenyl)acrylate (9i). This compound was prepared from pbromobenzonitrile by the same procedure as described for (2E)-3-(4-formylphenyl)acrylate in quantitative yield. Thus, a dry Schlenk vessel was charged with anhydrous NaOAc ($0.9 \mathrm{~g}, 11$ mmol), p-bromobenzonitrile ($1.82 \mathrm{~g}, 10.0 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.0 \mathrm{mg}, 0.04 \% \mathrm{~mol})$ and anhydrous NMP (10 mL). Nitrogen atmosphere was applied and methyl acrylate $(1.4 \mathrm{~mL}, 15.5 \mathrm{mmol}, 1.55$ equiv) was introduced via syringe and the reaction mixture was heated at $115-120^{\circ} \mathrm{C}$ for $40-60$ min to complete the reaction (TLC control: EtOAc/petroleum ether, $1: 2, R_{\mathrm{f}} 0.53$). The resulting slightly orange solution containing a white precipitate was diluted with water (30 mL) and extracted with ethyl acetate $(2 \times 25 \mathrm{~mL})$. The combined organic layers were washed twice with water, once with saturated NaCl solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was evaporated in vacuo to leave crude acrylate $9 \mathrm{i}(1.91 \mathrm{~g}, 100 \%$) as a slightly yellow solid (TLC: EtOAc/petroleum ether, $1: 2, R_{\mathrm{f}} 0.53$). Analytical data were in agreement with previously reported ones. ${ }^{6}$

1-Bromo-4-[(2-tert-butyldimethylsilyloxy)ethyl]benzene (15). To a solution of 2-(4bromophenyl)acetic acid (14) ($4.30 \mathrm{~g}, 20.0 \mathrm{mmol}$) in absolute THF (40 mL) was slowly added $\mathrm{LiAlH}_{4}(0.608 \mathrm{~g}, 16.0 \mathrm{mmol}, 0.8$ equiv) while cooling the reaction flask in a cold water bath. The reaction mixture was stirred at room temperature overnight (actually, this may be too much), then water (2 mL) was carefully added, the resulting suspension was diluted with EtOAc, the precipitate was filtered off (using a paper filter) and washed three times with portions of EtOAc. The filtrate was concentrated and diluted with a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This mixture was filtered and the filtrate concentrated in vacuo to leave the crude alcohol as slightly turbid oil ($2.94 \mathrm{~g}, 73 \%$). The crude alcohol was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathrm{TBSCl}(2.31 \mathrm{~g}, 15.3 \mathrm{mmol}, 1.05$ equiv) was added
and imidazole ($1.09 \mathrm{~g}, 16.0 \mathrm{mmol}, 1.1$ equiv) was added portionwise while cooling the reaction flask in a cold water bath. The reaction mixture was stirred for 1 h at room temperature (TLC control: EtOAc/petroleum ether, 1:2), the precipitate was filtered off, the filtrate was concentrated and the residue purified by flash chromatography (EtOAc/petroleum ether, 1:10) to afford silyl ether $15(3.31 \mathrm{~g}, 72 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.04\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right)$, $0.85\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.75\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), 7.07 (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}\right), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$.

(E)-Methyl 3-(4-(2-(tert-butyldimethylsilyloxy)ethyl)phenyl)acrylate (9h). To a solution of aryl bromide $15(2.629 \mathrm{~g}, 8.34 \mathrm{mmol})$ in absolute THF $(35 \mathrm{~mL})$ was added butyllithium (3.2 mL of a 2.5 M solution in hexane, 1.05 equiv) dropwise at $-90^{\circ} \mathrm{C}$ followed by stirring of the mixture at $-90-$ $80^{\circ} \mathrm{C}$ for 1 h . Then the reaction mixture was cooled to $-100^{\circ} \mathrm{C}$ and DMF ($1.29 \mathrm{~mL}, 16.7 \mathrm{mmol}, 2$ equiv) was introduced quickly in one portion by syringe. The cooling bath was removed and the mixture was allowed to warm to $-10^{\circ} \mathrm{C}$ within 30 min and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Some EtOAc was added to the mixture to allow for better phase separation. The organic layer was washed with saturated NaCl solution, dried with MgSO_{4}, filtered, and concentrated in vacuo to afford crude aldehyde 16 in essentially quantitative yield as colorless oil which was used in the next step without purification (the reaction was practically clean).
To the solution of crude aldehyde 16 in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added methyl (triphenylphosphoranylidene) acetate ($3.0 \mathrm{~g}, 8.98 \mathrm{mmol}$) and the mixture was stirred overnight at room temperature. The reaction was conveniently controlled by NMR. The reaction mixture was concentrated in vacuo and the residue subjected to flash chromatography (petroleum ether/EtOAc, $4: 1)$ to yield the cinnamic ester $9 \mathrm{~h}(2.01 \mathrm{~g}, 83 \%$ from bromide 15$)$ as a colorless oil. It should be noted, that complete conversion should be checked, otherwise it is much more difficult to separate cinnamate 9 g from the starting aldehyde 16 by chromatography. R_{f} (petroleum ether/EtOAc, 2:1) $0.75 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.04\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.85\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.82(\mathrm{t}, J=6.9$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 6.40(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-$ H), $7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.67(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}) ;{ }^{13} \mathrm{C}$
 $64.1\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 117.0(=\mathrm{CH}), 128.0\left(\mathrm{C}_{\mathrm{ar}}\right), 129.8\left(\mathrm{C}_{\mathrm{ar}}\right), 132.3\left(\mathrm{C}_{\mathrm{ar}}\right), 142.1\left(\mathrm{C}_{\mathrm{ar}}\right), 144.9(=\mathrm{CH}), 167.6$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$.

Procedures for Scheme 3

(2S,3R)-Methyl 2,3-dihydroxy-3-p-tolylpropanoate (17b). To a mixture of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(1.68 \mathrm{~g}$, 5.11 mmol), (DHQD) ${ }_{2}$ PHAL ($13.0 \mathrm{mg}, 0.017 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.71 \mathrm{~g}, 5.11 \mathrm{mmol})$ in $t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(16 \mathrm{~mL}, 1: 1)$ were added $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(3.0 \mathrm{mg}, 0.007 \mathrm{mmol})$ and $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(0.162$ $\mathrm{g}, 1.70 \mathrm{mmol}$). The mixture was stirred for 15 min , then cooled to $0^{\circ} \mathrm{C}$ before cinnamate 9 b (0.30
$\mathrm{g}, 1.7 \mathrm{mmol}$) was added in one portion. The mixture was now stirred for 5 h while it warmed to room temperature. Thereafter, solid $\mathrm{Na}_{2} \mathrm{SO}_{3}(1.3 \mathrm{~g})$, water (8 mL) and EtOAc (15 mL) were added. After separation of the layers, the aqueous phase was extracted with EtOAc $(2 \times 15 \mathrm{~mL})$. The combined organic layers were washed with cold 1 N NaOH solution (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude diol was purified by flash chromatography (petroleum ether/EtOAc, 1:1) providing diol ${ }^{7} \mathbf{1 7 b}(0.288 \mathrm{~g}, 80 \%)$ as a colorless solid, m.p. $=85^{\circ} \mathrm{C}$ (ref. ${ }^{7}$ m.p. $97.5-99{ }^{\circ} \mathrm{C}$). R_{f} (petroleum ether/EtOAc, 3:2) $0.32 ;[\alpha]^{20}{ }_{\mathrm{D}}=-8.2\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left\{\right.$ ref. 7 ent-17b $\left.[\alpha]^{25}{ }_{\mathrm{D}}=+6.3(c 1.00, \mathrm{EtOH})\right\}$, ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.76(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.13(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.34(\mathrm{dd}, J=6.1,3.1 \mathrm{~Hz}$, $1 \mathrm{H}, 2-\mathrm{H}), 4.98$ (dd, $J=7.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.17$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.27$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.1\left(\mathrm{CH}_{3}\right), 52.8\left(\mathrm{OCH}_{3}\right), 74.3(\mathrm{C}-3), 74.1(\mathrm{C}-2), 126.1(\mathrm{Ar})$, 129.1 (Ar), 136.1 (Ar), 137.8 (Ar), $173.2(\mathrm{CO})$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}[M+\mathrm{Na}]^{+}$: 233.07843; found: 233.07837.

(2S,3R)-Methyl 2,3-dihydroxy-3-(4-methoxyphenyl)propanoate (17c). To a solution of cinnamate $9 \mathrm{c}\left(1.00 \mathrm{~g}, 5.20 \mathrm{mmol}\right.$) in t - $\mathrm{BuOH}\left(4 \mathrm{~mL}\right.$) were added successively (DHQD) ${ }_{2} \mathrm{PHAL}$ ($18.0 \mathrm{mg}, 0.026 \mathrm{mmol}$) and NMO ($0.774 \mathrm{~g}, 5.57 \mathrm{mmol}, 60 \%$ solution in $\mathrm{H}_{2} \mathrm{O}, 1.24 \mathrm{~mL}$). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ before $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(4.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ was added. The cooling bath was removed and the mixture stirred for 2 h at room temperature. Then solid $\mathrm{Na}_{2} \mathrm{SO}_{3}(0.8 \mathrm{~g})$, water $(4 \mathrm{~mL})$ and $\operatorname{EtOAc}(10 \mathrm{~mL})$ were added. After separation of the layers, the aqueous phase was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude diol was purified by flash chromatography (petroleum ether/EtOAc, 1:1) providing diol $\mathbf{1 7 c}(1.05 \mathrm{~g}, 89 \%)$ as a colorless solid, m.p. $=103^{\circ} \mathrm{C}$ (ref. ${ }^{7} \mathrm{~m} . \mathrm{p}$. $\left.106-107^{\circ} \mathrm{C}\right) \cdot[\alpha]^{20}{ }_{\mathrm{D}}=-5.8\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left\{\right.$ ref. ${ }^{7}$ ent-17c $\left.[\alpha]^{25}{ }_{\mathrm{D}}=+5.5(c 1.00, \mathrm{EtOH})\right\} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.92(\mathrm{bs}, 2 \mathrm{H}, 2 \times \mathrm{OH}), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.31(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.93(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.8\left(\mathrm{OCH}_{3}\right), 55.2\left(\mathrm{OCH}_{3}\right), 74.1(\mathrm{C}-3), 74.8(\mathrm{C}-2)$, 113.8 (Ar), 127.5 (Ar), 132.0 (Ar), 159.4 (Ar), 173.2 (CO); HRMS (ESI): m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}$ $[M+\mathrm{Na}]^{+}: 249.07334$; found: 249.07327 .

(2S,3R)-Methyl 3-(4-fluorophenyl)-2,3-dihydroxypropanoate (17d). To a mixture of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ $(2.19 \mathrm{~g}, 6.66 \mathrm{mmol})$, (DHQD) ${ }_{2}$ PHAL ($17.0 \mathrm{mg}, 0.022 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.92 \mathrm{~g}, 6.66 \mathrm{mmol})$ in $t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(22 \mathrm{~mL}, 1: 1)$ were added $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(3.3 \mathrm{mg}, 0.009 \mathrm{mmol})$ and $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(0.211$ $\mathrm{g}, 2.22 \mathrm{mmol})$. The mixture was stirred for 15 min , then cooled to $0^{\circ} \mathrm{C}$ before cinnamate $9 \mathrm{~d}(0.40$ $\mathrm{g}, 2.22 \mathrm{mmol}$) was added in one portion. The mixture was now stirred for 2 h while it warmed to

[^3]room temperature. Thereafter, solid $\mathrm{Na}_{2} \mathrm{SO}_{3}(1.7 \mathrm{~g})$, water (10 mL) and EtOAc (20 mL) were added. After separation of the layers, the aqueous phase was extracted with EtOAc ($2 \times 15 \mathrm{~mL}$). The combined organic layers were washed with cold 1 N NaOH solution (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude diol was purified by flash chromatography (petroleum ether/EtOAc, 1:1) providing diol $\mathbf{1 7 d}(0.345 \mathrm{~g}, 72 \%)$ as a colorless solid, m.p. $=74{ }^{\circ} \mathrm{C}$ (ref. ${ }^{7}$ m.p. $61.5-62.5^{\circ} \mathrm{C}$). R_{f} (petroleum ether/EtOAc, 3:2) $0.32 ;[\alpha]^{20}{ }_{\mathrm{D}}=-8.6\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) $\left\{\right.$ ref. ${ }^{7}$ ent $\left.\mathbf{- 1 7 d}[\alpha]^{25}{ }_{\mathrm{D}}=+9.1(c 1.00, \mathrm{EtOH})\right\} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OH}), 3.27(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.30(\mathrm{dd}, J=6.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H})$, $4.96(\mathrm{dd}, J=6.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.00-7.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.33-7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.9\left(\mathrm{OCH}_{3}\right), 73.8(\mathrm{C}-3), 74.6(\mathrm{C}-2), 115.3(\mathrm{~d}, J=21.2 \mathrm{~Hz}, \mathrm{Ar}), 128.0(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, \mathrm{Ar}), 135.7$ (d, $J=2.9 \mathrm{~Hz}, \mathrm{Ar}), 162.5(\mathrm{~d}, J=246.6 \mathrm{~Hz}, \mathrm{Ar}), 173.0$ (CO); HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{4}[M+\mathrm{Na}]^{+}: 237.05336$; found: 237.05334 .

(2S,3R)-Methyl 3-(4-cyanophenyl)-2,3-dihydroxypropanoate (17e). A mixture of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ ($7.22 \mathrm{~g}, 22.0 \mathrm{mmol}, 3$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(3.04 \mathrm{~g}, 22.0 \mathrm{mmol}, 3\right.$ equiv), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(0.70 \mathrm{~g}, 7.37 \mathrm{mmol}$, 1 equiv), $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(10 \mathrm{mg}, 0.027 \mathrm{mmol}, 0.0037 \text { equiv), and the ligand (} \mathrm{DHQD})_{2} \mathrm{PHAL}$ (57 $\mathrm{mg}, 0.073 \mathrm{mmol}, 0.01$ equiv) was stirred in a mixture of water (35 mL) and $t \mathrm{BuOH}(35 \mathrm{~mL})$ until dissolved and then the solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. At this point cinnamate 9 e (1.52 $\mathrm{g}, 7.34 \mathrm{mmol}$) was added and the reaction mixture was allowed to reach room temperature slowly while being stirred overnight, at which time a yellow suspension was formed and complete or almost complete conversion was observed according to TLC (petroleum ether/EtOAc, 1:1). Then solid $\mathrm{Na}_{2} \mathrm{SO}_{3}$ ($9.2 \mathrm{~g}, 73.4 \mathrm{mmol}, 10$ equiv) was added and the mixture was stirred for several min. The suspension was filtered, and the filter cake was washed with EtOAc. The filtrate was transferred to a separatory funnel, the organic phase was separated, and the water phase was extracted twice with EtOAc. The combined organic extracts were washed with saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right)$ to afford pure diol $\mathbf{1 7 e}(0.698 \mathrm{~g}, 39 \%)$ as a colorless solid.

Sometimes it was difficult to purify the diol from $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{NH}_{2}$ (as a contaminant in different compounds comes at $\delta=3.08-3.10(\mathrm{~s}, 3 \mathrm{H}), 4.67-4.79(\mathrm{bs}, 2 \mathrm{H})$), but the sulfone amide impurity did not influence the next Mitsunobu azidation as was established later. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=2.81(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.13(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.39(\mathrm{bs}, 1 \mathrm{H}, 2-\mathrm{H}), 5.14(\mathrm{bs}, 1 \mathrm{H}, 3-\mathrm{H})$, 7.59 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.23$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$.

In one experiment, after extraction of the reaction mixture with THF/EtOAc, the organic extract was concentrated (but not till dyness) and some precipitate (the salt), insoluble in EtOAc, was isolated by filtration. It was taken up in diluted HCl and extracted with EtOAc. Upon evaporation of the solvent, white crystals were obtained, soluble in EtOAc, but insoluble in CHCl_{3}, that was proved to be an acid, the product of saponification of $\mathbf{1 7 e}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=4.16$ (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.04(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.65(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.17$ (d, $J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar})$.

(2S,3R)-Methyl 3-(4-((tert-butyldimethylsilyloxy)methyl)phenyl)-2,3-dihydroxypropanoate $(\mathbf{1 7 g})$. Representative procedure. A mixture of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}\left(3.68 \mathrm{~g}, 11.2 \mathrm{mmol}, 3\right.$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $\left(1.54 \mathrm{~g}, 11.2 \mathrm{mmol}, 3\right.$ equiv), $\mathrm{KHCO}_{3}\left(0.374 \mathrm{~g}, 3.74 \mathrm{mmol}, 1\right.$ equiv), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(0.356 \mathrm{~g}, 3.74$ $\mathrm{mmol}, 1$ equiv), $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}\left(14 \mathrm{mg}, 0.038 \mathrm{mmol}, 0.01\right.$ equiv), and the ligand (DHQD) ${ }_{2} \mathrm{PHAL}$ $(44 \mathrm{mg}, 0.056 \mathrm{mmol}, 0.015$ equiv) was stirred in a mixture of water $(18 \mathrm{~mL})$ and $t \mathrm{BuOH}(18 \mathrm{~mL})$ until dissolved and then the solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. At this point cinnamate $\mathbf{9 g}$ $(1.15 \mathrm{~g}, 3.74 \mathrm{mmol})$ was added and the reaction mixture was allowed to reach room temperature slowly while being stirred for $8-9 \mathrm{~h}$, at which time a yellow suspension was formed and complete or almost complete conversion was observed according to TLC (petroleum ether/EtOAc, 1:1). Then solid $\mathrm{Na}_{2} \mathrm{SO}_{3}(1.74 \mathrm{~g}, 13.8 \mathrm{mmol}, 3.7$ equiv) was added and the mixture was stirred for several min. The suspension was filtered, and the filter cake was washed with EtOAc. The filtrate was transferred to a separatory funnel, the organic phase was separated, and the water phase was extracted twice with EtOAc. The combined organic extracts were washed with saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The residue was purified by flash chromatography (petroleum ether/EtOAc, gradient $2: 1 \rightarrow 1: 1 \rightarrow 0: 1$) to afford pure diol $\mathbf{1 7 g}(1.18$ $\mathrm{g}, 93 \%)$ as a colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}=-3.8\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.09$ (s, $6 \mathrm{H}, \mathrm{SiCH}_{3}$), $0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.68(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.06(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$, $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.36(\mathrm{dd}, J=2.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.73\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 5.00(\mathrm{dd}, J=2.7,6.4$ $\mathrm{Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 7.32 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.36$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$); HMRS (ESI): m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Si}: 363.15982[M+\mathrm{Na}]^{+}$; found: 363.15993.

(2S,3R)-Methyl 3-(4-(2-(tert-butyldimethylsilyloxy)ethyl)phenyl)-2,3-dihydroxypropanoate $\mathbf{(1 7 g})$. A mixture of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}\left(6.17 \mathrm{~g}, 18.8 \mathrm{mmol}, 3.16\right.$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.60 \mathrm{~g}, 18.8 \mathrm{mmol}, 3.16$ equiv), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}\left(0.596 \mathrm{~g}, 6.3 \mathrm{mmol}, 1.1\right.$ equiv), $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(9 \mathrm{mg}, 0.024 \mathrm{mmol}, 0.004$ equiv), and the ligand (DHQD$)_{2} \mathrm{PHAL}(49 \mathrm{mg}, 0.063 \mathrm{mmol}, 0.01$ equiv) was stirred in a mixture of water (30 mL) and $t \mathrm{BuOH}(30 \mathrm{~mL})$ until dissolved and then the solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. At this point cinnamate $9 \mathrm{~h}(1.90 \mathrm{~g}, 5.94 \mathrm{mmol})$ was added and the reaction mixture was allowed to reach room temperature slowly while being stirred overnight, at which time a yellow suspension was formed and complete or almost complete conversion was observed according to TLC (petroleum ether/EtOAc, 1:1). Then solid $\mathrm{Na}_{2} \mathrm{SO}_{3}(9.4 \mathrm{~g}, 74.6 \mathrm{mmol}, 12.5$ equiv) was added and the mixture was stirred for several minutes. The suspension was filtered, and the filter cake was washed with EtOAc. The filtrate was transferred to a separatory funnel, the organic phase was separated, and the water phase was extracted twice with EtOAc. The combined organic extracts were washed with saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The residue was purified by flash chromatography (petroleum ether/EtOAc, gradient $2: 1 \rightarrow 1: 1$) to afford pure diol $\mathbf{1 7 h}(1.62 \mathrm{~g}, 77 \%)$ as a colorless oil. R_{f} (petroleum ether/EtOAc, 1:1) $0.53 ;[\alpha]^{20}{ }_{\mathrm{D}}=-7.1(c$ $1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.02\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.81$ ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}$), $3.10(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 3.78\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}$,
$\left.\mathrm{OCH}_{3}\right), 4.34(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.99(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, $7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.4\left(\mathrm{SiCH}_{3}\right), 18.3\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 25.9$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 39.2\left(\mathrm{ArCH}_{2}\right), 52.8\left(\mathrm{OCH}_{3}\right), 64.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 74.2,74.7,126.1(2 \mathrm{C}, \mathrm{Ar}), 129.3(2 \mathrm{C}, \mathrm{Ar})$, $137.7\left(\mathrm{C}_{\text {quat }}\right), 139.1\left(\mathrm{C}_{\text {quat }}\right), 173.2\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HMRS (ESI): m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}$: 377.17547 $[M+\mathrm{Na}]^{+}$; found: 377.17549.

(2S,3R)-Methyl 3-(4-cyanophenyl)-2,3-dihydroxypropanoate (17i). A mixture of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ ($9.84 \mathrm{~g}, 30 \mathrm{mmol}, 3$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(4.14 \mathrm{~g}, 30 \mathrm{mmol}, 3\right.$ equiv), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(0.95 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv), $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}\left(15 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.004\right.$ equiv), and the ligand (DHQD) ${ }_{2} \mathrm{PHAL}(78 \mathrm{mg}, 0.1$ $\mathrm{mmol}, 0.01$ equiv) was stirred in a mixture of water $(50 \mathrm{~mL})$ and $t \mathrm{BuOH}(50 \mathrm{~mL})$ until dissolved and then the solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. At this point cinnamate $9 \mathrm{i}(1.87 \mathrm{~g}, 10.0$ mmol) was added and the reaction mixture was allowed to reach room temperature slowly while being stirred overnight, at which time a yellow suspension was formed and complete or almost complete conversion was observed according to TLC (petroleum ether/EtOAc, 1:1). Then solid $\mathrm{Na}_{2} \mathrm{SO}_{3}$ ($15 \mathrm{~g}, 119 \mathrm{mmol}, 12$ equiv) was added and the mixture was stirred for several min. The suspension was filtered, and the filter cake was washed with EtOAc. The filtrate was transferred to a separatory funnel, the organic phase was separated, and the water phase was extracted twice with EtOAc. The combined organic extracts were washed with saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The residue was purified by flash chromatography (petroleum ether/EtOAc, gradient $1: 1 \rightarrow 0: 1$) to afford pure diol $\mathbf{1 7 i}(0.93 \mathrm{~g}, 42 \%)$ as a white solid. Analytical data are in agreement with previously reported. ${ }^{8}$ With this diol it turned out to be more difficult to separate it from $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{NH}_{2}$. The diol has limited solubility in EtOAc and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, but good solubility in acetone and methanol.

(2S,3R)-Methyl 3-(4-cyanophenyl)-2,3-dihydroxypropanoate (17k). A mixture of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ ($5.78 \mathrm{~g}, 17.6 \mathrm{mmol}, 3.7$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(2.03 \mathrm{~g}, 14.7 \mathrm{mmol}, 3.1\right.$ equiv), $\mathrm{KHCO}_{3}(1.18 \mathrm{~g}, 11.8 \mathrm{mmol}$, 2.5 equiv), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}\left(0.167 \mathrm{~g}, 1.76 \mathrm{mmol}, 0.37\right.$ equiv), $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(6.5 \mathrm{mg}, 0.0177 \mathrm{mmol}$, 0.0038 equiv), and the ligand (DHQD) $)_{2}$ PHAL ($22.9 \mathrm{mg}, 0.0294 \mathrm{mmol}, 0.0063$ equiv) was stirred in a mixture of water (28 mL) and $t \mathrm{BuOH}(28 \mathrm{~mL})$ until dissolved and then the solution was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. At this point cinnamate $9 \mathrm{k}(1.12 \mathrm{~g}, 4.7 \mathrm{mmol})$ was added and the reaction mixture was allowed to reach room temperature slowly while being stirred overnight, but complete conversion was not reached. After work up as previously, a crude mixture (0.937 g), containing $49 \% \mathrm{w} / \mathrm{w}$ of unreacted cinnamate, $11 \% \mathrm{w} / \mathrm{w} \mathrm{MeSO}_{2} \mathrm{NH}_{2}$ and $\mathbf{1 7 k}$ was obtained, that was subjected to a second round of oxidation with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}\left(1.90 \mathrm{~g}, 5.79 \mathrm{mmol}, 3\right.$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.67 \mathrm{~g}, 4.9$ $\mathrm{mmol}, 2.5$ equiv), $\mathrm{KHCO}_{3}\left(0.39 \mathrm{~g}, 3.9 \mathrm{mmol}, 2\right.$ equiv), $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(5.1 \mathrm{mg}, 0.0139 \mathrm{mmol}$, 0.0072 equiv), and the ligand (DHQD) ${ }_{2}$ PHAL ($19 \mathrm{mg}, 0.0244 \mathrm{mmol}, 0.013$ equiv) in water (10

[^4]$\mathrm{mL}), t \mathrm{BuOH}(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. This time, NMR of crude mixture indicated presence of 8% of starting cinnamate unreacted and at this point the reaction was stopped. After work up as previously, the residue was purified by flash chromatography (petroleum ether/EtOAc, gradient 2:1 $\rightarrow 1: 1 \rightarrow 0: 1)$ to afford pure diol $\mathbf{1 7 k}(0.267 \mathrm{~g})$ and a solid mixture of $\mathbf{1 7 k}$ with $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(0.514$ g , containing $90 \% \mathrm{w} / \mathrm{w}$ of $\mathbf{1 7 k}$). This mixed fraction was washed with diluted aqueous KOH and, subsequently, with water on a glas frit to afford pure $\mathbf{1 7 k}(0.336 \mathrm{~g})$ as a colorless solid, indicating also a mass loss due to concurrent ester saponification. Total yield was $0.603 \mathrm{~g}(47 \%)$. Diol $\mathbf{1 7 k}$ has good solubility in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, but limited in EtOAc. $R_{\mathrm{f}}(\mathrm{EtOAc}) 0.6 ;[\alpha]^{20}{ }_{\mathrm{D}}=-8.8\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.73(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.13(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.84$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $4.42(\mathrm{dd}, J=2.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.08(\operatorname{app} \mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, 7.42-7.49 (m, 5H, Ar), 7.57-7.61 (d+d, 4H, Ar); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=53.0\left(\mathrm{OCH}_{3}\right)$, 74.1, 74.6, $126.6\left(2 \mathrm{C}_{\mathrm{ar}}\right), 127.1\left(2 \mathrm{C}_{\mathrm{ar}}\right), 127.2\left(2 \mathrm{C}_{\mathrm{ar}}\right), 127.4\left(\mathrm{C}_{\mathrm{ar}}\right), 128.8\left(2 \mathrm{C}_{\mathrm{ar}}\right), 138.9\left(\mathrm{C}_{\mathrm{ar}}\right), 140.7$ $\left(\mathrm{C}_{\mathrm{ar}}\right), 141.0\left(\mathrm{C}_{\mathrm{ar}}\right), 173.1\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HMRS (ESI): m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}: 295.09408[M+\mathrm{Na}]^{+}$; found: 295.09407.

ee-Determination for some of the diols 17

Column Chiralcel OJ-H
diol 17e:
NO_{2} rac, hexane $/ i \mathrm{PrOH} 70: 30$, flow $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, injection $5 \mu \mathrm{~L}$

NO_{2} enantiomer, hexane $/ i \operatorname{PrOH} 70: 30$, flow $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, injection $5 \mu \mathrm{~L}$

diol 17g:
$\mathrm{CH}_{2} \mathrm{OTBS}$ acetonide rac, hexane $/ \mathrm{iPrOH} 95: 5$, flow $1 \mathrm{~mL} \mathrm{~min}{ }^{-1}$, injection $5 \mu \mathrm{~L}$

$\mathrm{CH}_{2} \mathrm{OTBS}$ acetonide enantiomer, hexane $/ \mathrm{iPrOH} 95: 5$, flow $1 \mathrm{~mL} \mathrm{~min}^{-1}$, injection $5 \mu \mathrm{~L}$

diol 17i:
CN rac, hexane $/$ iPrOH 70:30, flow $1 \mathrm{~mL} \mathrm{~min}^{-1}$, injection $5 \mu \mathrm{~L}$

CN enantiomer, hexane $/ \mathrm{iPrOH} 70: 30$, flow $1 \mathrm{~mL} \mathrm{~min}^{-1}$, injection $5 \mu \mathrm{~L}$

Ph diol 17k did not provide good separation neither as a diol nor as acetonide.

Preparation of hydrazoic acid solution: Caution: Hydrazoic acid is a highly volatile, toxic and explosive liquid in individual state. However, in solution it is stable and safe. In this study solutions up to 5 m were used. Sodium azide ($3.0 \mathrm{~g}, 46 \mathrm{mmol}$) was mixed with water (1.5 mL) and toluene (10 $\mathrm{mL})$. The suspension was cooled to near $0{ }^{\circ} \mathrm{C}$ and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(\sim 2 \mathrm{~g}, \sim 1.09 \mathrm{~mL}, 20 \mathrm{mmol})$ was carefully added while cooling and shaking the round bottom flask (stirring with magnetic stirring bar is not sufficient). Crystals were kneaded with a spatula shortly after the addition of the acid. Then the mixture was filtered under positive pressure and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (there was no water phase remained, and no need to separate it from toluene solution). To rapidly estimate the resulting concentration of hydrazoic acid, a known amount of NaOH was dissolved in a small amount of water, phenolphthalein was added and the pink solution was titrated with the hydrazoic acid solution from an analytical pipette (the concentration was found to be 3.3 M against theoretical $4.0 \mathrm{~m})$.
Note. In the following Mitsunobu reactions, the products 18e and $\mathbf{1 8 i}$ were slightly contaminated with diethyl hydrazodicarboxylate ($\sim 3-5 \mathrm{~mol} \%$), having signals $\delta=1.28 \pm 0.01(\mathrm{t}, 6 \mathrm{H}), 4.22 \pm 0.01$ $(\mathrm{q}, 4 \mathrm{H})$. This impurity does not cause problems in the subsequent steps.

(2S,3S)-Methyl 3-azido-2-hydroxy-3-p-tolylpropanoate (18b). To a stirred solution of diol 17b $(0.500 \mathrm{~g}, 2.38 \mathrm{mmol})$, triphenylphosphine $(0.749 \mathrm{~g}, 2.85 \mathrm{mmol}, 1.2$ equiv), hydrazoic acid (1.44 $\mathrm{mL}, 3.3 \mathrm{M}$ in toluene, 2.0 equiv) in THF (7.0 mL) at $0^{\circ} \mathrm{C}$ was added DEAD ($1.42 \mathrm{~mL}, 3.09 \mathrm{mmol}$, $40 \% \mathrm{wt}$. solution in toluene, 1.3 equiv) via syringe pump within 5 h . Then the cooling bath was removed and the resulting mixture was stirred for 18 h at ambient temperature. The mixture was treated with saturated NaHCO_{3} solution (6 mL). After separation of the layers, the aqueous layer was extracted with EtOAc $(2 \times 15 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 4:1) to provide 3-azido propanoate $\mathbf{1 8 b}(0.212 \mathrm{~g}, 38 \%)$ as a colorless oil. R_{f} (petroleum ether/EtOAc, 4:1) 0.25; $[\alpha]^{20}{ }_{\mathrm{D}}=+80.0\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.50(\mathrm{dd}, J=6.7,4.2 \mathrm{~Hz}$, $1 \mathrm{H}, 2-\mathrm{H}), 4.83(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.12-7.24(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $21.2\left(\mathrm{CH}_{3}\right), 52.7\left(\mathrm{OCH}_{3}\right), 67.0(\mathrm{C}-3), 73.7(\mathrm{C}-2), 127.7\left(\mathrm{C}_{\mathrm{ar}}\right), 129.4\left(\mathrm{C}_{\mathrm{ar}}\right), 131.2\left(\mathrm{C}_{\mathrm{ar}}\right), 138.8\left(\mathrm{C}_{\mathrm{ar}}\right)$, 171.8 (CO); HRMS (ESI): m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}[M+\mathrm{Na}]^{+}: 258.08491$; found: 258.084882.

(2S,3S)-Methyl 3-azido-2-hydroxy-3-(4-methoxyphenyl)propanoate (18c). To a stirred solution of diol $\mathbf{1 7 c}(0.40 \mathrm{~g}, 1.77 \mathrm{mmol})$, triphenylphosphine $(0.557 \mathrm{~g}, 2.12 \mathrm{mmol}, 1.2$ equiv), hydrazoic acid $\left(2.2 \mathrm{~mL}, 1.6 \mathrm{~m}\right.$ in toluene, 2.0 equiv) in THF $(5.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added DEAD $(1.05 \mathrm{~mL}, 2.30$ $\mathrm{mmol}, 40 \% \mathrm{wt}$. solution in toluene, 1.3 equiv) via syringe pump within 5 h . Then the cooling bath was removed and the resulting mixture was stirred for 18 h at ambient temperature. The mixture was treated with saturated NaHCO_{3} solution $(4 \mathrm{~mL})$. After separation of the layers, the aqueous layer was extracted with EtOAc $(2 \times 15 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash chromatography
(petroleum ether/EtOAc, 3:1) to provide 3-azido propanoate 18c ($0.211 \mathrm{~g}, 48 \%$) as a colorless oil. A small amount of the syn-diastereomer ($41 \mathrm{mg}, 9 \%, R_{\mathrm{f}} 0.25$) was also isolated as an oil. R_{f} (petroleum ether/EtOAc, 3:1) 0.22; $[\alpha]^{20}{ }_{\mathrm{D}}=+92.6\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=2.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.50(\mathrm{dd}, J=6.4,4.1 \mathrm{~Hz}$, $1 \mathrm{H}, 2-\mathrm{H}), 4.81(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.20-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.8\left(\mathrm{OCH}_{3}\right), 55.2\left(\mathrm{OCH}_{3}\right), 66.7(\mathrm{C}-3), 73.7(\mathrm{C}-2), 114.1\left(\mathrm{C}_{\mathrm{ar}}\right), 126.1$ $\left(\mathrm{C}_{\mathrm{ar}}\right), 129.1\left(\mathrm{C}_{\mathrm{ar}}\right), 160.0\left(\mathrm{C}_{\text {ar }}\right), 171.8(\mathrm{CO})$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}[M+\mathrm{Na}]^{+}$: 274.07983; found: 274.079893.

(2S,3S)-Methyl 3-azido-3-(4-fluorophenyl)-2-hydroxypropanoate (18d). To a stirred solution of diol $17 \mathbf{d}(0.300 \mathrm{~g}, 1.40 \mathrm{mmol})$, triphenylphosphine $(0.441 \mathrm{~g}, 1.68 \mathrm{mmol}, 1.2$ equiv), hydrazoic acid $\left(0.85 \mathrm{~mL}, 3.3 \mathrm{M}\right.$ in toluene, 2.0 equiv) in THF $(4.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added DEAD $(0.835 \mathrm{~mL}, 1.82$ $\mathrm{mmol}, 40 \% \mathrm{wt}$. solution in toluene, 1.3 equiv) via syringe pump within 5 h . Then the cooling bath was removed and the resulting mixture was stirred for 18 h at ambient temperature. The mixture was treated with saturated NaHCO_{3} solution $(4 \mathrm{~mL})$. After separation of the layers, the aqueous layer was extracted with EtOAc $(2 \times 15 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 4:1) to provide 3-azido propanoate $\mathbf{1 8 d}(0.119 \mathrm{~g}, 36 \%)$ as a colorless oil. R_{f} (petroleum ether/EtOAc, 4:1) 0.20; $[\alpha]^{20}{ }_{\mathrm{D}}=+41.7$ (c 1.00, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=2.97(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.52(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.86(\mathrm{~d}, J=4.1$ $\mathrm{Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.99-7.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.28-7.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $52.8\left(\mathrm{OCH}_{3}\right), 66.4(\mathrm{C}-3), 73.6(\mathrm{C}-2), 115.7\left(\mathrm{~d}, J=21.2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{ar}}\right), 129.6\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, \mathrm{C}_{\mathrm{ar}}\right), 130.2(\mathrm{~d}$, $J=2.9 \mathrm{~Hz}, \mathrm{C}_{\mathrm{ar}}$), 162.6 (d, $J=148.1 \mathrm{~Hz}, \mathrm{C}_{\mathrm{ar}}$), 171.7 (CO); HRMS (ESI): m/z: calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FN}_{3} \mathrm{O}_{3}[M+\mathrm{Na}]^{+}: 262.05984$; found: 262.05972.

(2S,3S)-Methyl 3-azido-2-hydroxy-3-(4-nitrophenyl)propanoate (18e). To a stirred solution of diol $17 \mathrm{e}(0.228 \mathrm{~g}, 0.946 \mathrm{mmol})$, triphenylphosphine ($0.297 \mathrm{~g}, 1.14 \mathrm{mmol}, 1.2$ equiv), hydrazoic acid $\left(0.86 \mathrm{~mL}, 3.3 \mathrm{M}\right.$ in toluene, 3 equiv) in THF (2.0 mL) at $-25^{\circ} \mathrm{C}$ was added DEAD ($0.56 \mathrm{~mL}, 0.535$ $\mathrm{g}, 1.23 \mathrm{mmol}, 40 \% \mathrm{wt}$. solution in toluene, 1.3 equiv), then the cooling bath was removed (slight evolution of N_{2} was observed) and the resulting mixture was stirred overnight at ambient temperature (TLC control: petroleum ether/EtOAc, 1:1; NMR control: a sample portion was taken from the reaction mixture, evaporated and directly analyzed by NMR). Then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, $4: 1$ to $2: 1$) to yield 3 -azido propanoate $18 \mathrm{e}(0.145 \mathrm{~g}, 58 \%)$ as a slightly orange oil which solidified into a waxy solid upon standing. R_{f} (petroleum ether/EtOAc, 1:1) 0.55 ; $[\alpha]^{20}{ }_{\mathrm{D}}=$ $+101.1\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.11(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.58(\mathrm{~d}, 1 \mathrm{H}, 2-\mathrm{H}), 5.08(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.53(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=53.1\left(\mathrm{OCH}_{3}\right), 66.4(\mathrm{C}-3), 73.7(\mathrm{C}-2), 123.7\left(\mathrm{C}_{\mathrm{ar}}\right), 128.7$
$\left(\mathrm{C}_{\mathrm{ar}}\right), 141.8\left(\mathrm{C}_{\mathrm{ar}}\right), 148.1\left(\mathrm{C}_{\mathrm{ar}}\right), 171.3\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HMRS (ESI): m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{5}[M+\mathrm{Na}]^{+}$: 289.05434; found: 289.05431.

(2S,3S)-Methyl 3-azido-3-(4-((tert-butyldimethylsilyloxy)methyl)phenyl)-2-hydroxypropanoate ($\mathbf{1 8 g}$). To a stirred solution of diol $\mathbf{1 7 g}(1.06 \mathrm{~g}, 3.1 \mathrm{mmol})$, triphenylphosphine ($0.98 \mathrm{~g}, 3.72$ $\mathrm{mmol}, 1.2$ equiv), hydrazoic acid ($4.7 \mathrm{~mL}, 2.0 \mathrm{~m}$ in toluene, 3 equiv) in THF (7.0 mL) at $-25^{\circ} \mathrm{C}$ was added DEAD ($1.7 \mathrm{~mL}, 4.03 \mathrm{mmol}, 40 \% \mathrm{wt}$. solution in toluene, 1.3 equiv), then the cooling bath was removed (slight evolution of N_{2} was observed) and the resulting mixture was stirred overnight at ambient temperature. Then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 8:1 to 2:1) to yield 3-azido propanoate $\mathbf{1 8 g}(0.719 \mathrm{~g}, 63 \%)$ as colorless oil. R_{f} (petroleum ether/EtOAc, 2:1) $0.6 ;[\alpha]^{20}{ }_{\mathrm{D}}=+75.5(c 1.00$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.09\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.88(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.51(\mathrm{dd}, J=4.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.73\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.86$ (d, $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $(100$ MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=-5.3\left(\mathrm{SiCH}_{3}\right), 18.4\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 25.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 52.7\left(\mathrm{OCH}_{3}\right), 64.5\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 67.0}\right.$ $(\mathrm{C}-3), 73.7(\mathrm{C}-2), 126.2\left(\mathrm{C}_{\mathrm{ar}}\right), 126.7\left(\mathrm{C}_{\mathrm{ar}}\right), 132.7\left(\mathrm{C}_{\mathrm{ar}}\right), 142.3\left(\mathrm{C}_{\mathrm{ar}}\right), 171.8\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HMRS (ESI): m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}[M+\mathrm{Na}]^{+}: 388.16630$; found: 388.16639.

(2S,3S)-Methyl
3-azido-3-(4-(2-(tert-butyldimethylsilyloxy)ethyl)phenyl)-2-hydroxypropanoate (18h). To a stirred solution of diol $\mathbf{1 7 h}(1.18 \mathrm{~g}, 3.33 \mathrm{mmol})$, triphenylphosphine (1.05 $\mathrm{g}, 4.00 \mathrm{mmol}, 1.2$ equiv), hydrazoic acid ($4.2 \mathrm{~mL}, 2.4 \mathrm{M}$ in toluene, 3 equiv) in THF (7.0 mL) at -25 ${ }^{\circ} \mathrm{C}$ was added DEAD ($1.83 \mathrm{~mL}, 4.33 \mathrm{mmol}, 40 \% \mathrm{wt}$. solution in toluene, 1.3 equiv), then the cooling bath was removed (slight evolution of N_{2} was observed) and the resulting mixture was stirred overnight at ambient temperature. Then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, $8: 1$ to $2: 1$) to yield 3 -azido propanoate $\mathbf{1 8 h}(0.997 \mathrm{~g}, 80 \%)$ as a colorless oil. R_{f} (petroleum ether/EtOAc, 2:1) $0.6 ;[\alpha]^{20}{ }_{\mathrm{D}}=$ $+70.0\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.84(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.80\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 2.86(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}$), $4.5(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.84(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.21$ (d, $J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.5\left(\mathrm{SiCH}_{3}\right), 18.3$
 $\left(\mathrm{C}_{\mathrm{ar}}\right), 129.6\left(\mathrm{C}_{\mathrm{ar}}\right)$, $131.9\left(\mathrm{C}_{\mathrm{ar}}\right)$, $140.3\left(\mathrm{C}_{\mathrm{ar}}\right)$, $171.8\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HMRS (ESI): m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}[M+\mathrm{Na}]^{+}: 402.18195$; found: 402.18203 .

(2S,3S)-Methyl 3-azido-3-(4-cyanophenyl)-2-hydroxypropanoate (18i). To a stirred solution of diol 17 i (0.989 g of crude product containing 0.801 g of diol, 3.5 mmol), triphenylphosphine (1.10 $\mathrm{g}, 4.2 \mathrm{mmol}$, 1.2 equiv), hydrazoic acid ($3.2 \mathrm{~mL}, 3.3 \mathrm{M}$ in toluene, 3 equiv) in THF (7.4 mL) at -25 ${ }^{\circ} \mathrm{C}$ was added DEAD ($2.1 \mathrm{~mL}, 4.55 \mathrm{mmol}, 40 \%$ wt. solution in toluene, 1.3 equiv), then the cooling bath was removed (slight evolution of N_{2} was observed) and the resulting mixture was stirred overnight at ambient temperature. Then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, 2:1) to yield 3-azido propanoate $18 \mathbf{i}(0.472 \mathrm{~g}, 55 \%)$ as a colorless oil. R_{f} (petroleum ether/EtOAc, 2:1) $0.24 ; R_{\mathrm{f}}$ (petroleum ether/EtOAc, 1:1) 0.68; $[\alpha]^{20}{ }_{\mathrm{D}}=+107.6\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=3.14(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.55(\mathrm{bs}, 1 \mathrm{H}, 2-\mathrm{H}), 4.94(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.46$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.66$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=53.0$ $\left(\mathrm{OCH}_{3}\right), 66.6(\mathrm{C}-3), 73.7(\mathrm{C}-2), 112.7,118.2,128.4\left(\mathrm{C}_{\mathrm{ar}}\right), 132.3\left(\mathrm{C}_{\mathrm{ar}}\right), 139.9\left(\mathrm{C}_{\mathrm{ar}}\right), 171.3\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HMRS (ESI): m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3}[M+\mathrm{Na}]^{+}: 269.06451$; found: 269.06462.

(2S,3S)-Methyl 3-azido-3-(biphenyl-4-yl)-2-hydroxypropanoate (18k). To a stirred solution of diol $17 \mathbf{k}(0.514 \mathrm{~g}, 1.89 \mathrm{mmol})$, triphenylphosphine $(0.594 \mathrm{~g}, 2.27 \mathrm{mmol}, 1.2$ equiv), hydrazoic acid ($1.7 \mathrm{~mL}, 3.3 \mathrm{~m}$ in toluene, 3 equiv) in THF (4.0 mL) at $-25^{\circ} \mathrm{C}$ was added DEAD ($1.09 \mathrm{~mL}, 2.38$ $\mathrm{mmol}, 40 \% \mathrm{wt}$. solution in toluene, 1.26 equiv), then the cooling bath was removed (slight evolution of N_{2} was observed) and the resulting mixture was stirred overnight at ambient temperature. Then the reaction mixture was concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc, petroleum ether/EtOAc 5:1 to 2.5:1) to yield 3azido propanoate $18 k(0.433 \mathrm{~g}, 77 \%)$ as a colorless solid. R_{f} (petroleum ether/EtOAc, 2:1) 0.3-0.4; $[\alpha]^{20}{ }_{\mathrm{D}}=+121.2\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.97(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 3.75(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.56(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.92(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.34-7.46(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.57-$ $7.61(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.8\left(\mathrm{OCH}_{3}\right), 67.0(\mathrm{C}-3), 73.8(\mathrm{C}-2), 127.1$ $\left(\mathrm{C}_{\mathrm{ar}}\right), 127.3\left(\mathrm{C}_{\mathrm{ar}}\right), 127.6\left(\mathrm{C}_{\mathrm{ar}}\right), 128.2\left(\mathrm{C}_{\mathrm{ar}}\right), 128.8\left(\mathrm{C}_{\mathrm{ar}}\right), 133.3\left(\mathrm{C}_{\mathrm{ar}}\right), 140.3\left(\mathrm{C}_{\mathrm{ar}}\right), 141.7\left(\mathrm{C}_{\mathrm{ar}}\right), 171.8$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HMRS (ESI): m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}[M+\mathrm{Na}]^{+}: 320.10056$; found: 320.10058 .

Note. In the following methylation reactions, if the substrate was contaminated with diethyl hydrazodicarboxylate, a product of methylation was formed, presumably a product of N monomethylation, according to NMR. In the corresponding cases, this had the following signals $\delta=$ $1.31(\mathrm{t}, 6 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{q}, 4 \mathrm{H})$. It causes no problems with the further steps.

(2S,3S)-Methyl 3-azido-2-methoxy-3-p-tolylpropanoate (19b). To a solution of α-hydroxy ester 18b $(0.260 \mathrm{~g}, 1.11 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ was added trimethyloxonium tetrafluoroborate ($0.572 \mathrm{~g}, 3.87 \mathrm{mmol}, 3.5$ equiv) and proton sponge ($1.18 \mathrm{~g}, 5.53 \mathrm{mmol}, 5$ equiv). The flask was covered with aluminum foil. After stirring the suspension at ambient temperature for 20 h , the reaction mixture was treated with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, followed by separation of the layers. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with 1 N $\mathrm{HCl}(10 \mathrm{~mL})$, saturated NaHCO_{3} solution (10 mL), saturated NaCl solution (10 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was chromatographed (petroleum ether/EtOAc, 7:1) to yield methyl ether 19b ($0.215 \mathrm{~g}, 78 \%$) as a colorless oil. R_{f} (petroleum ether/EtOAc, 7:1) $0.30 ;[\alpha]^{20}{ }_{\mathrm{D}}=+47.2\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.34(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.72(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.21-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=21.2\left(\mathrm{CH}_{3}\right), 52.2\left(\mathrm{OCH}_{3}\right), 59.1\left(\mathrm{OCH}_{3}\right), 65.8(\mathrm{C}-3), 83.4(\mathrm{C}-2), 127.9\left(\mathrm{C}_{\mathrm{ar}}\right), 129.4\left(\mathrm{C}_{\mathrm{ar}}\right), 132.1$ $\left(\mathrm{C}_{\mathrm{ar}}\right), 138.7\left(\mathrm{C}_{\mathrm{ar}}\right), 170.3(\mathrm{CO}) ;$ HRMS (ESI): m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}[M+\mathrm{Na}]^{+}: 272.10056$; found: 272.10062.

(2S,3S)-Methyl 3-azido-2-methoxy-3-(4-methoxyphenyl)propanoate (19c). To a solution of α hydroxy ester $18 \mathrm{c}(0.130 \mathrm{~g}, 0.517 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added trimethyloxonium tetrafluoroborate $(0.171 \mathrm{~g}, 1.16 \mathrm{mmol}, 2.2$ equiv) and proton sponge $(0.354 \mathrm{~g}, 1.65 \mathrm{mmol}, 3.2$ equiv). The flask was covered with aluminum foil. After stirring the suspension at ambient temperature for 20 h , the reaction mixture was treated with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$, followed by separation of the layers. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$, saturated NaHCO_{3} solution (5 mL), and saturated NaCl solution (5 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was chromatographed (petroleum ether/EtOAc, 5:1) to yield methyl ether 19c ($0.100 \mathrm{~g}, 73 \%$) as a colorless oil. R_{f} (petroleum ether/EtOAc, 5:1) $0.23 ;[\alpha]^{20}{ }_{\mathrm{D}}=+56.2\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.97(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}, 2-\mathrm{H}), 4.70(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.29(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.2\left(\mathrm{OCH}_{3}\right), 55.2\left(\mathrm{OCH}_{3}\right), 59.1\left(\mathrm{OCH}_{3}\right), 65.4(\mathrm{C}-3), 83.4(\mathrm{C}-2)$, $114.0\left(\mathrm{C}_{\mathrm{ar}}\right), 127.1\left(\mathrm{C}_{\mathrm{ar}}\right), 129.3\left(\mathrm{C}_{\mathrm{ar}}\right), 159.9\left(\mathrm{C}_{\mathrm{ar}}\right), 170.2$ (CO); HRMS (ESI): m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}[M+\mathrm{Na}]^{+}: 288.09548$; found: 288.09558.

(2S,3S)-Methyl 3-azido-3-(4-fluorophenyl)-2-methoxypropanoate (19d). To a solution of α hydroxy ester $18 \mathbf{d}(0.084 \mathrm{~g}, 0.351 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added trimethyloxonium tetrafluoroborate ($0.182 \mathrm{~g}, 1.23 \mathrm{mmol}, 3.5$ equiv) and proton sponge ($0.376 \mathrm{~g}, 1.76 \mathrm{mmol}, 5$ equiv). The flask was covered with aluminum foil. After stirring the suspension at ambient temperature for 20 h , the reaction mixture was treated with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$, followed by separation of the layers. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$, saturated NaHCO_{3} solution (5 mL), saturated NaCl solution $(5 \mathrm{~mL})$, dried with
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was chromatographed (petroleum ether/EtOAc, 6:1) to yield methyl ether $\mathbf{1 9 d}(0.067 \mathrm{~g}, 75 \%)$ as a colorless oil. R_{f} (petroleum ether/EtOAc, 7:1) 0.22; $[\alpha]^{20}{ }_{\mathrm{D}}=+19.1\left(c \quad 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.37$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.75(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.99-$ $7.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.30-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.3\left(\mathrm{OCH}_{3}\right), 59.2$ $\left(\mathrm{OCH}_{3}\right), 65.2(\mathrm{C}-3), 83.3(\mathrm{C}-2), 115.7\left(\mathrm{~d}, J=22.0 \mathrm{~Hz}, \mathrm{C}_{\mathrm{ar}}\right), 129.9\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, \mathrm{C}_{\mathrm{ar}}\right), 131.0(\mathrm{~d}, J=$ $2.8, \mathrm{C}_{\mathrm{ar}}$), 162.9 (d, $J=248.1 \mathrm{~Hz}, \mathrm{C}_{\mathrm{ar}}$), $170.0(\mathrm{CO}) ;$ HRMS (ESI): m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{O}_{3}$ [$M+\mathrm{Na}]+: 276.07549$; found: 276.07523.

(2S,3S)-Methyl 3-azido-2-methoxy-3-(4-nitrophenyl)propanoate (19e). To a solution of α hydroxy ester 18e ($0.495 \mathrm{~g}, 1.86 \mathrm{mmol}$) in dry 1,2 -dichloroethane (1.9 mL) was added trimethyloxonium tetrafluoroborate $(0.495 \mathrm{~g}, 3.35 \mathrm{mmol}, 1.8$ equiv) and proton sponge $(0.876 \mathrm{~g}$, $4.09 \mathrm{mmol}, 2.2$ equiv). The flask was covered with aluminum foil. After stirring the suspension at $40{ }^{\circ} \mathrm{C}$ overnight, a small probe was taken from the reaction mixture and quenched with $\mathrm{EtOAc} / \mathrm{HCl}_{\mathrm{aq}}$ for TLC (petroleum ether/EtOAc, 1:1), that indicated full conversion. The reaction mixture was cooled, treated with $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$, and acidified with 1 N HCl to $\mathrm{pH} 2-3$. The precipitate was filtered off and the filtrate was separated. The aqueous phase was extracted once with EtOAc and the combined organic extracts were washed with water, and saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was chromatographed (petroleum ether/EtOAc, $3: 1$ to $2: 1$) to yield methyl ether $19 \mathrm{e}(0.48 \mathrm{~g}, 92 \%)$ as a slightly orange oil. R_{f} (petroleum ether/EtOAc, 2:1) 0.54; $[\alpha]^{20}{ }_{\mathrm{D}}=+49.5\left(c \quad 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.99(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.89(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$, $3-\mathrm{H}), 7.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $52.5\left(\mathrm{OCH}_{3}\right), 59.3\left(\mathrm{OCH}_{3}\right), 65.0(\mathrm{C}-3), 83.0(\mathrm{C}-2), 123.8\left(\mathrm{C}_{\mathrm{ar}}\right), 129.0\left(\mathrm{C}_{\mathrm{ar}}\right), 142.4\left(\mathrm{C}_{\mathrm{ar}}\right), 148.1\left(\mathrm{C}_{\mathrm{ar}}\right)$, $169.6\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HMRS (ESI): m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 303.06999$; found: 303.07002 .

(2S,3S)-Methyl 3-azido-3-(4-((tert-butyldimethylsilyloxy)methyl)phenyl)-2-methoxypropanoate $(\mathbf{1 9 g})$. To a solution of α-hydroxy ester $\mathbf{1 8 g}(0.674 \mathrm{~g}, 1.84 \mathrm{mmol})$ in dry 1,2 -dichloroethane (3 mL) was added trimethyloxonium tetrafluoroborate ($0.463 \mathrm{~g}, 3.13 \mathrm{mmol}, 1.7$ equiv) and proton sponge ($0.803 \mathrm{~g}, 3.75 \mathrm{mmol}, 2.04$ equiv). The flask was covered with aluminum foil. After stirring the suspension at $40^{\circ} \mathrm{C}$ overnight, the reaction mixture was cooled, treated with $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$, and acidified with 1 NHCl to $\mathrm{pH} 2-3$. The precipitate was filtered off and the filtrate was separated. The aqueous phase was extracted once with EtOAc and the combined organic extracts were washed with water, and saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was chromatographed (petroleum ether/EtOAc, 10:1) to yield methyl ether $\mathbf{1 9 g}(0.475 \mathrm{~g}$, $68 \%)$ as a colorless oil. R_{f} (petroleum ether/EtOAc, 4:1) $0.49 ;[\alpha]^{20}{ }_{\mathrm{D}}=+53.7\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.09\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74$ (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), $3.97(\mathrm{~d}, J=6.6,1 \mathrm{H}, 2-\mathrm{H}), 4.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.74(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.33$ (s, $4 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=-5.3\left(\mathrm{SiCH}_{3}\right), 18.4\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 52.2$
$\left(\mathrm{OCH}_{3}\right), 59.1\left(\mathrm{OCH}_{3}\right), 64.5\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 65.8(\mathrm{C}-3), 83.9(\mathrm{C}-2), 126.2\left(\mathrm{C}_{\mathrm{ar}}\right), 127.9\left(\mathrm{C}_{\mathrm{ar}}\right), 133.7\left(\mathrm{C}_{\mathrm{ar}}\right)$, $142.2\left(\mathrm{C}_{\mathrm{ar}}\right)$, $170.2\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HMRS (ESI): m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}[M+\mathrm{Na}]^{+}: 402.18195$; found: 402.18197 .

(2S,3S)-Methyl 3-azido-3-(4-(2-(tert-butyldimethylsilyloxy)ethyl)phenyl)-2-methoxypropanoate (19h). To a solution of α-hydroxy ester $\mathbf{1 8 h}(0.897 \mathrm{~g}, 2.3 \mathrm{mmol})$ in dry 1,2-dichloroethane (3 mL) was added trimethyloxonium tetrafluoroborate ($0.578 \mathrm{~g}, 3.91 \mathrm{mmol}, 1.7$ equiv) and proton sponge ($0.886 \mathrm{~g}, 4.14 \mathrm{mmol}, 1.8$ equiv). The flask was covered with aluminum foil. After stirring the suspension at $40^{\circ} \mathrm{C}$ overnight, the reaction mixture was cooled, treated with $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$, and acidified with 1 NHCl to $\mathrm{pH} 2-3$. The precipitate was filtered off and the filtrate was separated. The aqueous phase was extracted once with EtOAc and the combined organic extracts were washed with water, and saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was chromatographed (petroleum ether/EtOAc, 10:1) to yield methyl ether $\mathbf{1 9 h}(0.584 \mathrm{~g}$, 77%, based on consumed material) as a colorless oil. The amount of recovered starting material was $0.167 \mathrm{~g} . R_{\mathrm{f}}$ (petroleum ether/EtOAc, 4:1) $0.49 ;[\alpha]^{20}{ }_{\mathrm{D}}=+56.9\left(c \quad 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.84\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.81\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right)$, $3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OTBS}\right), 3.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}, 2-\mathrm{H}), 4.71(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.27$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.5\left(\mathrm{SiCH}_{3}\right), 18.3\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 39.2\left(\mathrm{ArCH}_{2}\right),}\right.$ $52.2\left(\mathrm{OCH}_{3}\right), 59.1\left(\mathrm{OCH}_{3}\right), 64.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 65.7(\mathrm{C}-3), 83.4(\mathrm{C}-2), 127.9\left(\mathrm{C}_{\mathrm{ar}}\right), 129.5\left(\mathrm{C}_{\mathrm{ar}}\right), 132.9$ $\left(\mathrm{C}_{\mathrm{ar}}\right), 140.1\left(\mathrm{C}_{\mathrm{ar}}\right), 170.3\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HMRS (ESI): m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}[M+\mathrm{Na}]^{+}:$ 416.19760; found: 416.19771.

(2S,3S)-Methyl 3-azido-3-(biphenyl-4-yl)-2-methoxypropanoate (19i). To a solution of α hydroxy ester $\mathbf{1 8 i}(0.574 \mathrm{~g}, 2.3 \mathrm{mmol})$ in dry 1,2 -dichloroethane (2.3 mL) was added trimethyloxonium tetrafluoroborate ($0.621 \mathrm{~g}, 4.14 \mathrm{mmol}, 1.8$ equiv) and proton sponge ($1.08 \mathrm{~g}, 5.06$ $\mathrm{mmol}, 2.2$ equiv). The flask was covered with aluminum foil. After stirring the suspension at $40^{\circ} \mathrm{C}$ overnight, a small probe was taken from the reaction mixture and quenched with $\mathrm{EtOAc} / \mathrm{HCl}_{\mathrm{aq}}$ for TLC (petroleum ether/EtOAc, 1:1), that indicated full conversion. The reaction mixture was cooled, treated with $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$, and acidified with 1 N HCl to $\mathrm{pH} 2-3$. The precipitate was filtered off and the filtrate was separated. The aqueous phase was extracted once with EtOAc and the combined organic extracts were washed with water, and saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was chromatographed (petroleum ether/EtOAc, 3:1 to 2:1) to yield methyl ether $19 \mathrm{i}\left(0.489 \mathrm{~g}, 81 \%\right.$) as a colorless oil. R_{f} (petroleum ether/EtOAc, 2:1) 0.41; $[\alpha]^{20}{ }_{\mathrm{D}}=+59.0\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.97(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.82(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.48(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, $7.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.4\left(\mathrm{OCH}_{3}\right), 59.2\left(\mathrm{OCH}_{3}\right), 65.3(\mathrm{C}-$ 3), $82.9(\mathrm{C}-2), 112.7,118.3,128.8\left(\mathrm{C}_{\mathrm{ar}}\right), 132.3\left(\mathrm{C}_{\mathrm{ar}}\right), 140.5\left(\mathrm{C}_{\mathrm{ar}}\right), 169.6\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HMRS (ESI): m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}[M+\mathrm{Na}]^{+}$: 283.08016; found: 283.08007.

(2S,3S)-Methyl 3-azido-3-(biphenyl-4-yl)-2-methoxypropanoate (19k). To a solution of α hydroxy ester $\mathbf{1 8 k}(0.39 \mathrm{~g}, 1.31 \mathrm{mmol})$ in dry 1,2 -dichloroethane (1.4 mL) was added trimethyloxonium tetrafluoroborate $(0.349 \mathrm{~g}, 2.36 \mathrm{mmol}, 1.8$ equiv) and proton sponge ($0.616 \mathrm{~g}, 2.2$ equiv). The flask was covered with aluminum foil. After stirring the suspension at $40^{\circ} \mathrm{C}$ overnight, a small probe was taken from the reaction mixture and quenched with $\mathrm{EtOAc} / \mathrm{HCl}_{\mathrm{aq}}$ for TLC (petroleum ether/EtOAc, 1:1), that indicated full conversion. The reaction mixture was cooled, treated with $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$, and acidified with 1 N HCl to $\mathrm{pH} 2-3$. The precipitate was filtered off and the filtrate was separated. The aqueous phase was extracted once with EtOAc and the combined organic extracts were washed with water, and saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was chromatographed (petroleum ether/EtOAc, 5:1 to 2:1) to yield methyl ether $19 \mathrm{k}(0.329 \mathrm{~g}, 81 \%)$ as a colorless oil. R_{f} (petroleum ether/EtOAc, 2:1) 0.58; $[\alpha]^{20}{ }_{\mathrm{D}}=+86.7\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.77(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.82(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.33-7.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar})$, 7.42-7.46 (m, 4H, Ar), 7.58-7.62 (m, 4H, Ar); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.3\left(\mathrm{OCH}_{3}\right)$, $59.2\left(\mathrm{OCH}_{3}\right), 65.7(\mathrm{C}-3), 83.4(\mathrm{C}-2), 127.1\left(\mathrm{C}_{\text {ar }}\right), 127.4\left(\mathrm{C}_{\text {ar }}\right), 127.5\left(\mathrm{C}_{\mathrm{ar}}\right), 128.4\left(\mathrm{C}_{\text {ar }}\right), 128.8\left(\mathrm{C}_{\text {ar }}\right)$, $134.1\left(\mathrm{C}_{\mathrm{ar}}\right), 140.4\left(\mathrm{C}_{\mathrm{ar}}\right), 141.7\left(\mathrm{C}_{\mathrm{ar}}\right), 170.2\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$.

19i

(2S,3S)-Methyl 3-azido-3-(4-carbamoylphenyl)-2-methoxypropanoate (19j). To a suspension of nitrile $19 \mathrm{i}(65 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(30 \mathrm{mg})$ in methanol $(0.53 \mathrm{~mL})$ was added hydrogen peroxide (0.11 mL of 30% solution in water). The reaction mixture was stirred for 2 h at room temperature (TLC control: EtOAc). Then it was diluted with water and extracted twice with EtOAc. The combined organic extracts was washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The residue was subjected to flash chromatography ($\mathrm{EtOAc} /$ petroleum ether, $1: 1$ to $1: 0$) to afford the amide $\mathbf{1 9 j}$ ($36 \mathrm{mg}, 56 \%$) as a colorless oil. A similar yield was obtained in DMF overnight. In contrast, in DMSO the reaction proceeded in several minutes and possibly could deliver higher yield, but in this case the product was not separable from the dimethyl sulfone by-product. R_{f} (EtOAc) 0.4; $[\alpha]^{20}{ }_{\mathrm{D}}=+60.9\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.35(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.99(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.81(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.29$ (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.43 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 7.81 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=52.3\left(\mathrm{OCH}_{3}\right), 59.1\left(\mathrm{OCH}_{3}\right), 65.4(\mathrm{C}-3), 83.1(\mathrm{C}-2), 127.7\left(\mathrm{C}_{\mathrm{ar}}\right), 128.3\left(\mathrm{C}_{\mathrm{ar}}\right), 133.8\left(\mathrm{C}_{\mathrm{ar}}\right)$, 139.1 (C_{ar}), 169.0, 169.9.

Catalytic hydrogenation of the azides 19 to the amino esters 8. Solutions of azides $\mathbf{1 9 b}(\mathrm{Me})$, 19c (OMe), 19d (F), 19h (($\left.\left.\mathrm{CH}_{2}\right)_{2} \mathrm{OTBS}\right), \mathbf{1 9 j}\left(\mathrm{CONH}_{2}\right)$, and $\mathbf{1 9 k}(\mathrm{Ph})(0.1-0.2 \mathrm{~m})$ in methanol were hydrogenated overnight in a round bottom flask connected to a hydrogen filled balloon, using 10% Pd on carbon (catalyst loading: $0.5-1 \mathrm{~mol} \% \mathrm{Pd}$). Azides $\mathbf{1 9 i}(\mathrm{CN})$ and $\mathbf{1 9 g}\left(\mathrm{CH}_{2} \mathrm{OTBS}\right)$ were hydrogenated in shorter times, 4 and 2 h , respectively, to avoid reduction of the CN or benzylic $\mathrm{C}-$ O bond. In each case full conversion of the azides was observed. The solutions were filtered through celite and the filtrate evaporated to afford pure amino esters $\mathbf{8}$ in essentially quantitative yields. The amines $\mathbf{8}$ were used for the subsequent peptide coupling without further purification. When the hydrogenation of azide $19 \mathrm{~g}\left(\mathrm{CH}_{2} \mathrm{OTBS}\right)$ was performed overnight, formation of 20% of the corresponding methyl substituted derivative was observed.

8b
(2S,3S)-Methyl 3-amino-2-methoxy-3-p-tolylpropanoate (8b). A solution of azide $\mathbf{1 9 b}$ (0.197 g , 0.790 mmol) in $\mathrm{MeOH}(7 \mathrm{~mL})$ was hydrogenated at room temperature for 5 h to provide 0.175 g (99%) of amine $\mathbf{8 b}$ as a colorless oil. R_{f} (petroleum ether/EtOAc, 3:7) 0.23 ; $[\alpha]^{20}{ }_{\mathrm{D}}=-4.7$ (c 1.00, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.78\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.31\left(\mathrm{CH}_{3}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.97(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.23(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.11(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.1\left(\mathrm{CH}_{3}\right), 51.7$ $\left(\mathrm{OCH}_{3}\right), 57.4(\mathrm{C}-3), 59.0\left(\mathrm{OCH}_{3}\right), 85.4(\mathrm{C}-2), 126.8\left(\mathrm{C}_{\mathrm{ar}}\right), 129.0\left(\mathrm{C}_{\mathrm{ar}}\right), 133.2\left(\mathrm{C}_{\mathrm{ar}}\right), 138.5\left(\mathrm{C}_{\mathrm{ar}}\right)$, 171.3 (CO); HRMS (ESI): m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}[M+\mathrm{Na}]^{+}: 224.12812$; found: 224.12803.

8c
(2S,3S)-Methyl 3-amino-2-methoxy-3-(4-methoxyphenyl)propanoate (8c). A solution of azide $19 \mathrm{c}(0.100 \mathrm{~g}, 0.377 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was hydrogenated at room temperature for 5 h to provide $0.089 \mathrm{~g}(98 \%)$ of amine 8 c as a slightly yellow oil. R_{f} (petroleum ether/EtOAc, 3:7) 0.15; $[\alpha]^{20}{ }_{\mathrm{D}}=-8.8\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.36(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.93(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.21(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}, 3-\mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=51.7\left(\mathrm{OCH}_{3}\right), 55.2\left(\mathrm{OCH}_{3}\right), 57.1(\mathrm{C}-3), 59.0\left(\mathrm{OCH}_{3}\right), 85.5(\mathrm{C}-2), 113.7\left(\mathrm{C}_{\mathrm{ar}}\right), 128.0\left(\mathrm{C}_{\mathrm{ar}}\right), 133.7$ $\left(\mathrm{C}_{\mathrm{ar}}\right), 158.9\left(\mathrm{C}_{\mathrm{ar}}\right), 171.3(\mathrm{CO})$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4}[M+\mathrm{Na}]^{+}: 262.10498$; found: 262.10496 .

(2S,3S)-Methyl 3-amino-3-(4-fluorophenyl)-2-methoxypropanoate (8d). A solution of azide 19d $(0.239 \mathrm{~g}, 0.944 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was hydrogenated at room temperature for 5 h to provide $0.212 \mathrm{~g}(99 \%)$ of amine $\mathbf{8 d}$ as a colorless oil. R_{f} (petroleum ether/EtOAc, 3:7) $0.24 ;[\alpha]^{20}{ }_{\mathrm{D}}=-5.8(c$ $\left.1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.81\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.64(\mathrm{~s}$,
$3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.94(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.26(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.85-7.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$, $7.24-7.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=51.7\left(\mathrm{OCH}_{3}\right), 57.0(\mathrm{C}-3), 59.0\left(\mathrm{OCH}_{3}\right)$, 85.2 (C-2), 115.2 (d, $J=21.2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{ar}}$), 128.6 (d, $J=8.1 \mathrm{~Hz}, \mathrm{C}_{\text {ar }}$), 137.14 (d, $\left.J=3.7 \mathrm{~Hz}, \mathrm{Car}\right), 162.2$ (d, $J=245.9 \mathrm{~Hz}, \mathrm{C}_{\mathrm{ar}}$), 171.1 (CO); HRMS (ESI): m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{FNO}_{3}[M+\mathrm{Na}]^{+}: 228.10305$; found: 228.10286 .

(2S,3S)-Methyl 3-amino-3-(4-((tert-butyldimethylsilyloxy)methyl)phenyl)-2-methoxypropanoate $(\mathbf{8 g})$. A solution of azide $\mathbf{1 9 g}(74.0 \mathrm{mg}, 0.195 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was hydrogenated at room temperature for 2 h to provide $68 \mathrm{mg}(99 \%)$ of amine $\mathbf{8 g}$ as a colorless oil. Longer reaction times might cause reductive cleavage of the benzylic $\mathrm{C}-\mathrm{O}$ bond. $[\alpha]^{20}{ }_{\mathrm{D}}=-6.0\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.07\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.70\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.37$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.96(\mathrm{~d}, J=5.6,1 \mathrm{H}, 2-\mathrm{H}), 4.25(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 4.70$ (s, 2H, CH2 O), $7.26(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.3\left(\mathrm{SiCH}_{3}\right), 18.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$,
 $\left(\mathrm{C}_{\mathrm{ar}}\right), 131.2\left(\mathrm{C}_{\mathrm{ar}}\right), 140.7\left(\mathrm{C}_{\mathrm{ar}}\right), 171.3\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HMRS (ESI): m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Si}[M+\mathrm{H}]^{+}$: 354.20951; found: 354.20953.

(2S,3S)-Methyl 3-amino-3-(4-(2-(tert-butyldimethylsilyloxy)ethyl)phenyl)-2-methoxypropanoate $\mathbf{(8 h})$. A solution of azide $19 \mathrm{~h}(0.566 \mathrm{~g}, 1.44 \mathrm{mmol})$ in $\mathrm{MeOH}(7 \mathrm{~mL})$ was hydrogenated at room temperature overnight to provide $0.527 \mathrm{~g}(99 \%)$ of amine $\mathbf{8 h}$ as a colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}=-6.4(c$ $1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.03\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.73$ (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), $2.78\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.77(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.95 (d, $\left.J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 4.23(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.14(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.4\left(\mathrm{SiCH}_{3}\right), 18.3$ $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 39.2\left(\mathrm{ArCH}_{2}\right), 51.7\left(\mathrm{OCH}_{3}\right), 57.4(\mathrm{C}-3), 59.0\left(\mathrm{OCH}_{3}\right), 64.4\left(\mathrm{CH}_{2} \mathrm{O}\right)$, $85.4(\mathrm{C}-2), 126.8\left(\mathrm{C}_{\mathrm{ar}}\right), 129.1\left(\mathrm{C}_{\mathrm{ar}}\right), 138.5\left(\mathrm{C}_{\mathrm{ar}}\right), 139.4\left(\mathrm{C}_{\mathrm{ar}}\right), 171.3\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HMRS (ESI): m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{Si}\left[M^{+} \mathrm{H}\right]^{+}: 368.22516$; found: 368.22538.

(2S,3S)-Methyl 3-amino-3-(4-cyanophenyl)-2-methoxypropanoate (8i). A solution of azide 19i $(43.7 \mathrm{mg}, 0.168 \mathrm{mmol})$ in $\mathrm{MeOH}(0.9 \mathrm{~mL})$ was hydrogenated at room temperature for 4 h to provide $33.6 \mathrm{mg}(85 \%)$ of amine $\mathbf{8 i}$ as a colorless oil. $[\alpha]^{20}{ }_{\mathrm{D}}=-13.7\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.85\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.94(\mathrm{~d}, J=$
$5.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.31(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=51.8\left(\mathrm{OCH}_{3}\right), 57.4(\mathrm{C}-3), 59.0\left(\mathrm{OCH}_{3}\right), 84.7(\mathrm{C}-2)$, 111.4, 118.7, $127.9\left(\mathrm{C}_{\mathrm{ar}}\right), 132.0\left(\mathrm{C}_{\mathrm{ar}}\right), 146.8\left(\mathrm{C}_{\mathrm{ar}}\right), 170.6\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HMRS (ESI): m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}[M+\mathrm{H}]^{+}: 235.10772$; found: 235.10763.

(2S,3S)-Methyl 3-amino-3-(4-cyanophenyl)-2-methoxypropanoate (8k). A solution of azide $\mathbf{1 9 k}$ $(0.330 \mathrm{~g}, 1.06 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was hydrogenated at room temperature overnight to provide $0.292 \mathrm{~g}(97 \%)$ of amine $\mathbf{8 k}$ as a colorless oil which solidified on standing. R_{f} (EtOAc) 0.3, $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right) 0.53 ;[\alpha]^{20}=-7.7\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.26$ (bs, $2 \mathrm{H}, \mathrm{NH}_{2}$), $3.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.05(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.34(\mathrm{~d}, J$ $=5.3 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 7.30-7.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.37-7.44(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.53-7.58(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=51.8\left(\mathrm{OCH}_{3}\right), 57.3(\mathrm{C}-3), 59.2\left(\mathrm{OCH}_{3}\right), 85.1(\mathrm{C}-2), 127.0\left(\mathrm{C}_{\mathrm{ar}}\right), 127.1$ $\left(\mathrm{C}_{\mathrm{ar}}\right), 127.2\left(\mathrm{C}_{\mathrm{ar}}\right), 127.5\left(\mathrm{C}_{\mathrm{ar}}\right), 128.7\left(\mathrm{C}_{\mathrm{ar}}\right), 140.1\left(\mathrm{C}_{\mathrm{ar}}\right), 140.5\left(\mathrm{C}_{\mathrm{ar}}\right), 140.7\left(\mathrm{C}_{\mathrm{ar}}\right), 171.1\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$; HMRS (ESI): m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}[M+\mathrm{H}]^{+}: 308.12571$; found: 308.125706.

Tripeptide 20b (Me). To a solution of amine $\mathbf{8 b}$ ($40 \mathrm{mg}, 0.179 \mathrm{mmol}, 1$ equiv) in DMF (4 mL) were added acid $6(70 \mathrm{mg}, 0.179 \mathrm{mmol})$, $\mathrm{HOBt}\left(36 \mathrm{mg}, 0.269 \mathrm{mmol}, 1.5\right.$ equiv), $i \operatorname{Pr}_{2} \mathrm{NEt}$ (0.091 $\mathrm{mL}, 0.537 \mathrm{mmol}, 3$ equiv). At $0{ }^{\circ} \mathrm{C}$ TBTU ($84 \mathrm{mg}, 0.269 \mathrm{mmol}, 1.5$ equiv) was added and the reaction was stirred for $2-3 \mathrm{~h}$ at room temperature. The mixture was diluted with water (4 mL) and extracted with ethyl acetate $(3 \times 8 \mathrm{~mL})$. The combined organic layers were washed with 1 N HCl solution (5 mL), saturated NaHCO_{3} solution $(5 \mathrm{~mL})$, saturated NaCl solution (5 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification of the residue by flash chromatography (petroleum ether/EtOAc, 1:1) gave tripeptide $20 \mathrm{~b}(80 \mathrm{mg}, 75 \%)$ as a white foam. R_{f} (petroleum ether/EtOAc, 1:1) 0.20; $[\alpha]^{20}{ }_{\mathrm{D}}=+12.6\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.90(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ala} \mathrm{CH} 3), 1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.19-3.29$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.31-3.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.07(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHOCH} 3), 4.46-4.55(\mathrm{~m}, 1 \mathrm{H}$, Ala CH), $5.38(\mathrm{dd}, J=8.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}), 5.43(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, Ala NH), $5.54(\mathrm{dd}, J=9.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.90\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 6.98-7.18(\mathrm{~m}$, $7 \mathrm{H}, \beta$-Tyr H_{Ar}, Trp Har, $\beta-\mathrm{Tyr} \mathrm{NH}$), $7.29\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H} \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right.$), 7.57 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp}$ H_{Ar}), $8.33(\mathrm{bs}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.0(\mathrm{Ala} \mathrm{CH} 3), 21.1\left(\mathrm{ArCH}_{3}\right), 23.3$ $\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{C}(\mathrm{CH})_{3}\right), 30.7\left(\mathrm{NCH}_{3}\right), 46.7(\mathrm{AlaCH}), 51.8\left(\mathrm{OCH}_{3}\right), 53.9(\beta-\mathrm{Tyr} \mathrm{CH}), 56.7(\mathrm{Trp} \mathrm{CH})$, $59.1\left(\mathrm{OCH}_{3}\right), 79.5\left(\mathrm{C}(\mathrm{CH})_{3}\right), 82.4\left(\mathrm{CHOCH}_{3}\right), 110.6\left(\mathrm{Trp} \mathrm{C}_{\mathrm{ar}}\right), 111.1\left(\mathrm{Trp} \mathrm{C}_{\mathrm{ar}}\right), 118.4\left(\mathrm{Trp} \mathrm{C}_{\mathrm{ar}}\right)$, $119.4\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 122.0\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 122.2\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 127.2\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 127.3\left(\beta-\mathrm{Tyr} \mathrm{C}_{\mathrm{ar}}\right), 129.1(\beta-\mathrm{Tyr}$ $\left.\mathrm{C}_{\mathrm{ar}}\right), 133.6\left(\beta-\operatorname{Tyr} \mathrm{C}_{\mathrm{ar}}\right), 136.1\left(\mathrm{Trp} \mathrm{C}_{\mathrm{ar}}\right), 137.6\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 155.1(\mathrm{CO}), 169.3(\mathrm{CO}), 170.1(\mathrm{CO}), 174.3$ (CO); HRMS (ESI): m / z : calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{7}[M+\mathrm{Na}]^{+}$: 617.29457; found: 617.29448.

Tripeptide 20c (OMe). To a solution of amine $\mathbf{8 c}(89 \mathrm{mg}, 0.372 \mathrm{mmol}, 1$ equiv) in DMF (7 mL) were added acid $6(145 \mathrm{mg}, 0.372 \mathrm{mmol})$, $\mathrm{HOBt}\left(75 \mathrm{mg}, 0.558 \mathrm{mmol}, 1.5\right.$ equiv), $i \mathrm{Pr}_{2} \mathrm{NEt}(0.091$ $\mathrm{mL}, 0.537 \mathrm{mmol}, 3$ equiv). At $0{ }^{\circ} \mathrm{C}$ TBTU ($174 \mathrm{mg}, 0.558 \mathrm{mmol}, 1.5$ equiv) was added and the reaction was stirred for $2-3 \mathrm{~h}$ at room temperature. The mixture was diluted with water (5 mL) and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with 1 N HCl solution (5 mL), saturated NaHCO_{3} solution (5 mL), saturated NaCl solution (5 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification of the residue by flash chromatography (petroleum ether/EtOAc, 1:1) gave tripeptide 20c ($175 \mathrm{mg}, 77 \%$) as a white foam. R_{f} (petroleum ether/EtOAc, 1:1) $0.32 ;[\alpha]^{20}{ }_{\mathrm{D}}=+17.6\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, Ala $\left.\mathrm{CH}_{3}\right), 1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.23(\mathrm{dd}, J=15.5,9.9 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), 3.27-3.34 (m, 1H, CH2 $), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74\left(\mathrm{OCH}_{3}\right), 4.06(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}$), 4.45-4.56 (m, 1 H, Ala CH), $5.35(\mathrm{dd}, J=8.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}), 5.41$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, Ala NH), 5.53 (dd, $J=9.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.77$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{Tyr}$ H_{ar}), $6.89\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 7.04-7.12\left(\mathrm{~m}, 2 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{NH}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 7.14$ (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{Tyr}$ H_{ar}), $7.12-7.18\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 7.29\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H} \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 7.57\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right)$, 8.26 (bs, $1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}\right): \delta=18.0\left(\mathrm{Ala} \mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{2}\right), 28.3$ $\left(\mathrm{C}(\mathrm{CH})_{3}\right), 30.8\left(\mathrm{NCH}_{3}\right), 46.7(\mathrm{Ala} \mathrm{CH}), 51.8\left(\mathrm{OCH}_{3}\right), 53.7(\beta-\mathrm{Tyr} \mathrm{CH}), 55.1\left(\mathrm{OCH}_{3}\right), 56.7(\mathrm{Trp}$ $\mathrm{CH}), 59.2\left(\mathrm{OCH}_{3}\right), 79.6\left(\mathrm{C}(\mathrm{CH})_{3}\right), 82.4\left(\mathrm{CHOCH}_{3}\right), 110.7(\mathrm{Trp} \mathrm{Car}), 111.1(\mathrm{Trp} \mathrm{Car}), 113.8(\beta-\mathrm{Tyr}$ $\left.\mathrm{C}_{\mathrm{ar}}\right), 118.5\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 119.4\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 122.0\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 122.2\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 127.2\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 128.7(\beta-\operatorname{Tyr}$ C_{ar}), 128.8 (β-Tyr Car), 136.1 (Trp Car), 155.1 (CO), 159.2 (β-Tyr $\mathrm{C}_{\text {ar }}$), 169.3 (CO), 170.1 (CO), 174.3 (CO); HRMS (ESI): m / z : calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{8}[M+\mathrm{Na}]^{+}: 633.28949$; found: 633.28983.

Tripeptide 20d (F). To a solution of amine 8d ($100 \mathrm{mg}, 0.440 \mathrm{mmol}, 1$ equiv) in DMF (8 mL) were added acid 6 ($171 \mathrm{mg}, 0.440 \mathrm{mmol}$), $\mathrm{HOBt}\left(89 \mathrm{mg}, 0.660 \mathrm{mmol}, 1.5\right.$ equiv), $i \operatorname{Pr}_{2} \mathrm{NEt}(0.225$ $\mathrm{mL}, 1.32 \mathrm{mmol}$, 3 equiv). At $0{ }^{\circ} \mathrm{C}$ TBTU ($206 \mathrm{mg}, 0.660 \mathrm{mmol}, 1.5$ equiv) was added and the reaction was stirred for $2-3 \mathrm{~h}$ at room temperature. The mixture was diluted with water (5 mL) and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with 1 NHCl solution (5 mL), saturated NaHCO_{3} solution (5 mL), saturated NaCl solution (5 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification of the residue by flash chromatography
(petroleum ether/EtOAc, 1:1) gave tripeptide 20d ($180 \mathrm{mg}, 68 \%$) as a white foam. R_{f} (petroleum ether/EtOAc, 1:1) $0.26 ;[\alpha]^{20}{ }_{\mathrm{D}}=+15.3\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.93(\mathrm{~d}, J$ $\left.=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ala} \mathrm{CH}_{3}\right), 1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.21(\mathrm{dd}, J=15.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), 3.32-3.40 (m, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.06(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$, CHOCH_{3}), 4.45-4.55 (m, 1H, Ala CH), 5.33-5.41 (m, 2H, $\beta-\mathrm{Tyr} \mathrm{CH}$, Ala NH), 5.52 (dd, $J=9.7$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}$), $6.90\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 6.90-6.97\left(\mathrm{~m}, 2 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{H}_{\mathrm{ar}}\right), 7.07-7.22\left(\mathrm{~m}, \beta-\mathrm{Tyr} \mathrm{H}_{\mathrm{ar}}\right.$, $\operatorname{Trp} \mathrm{H}_{\mathrm{ar}}, \beta$-Tyr NH), 7.31 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H} \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}$), 7.58 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}$), 8.11 (bs, $1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.0\left(\mathrm{Ala} \mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{C}(\mathrm{CH})_{3}\right), 30.8$ $\left(\mathrm{NCH}_{3}\right), 46.7(\mathrm{Ala} \mathrm{CH}), 51.9\left(\mathrm{OCH}_{3}\right), 53.6(\beta-\mathrm{Tyr} \mathrm{CH}), 56.7(\operatorname{Trp} \mathrm{CH}), 59.2\left(\mathrm{OCH}_{3}\right), 79.6$ $\left(C(\mathrm{CH})_{3}\right), 82.2\left(\mathrm{CHOCH}_{3}\right), 110.7\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 111.1\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 115.3(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 118.5\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right)$, $119.5\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 122.1\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 127.2\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 129.4\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, \beta-\operatorname{Tyr} \mathrm{C}_{\mathrm{ar}}\right), 132.7(\mathrm{~d}, J=3.7$ Hz, β-Tyr $\mathrm{C}_{\text {ar }}$), 136.1 (Trp Car), 155.2 (CO), 163.4 (d, $J=264.3 \mathrm{~Hz}, \beta$-Tyr Car), 169.4 (CO), 169.9 (CO), 174.4 (CO); HRMS (ESI): m / z : calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{FN}_{4} \mathrm{O}_{7}[M+\mathrm{Na}]^{+}$: 621.26950; found: 621.26986.

Reduction of azide 19 e and coupling of amine 8 e with acid 6 to tripeptide $20 \mathrm{e}\left(\mathrm{NO}_{2}\right)$. A solution of azide $\mathbf{1 9 e}(89.6 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(92.2 \mathrm{mg}, 0.352 \mathrm{mmol}, 1.1$ equiv) in of THF $(1 \mathrm{~mL})$ was stirred at $40-50{ }^{\circ} \mathrm{C}$ for 1 h for clean and complete conversion to the corresponding iminophosphorane (TLC control: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 10: 1: 0.1, R_{\mathrm{f}} 0.5$ for the iminophosphorane). Selected ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) data for the iminophosphorane: $\delta=7.91(\mathrm{~d}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H})$, $3.13(\mathrm{~s}, 3 \mathrm{H})$. Then water (0.1 mL) was added and the mixture was further stirred at $40-50^{\circ} \mathrm{C}$ for ~ 8 h. Because the R_{f} values of the iminophosphorane, $\mathrm{Ph} h_{3} \mathrm{P}=\mathrm{O}$ and the resulting amine were all the same, the reaction progress was conveniently monitored by analyzing small evaporated probes taken from the reaction mixture by NMR. Selected ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) data for the amine: $\delta=8.15(\mathrm{~d}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H})$. When appropriately clean and high ($\sim 86 \%$) conversion was achieved, the mixture was evaporated to yield 0.166 g of a sticky oil, containing $\sim 36 \% \mathrm{w} / \mathrm{w}$ amine $8 \mathbf{e}$ (assuming the conversion was 80% as the lowest). Then, to a solution of this crude mixture (0.108 mg), containing amine $\mathbf{8 e}$ (approx. $38.9 \mathrm{mg}, 0.153 \mathrm{mmol}, 1.24$ equiv of the amine) in DMF (2.3 mL) were added acid $6(47.7 \mathrm{mg}, 0.123 \mathrm{mmol})$, HOBt ($24.9 \mathrm{mg}, 0.184 \mathrm{mmol}, 1.5$ equiv), $i \operatorname{Pr}_{2} \mathrm{NEt}\left(0.064 \mathrm{~mL}, 0.369 \mathrm{mmol}, 3\right.$ equiv). At $-10{ }^{\circ} \mathrm{C}$ TBTU ($59 \mathrm{mg}, 0.184 \mathrm{mmol}, 1.5$ equiv) was added and the reaction was stirred for $5-6 \mathrm{~h}$ at room temperature. The mixture was diluted with water $(5 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 8 \mathrm{~mL})$. The combined organic layers were washed with $1 \mathrm{~N} \mathrm{NaHSO}_{4}$ solution (5 mL), saturated NaHCO_{3} solution (5 mL), saturated NaCl solution (5 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification of the residue by flash chromatography (petroleum ether/EtOAc, 2:1) gave tripeptide 20e $(58.7 \mathrm{mg}, 76 \%$) as a white foam. R_{f} (petroleum ether/EtOAc, 2:1) 0.48. $[\alpha]^{20}{ }_{\mathrm{D}}=+4.0\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.97\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}\right.$, Ala CH_{3}), $1.40(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 2.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.17$ (dd, $J=15.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.07$ (d, $\left.J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.48-4.54(\mathrm{~m}, 1 \mathrm{H}$, Ala CH$), 5.33(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ala NH), 5.44 $(\mathrm{dd}, J=8.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{CH}), 5.53(\mathrm{dd}, J=8.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.89\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right)$,
7.08 (ddd, $J=7.9,7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), 7.16 (ddd, $J=7.9,7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), 7.21 (d, J $=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{NH}), 7.31\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.57(\mathrm{~d}, J$ $\left.=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 8.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.21(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=17.8(\mathrm{Ala} \mathrm{CH} 3), 23.5\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{C}_{3}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.9\left(\mathrm{NCH}_{3}\right), 46.7(\mathrm{Ala} \mathrm{CH}), 52.1$ $\left(\mathrm{OCH}_{3}\right), 53.8(\beta-\mathrm{Tyr} \mathrm{CH}), 56.8(\mathrm{Trp} \mathrm{CH}), 59.3\left(\mathrm{OCH}_{3}\right), 79.7\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 81.8\left(\mathrm{CHOCH}_{3}\right), 110.5}\right.$ (quat. Trp), 111.2, 118.5, 119.5, 122.2 (2C, Trp), 123.4 (2C, Ar), 127.1 (quat. Trp), 128.7 (2C, Ar), 136.1 (quat. Trp), 144.3 (quat. Ar), 147.5 (quat. Ar), 155.2 (Boc), 169.5, 169.6, 174.5; HMRS (ESI): m / z : calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{9}[M+\mathrm{Na}]^{+}$: 648.26400; found: 648.26502.

Tripeptide $20 \mathrm{~g}\left(\mathbf{C H}_{2} \mathbf{O T B S}\right)$. To a solution of amine $\mathbf{8 g}(52.1 \mathrm{mg}, 0.147 \mathrm{mmol}, 1.2$ equiv) in DMF $(2.3 \mathrm{~mL})$ were added acid $6(47.7 \mathrm{mg}, 0.123 \mathrm{mmol})$, $\mathrm{HOBt}(24.9 \mathrm{mg}, 0.184 \mathrm{mmol}, 1.5$ equiv), $i \operatorname{Pr}_{2} \mathrm{NEt}$ ($0.064 \mathrm{~mL}, 3$ equiv). At $-10^{\circ} \mathrm{C}$ TBTU ($59 \mathrm{mg}, 0.184 \mathrm{mmol}, 1.5$ equiv) was added and the reaction was stirred for $5-6 \mathrm{~h}$ at room temperature. The mixture was diluted with water (5 mL) and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with 1 N NaHSO_{4} solution (5 mL), saturated NaHCO_{3} solution (5 mL), saturated NaCl solution (5 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification of the residue by flash chromatography (petroleum ether/EtOAc, 1:1 to 1:2) gave tripeptide $\mathbf{2 0 g}(78.8 \mathrm{mg}, 88 \%)$ as a white foam. R_{f} (petroleum ether/EtOAc, 1:2) 0.5; $[\alpha]^{20}{ }_{\mathrm{D}}=+11.1\left(c \quad 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.09\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.93\left(\mathrm{~s}, 12 \mathrm{H}, t \mathrm{Bu}\right.$, Ala $\left.\mathrm{CH}_{3}\right), 1.41(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 2.97(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), $3.19\left(\mathrm{dd}, J=15.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.34\left(\mathrm{dd}, J=15.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.37(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.06\left(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.49-4.56(\mathrm{~m}, 1 \mathrm{H}$, Ala CH$), 4.68$ (s, $2 \mathrm{H}, \mathrm{OCH}_{2}$), $5.39(\mathrm{dd}, J=8.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}), 5.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, Ala NH), 5.50 (dd, $J=9.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.82\left(\mathrm{~d}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{NH}), 7.07-$ $7.22\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.29\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.57\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 8.21$ (s, $1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.3\left(\mathrm{SiCH}_{3}\right), 18.1\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $18.4(\mathrm{Ala} \mathrm{CH} 3)$,
 $\mathrm{CH}), 56.7(\operatorname{Trp} \mathrm{CH}), 59.1\left(\mathrm{OCH}_{3}\right), 64.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 79.5\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 82.3\left(\mathrm{CHOCH}_{3}\right), 110.5 \text { (quat. }}\right.$ Trp), 111.1, 118.4, 119.4, 122.0, 122.3, 126.2 (2C, Ar), 127.1 (quat. Trp), 127.5 (2C, Ar), 135.5, 136.1 (quat. Trp), 140.9, 155.1 (Boc), 169.3, 170.0, 174.2; HMRS (ESI): m / z : calcd for $\mathrm{C}_{38} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}[M+\mathrm{Na}]^{+}: 747.37596$; found: 747.37575.

Tripeptide 20h ($\left.\mathbf{C H}_{2} \mathbf{C H}_{2} \mathbf{O T B S}\right)$. To a solution of amine $\mathbf{8 h}(68 \mathrm{mg}, 0.185 \mathrm{mmol}, 1.2$ equiv) in DMF (2.9 mL) were added acid $6(60 \mathrm{mg}, 0.154 \mathrm{mmol})$, HOBt ($31 \mathrm{mg}, 0.231 \mathrm{mmol}, 1.5$ equiv), $i \operatorname{Pr}_{2} \mathrm{NEt}\left(0.081 \mathrm{~mL}, 0.462 \mathrm{mmol}, 3\right.$ equiv). At $-10^{\circ} \mathrm{C}$ TBTU ($74 \mathrm{mg}, 0.231 \mathrm{mmol}, 1.5$ equiv) was added and the reaction was stirred for $5-6 \mathrm{~h}$ at room temperature. The mixture was diluted with water (5 mL) and extracted with ethyl acetate ($3 \times 8 \mathrm{~mL}$). The combined organic layers were washed with $1 \mathrm{~N} \mathrm{NaHSO}_{4}$ solution (5 mL), saturated NaHCO_{3} solution (5 mL), saturated NaCl solution (5 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification of the residue by flash chromatography (petroleum ether/EtOAc, 1:1 to 1:2) gave tripeptide 20h ($97.7 \mathrm{mg}, 86 \%$) as a white foam. R_{f} (petroleum ether/EtOAc, 1:2) 0.55 ; (petroleum ether/EtOAc, 1:1) $0.34 ;[\alpha]^{20}{ }_{\mathrm{D}}=$ $+10.1\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.01\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.86(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu})$, $0.94\left(\mathrm{~s}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right.$, Ala CH 3), $1.41(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 2.76\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.97(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), $3.20\left(\mathrm{dd}, J=15.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), 3.34 (dd, $J=15.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.36 (s, 3 H , OCH_{3}), $3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.79\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.05(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH} 3)$, 4.49-4.56 (m, 1H, Ala CH), $5.37(\mathrm{dd}, J=8.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}), 5.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, Ala NH), $5.49(\mathrm{dd}, J=9.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.82\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr}$ NH), $7.05-7.16\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.28\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 8.31(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.4\left(\mathrm{SiCH}_{3}\right)$, $18.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $18.3(\mathrm{Ala} \mathrm{CH} 33), 23.5\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.8\left(\mathrm{NCH}_{3}\right), 39.2\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 46.7(\mathrm{Ala}$ $\mathrm{CH}), 51.8\left(\mathrm{OCH}_{3}\right), 53.9(\beta-\mathrm{Tyr} \mathrm{CH}), 56.6(\mathrm{Trp} \mathrm{CH}), 59.1\left(\mathrm{OCH}_{3}\right), 64.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 79.5\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $82.3\left(\mathrm{CHOCH}_{3}\right), 110.4$ (quat. Trp), 111.1, 118.4, 119.3, 121.9, 122.3, 127.1 (quat. Trp), 127.4 (2C, Ar), 129.2 (2C, Ar), 134.7, 136.1 (quat. Trp), 138.8, 155.1 (Boc), 169.3, 170.0, 174.2; HMRS (ESI): m / z : calcd for $\mathrm{C}_{39} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 761.39161; found: 761.39196.

Tripeptide 20i(CN). To a solution of amine $\mathbf{8 i}(68 \mathrm{mg}, 0.154 \mathrm{mmol}, 1.2$ equiv) in DMF (2.4 mL) were added acid $6(50.2 \mathrm{mg}, 0.129 \mathrm{mmol})$, $\operatorname{HOBt}\left(26.1 \mathrm{mg}, 0.193 \mathrm{mmol}, 1.5\right.$ equiv), $i \operatorname{Pr}_{2} \mathrm{NEt}(0.068$ $\mathrm{mL}, 0.387 \mathrm{mmol}, 3$ equiv). At $-10{ }^{\circ} \mathrm{C}$ TBTU ($62.1 \mathrm{mg}, 0.193 \mathrm{mmol}, 1.5$ equiv) was added and the reaction was stirred for 5-6 h at room temperature. The mixture was diluted with water (5 mL) and extracted with ethyl acetate ($3 \times 8 \mathrm{~mL}$). The combined organic layers were washed with 1 N NaHSO_{4} solution (5 mL), saturated NaHCO_{3} solution (5 mL), saturated NaCl solution (5 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification of the residue by flash chromatography (petroleum ether/EtOAc, 1:1 to 1:2) gave tripeptide $\mathbf{8 i}(67.1 \mathrm{mg}, 86 \%)$ as a white
foam. $[\alpha]^{20}{ }_{\mathrm{D}}=+4.6\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ala}$ CH_{3}), $1.40(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 2.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.24\left(\mathrm{dd}, J=15.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.37(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.38\left(\mathrm{dd}, J=15.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.05(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$, CHOCH_{3}), 4.47-4.53 (m, 1H, Ala CH), $5.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, Ala NH), 5.39 (dd, $J=8.3,5.1 \mathrm{~Hz}$, $1 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{CH}$), $5.52(\mathrm{dd}, J=9.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.89\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.09(\mathrm{ddd}, J=7.1$, $7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), 7.16 (ddd, $J=7.8,7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), $7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \beta-$ Tyr NH), 7.29 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}$), $7.31\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right.$), $7.51(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, Ar), $7.56\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right.$), $8.22(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=17.8$

 (quat.), 118.4, 118.6 (quat.), 119.5, 122.2 (2C), 127.1 (quat. Trp), 128.5 (2C, Ar), 132.1 (2C, Ar), 136.1 (quat. Trp), 142.3, 155.2 (Boc), 169.6 (2C), 174.5.

Tripeptide $\mathbf{2 0 j} \mathbf{(C O N H} \mathbf{2}$). To a solution of amine $\mathbf{8 j}(40.4 \mathrm{mg}, 0.160 \mathrm{mmol}, 1.6$ equiv) in DMF (2 mL) were added acid $\mathbf{6}(38.9 \mathrm{mg}, 0.100 \mathrm{mmol}, 1$ equiv), HOBt ($20.3 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5$ equiv), $i \operatorname{Pr}_{2} \mathrm{NEt}\left(0.052 \mathrm{~mL}, 0.3 \mathrm{mmol}, 3\right.$ equiv). At $-10^{\circ} \mathrm{C}$ TBTU ($48.2 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.5$ equiv) was added and the reaction was stirred for $5-6 \mathrm{~h}$ at room temperature. The mixture was diluted with water (5 mL) and extracted with ethyl acetate $(3 \times 8 \mathrm{~mL})$. The combined organic layers were washed with $1 \mathrm{~N} \mathrm{NaHSO}_{4}$ solution (5 mL), saturated NaHCO_{3} solution (5 mL), saturated NaCl solution (5 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification of the residue by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 10: 1\right)$ gave tripeptide $\mathbf{2 0 j}$ contaminated with DMF and TMU, repeated chromatography using EtOAc afforded clean product ($46.1 \mathrm{mg}, 74 \%$) as a white foam. $R_{\mathrm{f}}(\mathrm{EtOAc}) 0.25 ;[\alpha]^{20}{ }_{\mathrm{D}}=+5.9\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.01(\mathrm{~d}, J$ $\left.=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ala} \mathrm{CH}_{3}\right), 1.40(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 3.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.12(\mathrm{dd}, J=15.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), $3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.37\left(\mathrm{dd}, J=15.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.05(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}$), $4.51-4.57(\mathrm{~m}, 1 \mathrm{H}$, Ala CH), 5.37 (dd, $J=8.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}), 5.47$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ala} \mathrm{NH}), 5.52(\mathrm{dd}, J=8.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.02\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}_{2}\right), 6.36(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{CONH}_{2}\right), 6.78\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.07\left(\mathrm{ddd}, J=7.1,7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.12-7.16(\mathrm{~m}, 2 \mathrm{H}$, Ar, $\operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), $7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{NH}), 7.28\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.58(\operatorname{app} \mathrm{~d}, J=$ $\left.7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 8.49(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.07\left(\mathrm{Ala} \mathrm{CH}_{3}\right)$,
 CH), $59.2\left(\mathrm{OCH}_{3}\right), 79.7\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 82.0\left(\mathrm{CHOCH}_{3}\right), 110.2 \text { (quat. Trp), 111.3, 118.4, } 119.4 \text { (quat.), }}^{\text {, }}\right.$ $122.0,122.5,127.1$ (quat. Trp), 127.4 (2C, Ar), 127.7 (2C, Ar), 132.9, 136.2 (quat. Trp), 140.9, 155.2 (Boc), 169.3, 169.6, 169.9, 174.4; HMRS (ESI): m / z : calcd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{8}[M+\mathrm{Na}]^{+}$: 646.28473; found: 646.28443.

Tripeptide 20k ($\mathbf{P h}$). To a solution of amine $\mathbf{8 k}$ ($52.0 \mathrm{mg}, 0.182 \mathrm{mmol}, 1.2$ equiv) in DMF (2.9 mL) were added acid $\mathbf{6}\left(59.1 \mathrm{mg}, 0.152 \mathrm{mmol}\right.$), HOBt ($31 \mathrm{mg}, 0.228 \mathrm{mmol}$, 1.5 equiv), $\mathrm{iPr}_{2} \mathrm{NEt}$ ($0.08 \mathrm{~mL}, 0.456 \mathrm{mmol}, 3$ equiv). At $-10^{\circ} \mathrm{C}$ TBTU ($73 \mathrm{mg}, 0.228 \mathrm{mmol}, 1.5$ equiv) was added and the reaction was stirred for $5-6 \mathrm{~h}$ at room temperature. The mixture was diluted with water (5 mL) and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with 1 N NaHSO_{4} solution (5 mL), saturated NaHCO_{3} solution (5 mL), saturated NaCl solution (5 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification of the residue by flash chromatography (petroleum ether/EtOAc, 1:1 to $1: 2$) gave tripeptide $\mathbf{2 0 k}(83.3 \mathrm{mg}, 83 \%)$ as a white foam. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.94\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ala} \mathrm{CH}_{3}\right), 1.42(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 2.97$ (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $3.24\left(\mathrm{dd}, J=15.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.35-3.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.11(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH} 3), 4.50-4.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ala} \mathrm{CH}), 5.44(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}$, Ala NH), 5.47 (dd, $J=8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}$), 5.56 (dd, $J=9.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Trp}$ $\mathrm{CH}), 6.91\left(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right.$), $7.08-7.19\left(\mathrm{~m}, 3 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}, \beta-\operatorname{Tyr} \mathrm{NH}\right), 7.28-7.34(\mathrm{~m}, 4 \mathrm{H})$, 7.42 (t, 2H), 7.48 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 7.54 (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 7.59 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp}$ $\left.\mathrm{H}_{\mathrm{ar}}\right), 8.25(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.0\left(\mathrm{Ala} \mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{2}\right), 28.3$
 $\left(\mathrm{OCH}_{3}\right), 79.6\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 83.1\left(\mathrm{CHOCH}_{3}\right), 110.6 \text { (quat. Trp), 111.1, 118.5, 119.4, 122.0, 122.2, }}^{\text {, }}\right.$ 127.0 (2C, Ar), 127.11 (2C, Ar), 127.16 (quat. Trp), 127.3 (2C, Ar), 127.9 (Ar), 128.7 (2C, Ar), 135.7, 136.1 (quat. Trp), 140.6, 140.7, 155.1 (Boc), 169.4, 170.0, 174.4.

Tripeptide acid 21b (Me). To a stirred solution of tripeptide ester 20b ($57.0 \mathrm{mg}, 0.096 \mathrm{mmol}$) in 1,2-dichloroethane (1.5 mL) was added $\mathrm{Me}_{3} \mathrm{SnOH}(87 \mathrm{mg}, 0.480 \mathrm{mmol})$. After stirring for 5 h at 80 ${ }^{\circ} \mathrm{C}$, TLC showed complete conversion and the reaction mixture was diluted with KHSO_{4} (5% in water, 4 mL). The aqueous layer was extracted with $\mathrm{EtOAc}(2 \times 5 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to afford the crude acid 21b as a colorless foam.

Tripeptide acid 21c (OMe). To a stirred solution of tripeptide ester 20c ($0.135 \mathrm{~g}, 0.221 \mathrm{mmol}$) in 1,2-dichloroethane (3.5 mL) was added $\mathrm{Me}_{3} \mathrm{SnOH}(160 \mathrm{mg}, 0.884 \mathrm{mmol})$. After stirring for 5 h at $80^{\circ} \mathrm{C}$, TLC showed complete conversion and the reaction mixture was diluted with KHSO_{4} (5% in water, 6 mL). The aqueous layer was extracted with EtOAc $(2 \times 10 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to afford the crude acid 21c as a colorless foam.

Tripeptide acid 21d (F). To a stirred solution of tripeptide ester 20d ($0.057 \mathrm{~g}, 0.095 \mathrm{mmol}$) in 1,2dichloroethane (1.5 mL) was added $\mathrm{Me}_{3} \mathrm{SnOH}\left(86 \mathrm{mg}, 0.475 \mathrm{mmol}\right.$). After stirring for 5 h at $80^{\circ} \mathrm{C}$, TLC showed complete conversion and the reaction mixture was diluted with $\mathrm{KHSO}_{4}(5 \%$ in water, $4 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(2 \times 5 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to afford the crude acid 21d as a colorless foam.

Tripeptide acid 21e ($\mathbf{N O}_{\mathbf{2}}$). To a solution of methyl ester $\mathbf{2 0 e}(55.3 \mathrm{mg}, 0.0884 \mathrm{mmol})$ in THF (0.4 mL) were added water (0.6 mL), methanol (0.3 mL) and $\mathrm{NaOH}(7.5 \mathrm{mg}, 0.188 \mathrm{mmol}, 2.1$ equiv). The initial biphasic mixture became homogeneous with progressing saponification. After being stirred for 1 h at room temperature until complete conversion (controlled by TLC), the mixture was diluted with water (5 mL) and ethyl acetate (8 mL). It was carefully acidified with $1 \mathrm{~m} \mathrm{NaHSO}_{4}$ to $\mathrm{pH} \sim 2$ before the layers were separated and the aqueous phase extracted once with ethyl acetate (8
$\mathrm{mL})$. The combined organic layers were washed with water, saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to afford the crude acid 21e as a colorless foam. R_{f} ($\mathrm{EtOAc} / \mathrm{AcOH}, 100: 1$) $0.4 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, Ala CH 3), $1.39(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 2.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.18\left(\mathrm{dd}, J=15.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.28-3.34(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}), $3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.98\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.42-4.49(\mathrm{~m}, 1 \mathrm{H}$, Ala CH$), 5.40$ (dd, $J=7.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}), 5.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ala NH), 5.59 (dd, $J=9.9,7.4 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.88\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.05\left(\operatorname{app} \mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.13(\operatorname{app} \mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), $7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{NH}), 7.28\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.41(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.53\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right.$), $8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.36$ (s, $1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=17.0(\mathrm{Ala} \mathrm{CH} 33), 23.2\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.6\left(\mathrm{NCH}_{3}\right), 46.6$ (Ala CH), $54.0(\beta-\mathrm{Tyr} \mathrm{CH}), 56.7(\mathrm{Trp} \mathrm{CH}), 58.8\left(\mathrm{OCH}_{3}\right), 80.8\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 82.5\left(\mathrm{CHOCH}_{3}\right), 110.2}\right.$ (quat. Trp), 111.2, 118.4, 119.5, 122.1, 122.3, 123.5 (2C, Ar), 127.1 (quat. Trp), 128.4 (2C, Ar), 136.1 (quat. Trp), 145.2 (quat. Ar), 147.4 (quat. Ar), 156.3 (Boc), 169.5, 170.7, 174.8; HMRS (ESI): m / z : calcd for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{9}[M+\mathrm{Na}]^{+}: 634.24835$; found: 634.24819.

Tripeptide acid 21g ($\mathbf{C H}_{\mathbf{2}} \mathbf{O T B S}$). To a solution of methyl ester $\mathbf{2 0 g}(75.5 \mathrm{mg}, 0.104 \mathrm{mmol})$ in THF (0.4 mL) were added water $(0.6 \mathrm{~mL})$, methanol $(0.3 \mathrm{~mL})$ and $\mathrm{NaOH}(8.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.9$ equiv). The initial biphasic mixture became homogeneous with progressing saponification. After being stirred for 2 h at room temperature until complete conversion (controlled by TLC), the mixture was diluted with water (5 mL) and ethyl acetate (8 mL). It was carefully acidified with 1 m NaHSO_{4} to $\mathrm{pH} \sim 2$ before the layers were separated and the aqueous phase extracted once with ethyl acetate (8 mL). The combined organic layers were washed with water, saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to afford the crude acid $\mathbf{2 1 g}$ as a colorless foam. Since the saponification was accompanied by partial cleavage of the silyl ether [R_{f} ($\mathrm{EtOAc} / \mathrm{AcOH}, 100: 1$) 0.23 for deprotected acid] the crude material was purified by flash chromatography ($\mathrm{EtOAc} /$ petroleum ether $/ \mathrm{AcOH}, 100: 50: 0.6$) to provide the acid $\mathbf{2 1 g}$ (61.3 mg , 82%) as a white foam. $R_{\mathrm{f}}(\mathrm{EtOAc} / \mathrm{AcOH}, 100: 1) 0.57 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.09(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.77\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ala} \mathrm{CH}_{3}\right), 0.93(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.41(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 2.92(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 3.20-3.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.03\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.41-4.49$ $(\mathrm{m}, 1 \mathrm{H}$, Ala CH$), 4.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.36-5.40(\mathrm{~m}, 2 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}$, Ala NH), $5.60(\mathrm{dd}, J=9.7,6.6$ $\mathrm{Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.88\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 6.97(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{NH}), 7.07\left(\mathrm{t}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right)$, $7.14\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.22-7.30\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{Ar}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.56\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right)$, $8.24(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.3\left(\mathrm{SiCH}_{3}\right), 16.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 18.4 \text { (Ala }}\right.$ $\left.\mathrm{CH}_{3}\right)$, $22.9\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.5\left(\mathrm{NCH}_{3}\right), 46.9(\mathrm{Ala} \mathrm{CH}), 54.0(\beta$-Tyr CH), $56.6(\mathrm{Trp} \mathrm{CH}), 58.8(\mathrm{OMe}), 64.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 80.6\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 83.3\left(\mathrm{CHOCH}_{3}\right), 110.2, ~ 111.1, ~ 118.4, ~}^{\text {, }}\right.$ 119.3, 121.9, 122.4, 126.2, 127.3 (3C), 136.0, 136.4, 140.9, 156.2 (Boc), 169.2, 171.0, 174.7. HMRS (ESI): m / z : calcd for $\mathrm{C}_{37} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}[M+\mathrm{Na}]^{+}: 733.36031$; found: 733.36067.

Tripeptide acid 21h ($\left.\mathbf{C H}_{2} \mathbf{C H}_{2} \mathbf{O T B S}\right)$. To a solution of methyl ester $\mathbf{2 0 h}(94.7 \mathrm{mg}, 0.128 \mathrm{mmol})$ in THF (0.3 mL) were added water (0.7 mL), methanol (0.5 mL) and $\mathrm{NaOH}(10 \mathrm{mg}, 0.25 \mathrm{mmol}, 2$ equiv). The initial biphasic mixture became homogeneous with progressing saponification. After being stirred for overnight at room temperature until complete conversion (controlled by TLC), the mixture was diluted with water (5 mL) and ethyl acetate (8 mL). It was carefully acidified with 1 m NaHSO_{4} to $\mathrm{pH} \sim 2$ before the layers were separated and the aqueous phase extracted once with ethyl acetate (8 mL). The combined organic layers were washed with water, saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to afford the crude acid $\mathbf{2 1 h}$ as a colorless foam. Since the saponification was accompanied by partial cleavage of the silyl ether [R_{f} (EtOAc/AcOH, 100:1) 0.31 for deprotected acid] the crude material was purified by flash chromatography (EtOAc/petroleum ether/AcOH, 100:50:0.6) to provide the acid 21h (74.2 mg, $80 \%)$ as a white foam; $R_{\mathrm{f}}(\mathrm{EtOAc} / \mathrm{AcOH}, 100: 1) 0.62$. In addition, 13.7 mg of the byproduct were isolated. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.02\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.79(\mathrm{~s}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ala} \mathrm{CH} 3$), $0.86(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.42(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 2.78\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.20-$ $3.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.01(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$, CHOCH_{3}), 4.42-4.49 (m, 1H, Ala CH), 5.30 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, Ala NH), 5.34 (dd, $J=8.9,5.9 \mathrm{~Hz}$, $1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}$), 5.60 (dd, $J=9.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}$), 6.88 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{NH}$), 6.80 (s, $1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), $7.07-7.11\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.56\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 8.10(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=-5.4\left(\mathrm{SiCH}_{3}\right), 17.0\left(\mathrm{Ala} \mathrm{CH}_{3}\right), 18.3\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 23.0\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.4$ $\left(\mathrm{NCH}_{3}\right), 39.2\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 46.9(\mathrm{Ala} \mathrm{CH}), 54.0(\beta-\mathrm{Tyr} \mathrm{CH}), 56.5(\mathrm{Trp} \mathrm{CH}), 58.7(\mathrm{OMe}), 64.4\left(\mathrm{CH}_{2} \mathrm{O}\right)$,
 Ar), 127.25 (quat. Trp), 129.3 (2C, Ar), 135.7, 136.1 (quat. Trp), 138.7, 156.4 (Boc), 169.2, 171.0, 174.6; HMRS (ESI): m / z : calcd for $\mathrm{C}_{38} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}[M+\mathrm{Na}]^{+}: 747.37596$; found: 747.37579.

Tripeptide acid 21i (CN). To a solution of methyl ester $20 \mathbf{i}(63.8 \mathrm{mg}, 0.105 \mathrm{mmol})$ in THF (0.3 mL) were added water $(0.4 \mathrm{~mL})$, methanol $(0.3 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(29 \mathrm{mg}, 0.21 \mathrm{mmol}, 2$ equiv). The initial biphasic mixture became homogeneous with progressing saponification. After being stirred overnight at room temperature until complete conversion (controlled by TLC), the mixture was diluted with water (5 mL) and ethyl acetate (8 mL). It was carefully acidified with $1 \mathrm{~m} \mathrm{NaHSO}_{4}$ to $\mathrm{pH} \sim 2$ before the layers were separated and the aqueous phase extracted once with ethyl acetate (8
$\mathrm{mL})$. The combined organic layers were washed with water, saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to afford the crude acid $\mathbf{2 1 i}$ as a colorless foam. R_{f} $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH}, 10: 1: 0.1\right) 0.4 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, Ala CH_{3}), 1.39 ($\mathrm{s}, 9 \mathrm{H}, t$ - Bu), $2.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.17\left(\mathrm{dd}, J=15.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.28-3.33$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.96\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.42-4.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ala} \mathrm{CH})$, 5.36 (app t, 1H, β-Tyr CH), 5.43 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ala} \mathrm{NH}$), 5.58 (app t, 1H, Trp CH), 6.89 (s, $1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), $7.06\left(\operatorname{app} \mathrm{t}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.12-7.17\left(\mathrm{~m}, 2 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{NH}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.291(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), $7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), $8.34(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=17.0\left(\mathrm{Ala} \mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{2}\right), 28.3$

 122.1, 122.3, 127.1 (quat. Trp), 128.2 (2C, Ar), 132.2 (2C, Ar), 136.1 (quat. Trp), 143.3, 156.3 (Boc), 169.5, 170.8, 174.7; HMRS (ESI): m / z : calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{7}[M+\mathrm{Na}]^{+}$: 614.25852; found: 614.25821 .

Tripeptide acid 21k ($\mathbf{P h}$). To a solution of methyl ester 20k ($83.3 \mathrm{mg}, 0.127 \mathrm{mmol}$) in THF (0.4 mL) were added water (0.6 mL), methanol (0.3 mL) and $\mathrm{NaOH}(10 \mathrm{mg}, 0.25 \mathrm{mmol}, 2$ equiv). The initial biphasic mixture became homogeneous with progressing saponification. After being stirred for 2 h at room temperature until complete conversion (controlled by TLC), the mixture was diluted with water (5 mL) and ethyl acetate (8 mL). It was carefully acidified with $1 \mathrm{~m} \mathrm{NaHSO}_{4}$ to $\mathrm{pH} \sim 2$ before the layers were separated and the aqueous phase extracted once with ethyl acetate (8 mL). The combined organic layers were washed with water, saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to afford the crude acid 21 k as a colorless foam. R_{f} ($\mathrm{EtOAc} / \mathrm{AcOH}, 100: 1$) $0.5 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.76(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, Ala CH 3), $1.41(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 2.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.21-3.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.09(\mathrm{~d}, J=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}$), 4.42-4.49 (m, 1H, Ala CH), $5.42-5.47$ (m, $2 \mathrm{H}, \beta$-Tyr CH, Ala NH), 5.63 (dd, $J=9.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.90\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.06-7.15\left(\mathrm{~m}, 3 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}, \beta-\mathrm{Tyr} \mathrm{NH}\right)$, 7.26-7.42 (m, 6H), 7.48-7.57 (m, 5H), $8.25(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp~NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $17.0\left(\mathrm{Ala} \mathrm{CH} 3\right.$), $23.0\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 30.5\left(\mathrm{NCH}_{3}\right), 46.9(\mathrm{Ala} \mathrm{CH}), 54.0(\beta \text {-Tyr CH}), 56.6}\right.$
 122.0, 122.3, 127.0 (2C, Ar), 127.22 (2C, Ar), 127.26 (quat. Trp), 127.31 (Ar), 127.8 (2C, Ar), 128.7 (2C, Ar), 136.1 (quat. Trp), 136.9, 140.6, 140.7, 156.4 (Boc), 169.34, 171.0, 174.7;

Depsipeptide 22b (Me). The crude acid 21b, resulting from the hydrolysis of ester 20b (57 mg , $0.096 \mathrm{mmol})$, and alcohol $7(23 \mathrm{mg}, 0.146 \mathrm{mmol})$ were dissolved in THF (6 mL) and $\mathrm{Ph}_{3} \mathrm{P}(75 \mathrm{mg}$, $0.288 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. This was followed by the dropwise addition of DEAD $(0.131 \mathrm{~mL}$, $0.288 \mathrm{mmol}, 40 \%$ in toluene). The cooling bath was removed and the mixture stirred overnight at room temperature. The reaction mixture was concentrated in vacuo and the residue purified by flash chromatography (petroleum ether/EtOAc, 2:1) to give ester 22b ($46 \mathrm{mg}, 67 \%$ over two steps) as a colorless foam. R_{f} (petroleum ether/EtOAc, 2:1) $0.23 ;[\alpha]^{20}{ }_{\mathrm{D}}=+3.3\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.78\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 3 H, Ala CH_{3}), $1.02\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.57$ (s, $3 \mathrm{H}, 4-\mathrm{CH}_{3}$), 1.93 (dd, $J=13.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.34(\mathrm{dd}, J=13.6,6.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.40-2.50 (m, 2H, 2-H, 6-H), $2.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.20-3.28\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}_{2}\right), 3.34$ (dd, $J=15.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}_{2}$), $3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.06\left(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.48-$ 4.60 (m, 2H, Ala CH, 7-H), 4.86 (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.37$ (dd, $J=8.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH})$, $5.44\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Ala NH), $5.52(\mathrm{dd}, J=10.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.91\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right)$, $7.04\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{H}_{\mathrm{Ar}}\right), 7.06-7.12\left(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}, \beta-\mathrm{Tyr} \mathrm{NH}\right), 7.12-7.19(\mathrm{~m}, 3 \mathrm{H}, \operatorname{Trp}$ $\mathrm{H}_{\mathrm{Ar}}, \beta-\mathrm{Tyr} \mathrm{H}_{\mathrm{Ar}}$), $7.29\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.58\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 8.03(\mathrm{~s}, 1 \mathrm{H}$, $\operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.4\left(4-\mathrm{CH}_{3}\right), 16.6\left(2-\mathrm{CH}_{3}\right), 17.1\left(6-\mathrm{CH}_{3}\right), 17.6(7-$ $\left.\mathrm{CH}_{3}\right), 18.1\left(\mathrm{Ala} \mathrm{CH}_{3}\right), 21.1\left(\mathrm{ArCH}_{3}\right), 23.4(\operatorname{Trp~CH} 2), 28.1\left(\mathrm{C}(\mathrm{CH})_{3}\right), 28.3\left(\mathrm{C}(\mathrm{CH})_{3}\right), 30.8\left(\mathrm{NCH}_{3}\right)$, $37.6(\mathrm{C}-6), 38.6(\mathrm{C}-2), 43.4\left(\mathrm{CH}_{2}\right), 46.7(\mathrm{Ala} \mathrm{CH}), 54.0(\beta-\mathrm{Tyr} \mathrm{CH}), 56.7(\mathrm{Trp} \mathrm{CH}), 59.1\left(\mathrm{OCH}_{3}\right)$, $75.9(\mathrm{C}-7), 79.5\left(\mathrm{C}(\mathrm{CH})_{3}\right), 79.9\left(\mathrm{C}(\mathrm{CH})_{3}\right), 82.1\left(\mathrm{CHOCH}_{3}\right), 110.9\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 111.1\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 118.5$ $\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 119.5\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 122.1(\mathrm{Trp} \mathrm{Carar}), 127.3\left(\mathrm{Trp} \mathrm{Carar}\right.$), $127.9\left(\beta-\mathrm{Tyr} \mathrm{C}_{\mathrm{ar}}\right), 127.9(\mathrm{C}-5), 129.0(\beta-$ Tyr Car $)$, 133.7 (C-4, β-Tyr Car), 136.1 (Trp Car), 137.6 (β-Tyr Car), 155.1 (CO), 169.3 (CO), 174.3 (CO), 175.8 (CO); HRMS (ESI): m/z: calcd for $\mathrm{C}_{46} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{9}[M+\mathrm{Na}]^{+}$: 841.47220; found: 841.47301.

Depsipeptide 22c (OMe). The crude acid 21c, resulting from the hydrolysis of ester 20c (135 mg , $0.221 \mathrm{mmol})$ and alcohol $7(52 \mathrm{mg}, 0.336 \mathrm{mmol})$ were dissolved in THF $(12 \mathrm{~mL})$ and $\mathrm{Ph}_{3} \mathrm{P}(174$ $\mathrm{mg}, 0.663 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. This was followed by the dropwise addition of DEAD (0.302 $\mathrm{mL}, 0.663 \mathrm{mmol}, 40 \%$ in toluene). The cooling bath was removed and the mixture stirred overnight
at room temperature. The reaction mixture was concentrated in vacuo and the residue purified by flash chromatography (petroleum ether/EtOAc, 2:1) to give ester 22c ($99 \mathrm{mg}, 61 \%$ over two steps) as a colorless foam. R_{f} (petroleum ether/EtOAc, 3:2) 0.19; $[\alpha]^{20}{ }_{\mathrm{D}}=+14.8\left(c \quad 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ MR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.79\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 0.88\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right), 0.91(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, Ala $\left.\mathrm{CH}_{3}\right), 1.01\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.41(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 1.93\left(\mathrm{dd}, J=13.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.34(\mathrm{dd}, J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), 2.40-2.51 (m, 2H, 2-H, 6-H), 2.95 (s, 3H, NCH $)_{3}$, 3.23 (dd, $J=15.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}_{2}$), $3.34\left(\mathrm{dd}, J=16.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}_{2}\right), 3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.05(\mathrm{~d}, J=4.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.47-4.54(\mathrm{~m}, 1 \mathrm{H}$, Ala CH$), 4.53-4.61(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 4.86(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-$ H), 5.35 (dd, $J=8.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{CH}), 5.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, Ala NH), 5.52 (dd, $J=9.7$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.75\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{H}_{\mathrm{ar}}\right), 6.89\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 7.03-7.08(\mathrm{~m}, 1 \mathrm{H}$, $\beta-\operatorname{Tyr} \mathrm{NH}), 7.07-7.11\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{Har}_{\mathrm{ar}}\right), 7.15\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \beta-$ Tyr H_{ar}), $7.29\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right.$), $7.57\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 8.19(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.4\left(4-\mathrm{CH}_{3}\right), 16.6\left(2-\mathrm{CH}_{3}\right), 17.1\left(6-\mathrm{CH}_{3}\right), 17.6\left(7-\mathrm{CH}_{3}\right), 18.1$ ($\mathrm{Ala} \mathrm{CH}_{3}$), $23.4\left(\operatorname{Trp} \mathrm{CH}_{2}\right), 28.0\left(\mathrm{C}(\mathrm{CH})_{3}\right), 28.3\left(\mathrm{C}(\mathrm{CH})_{3}\right), 30.8\left(\mathrm{NCH}_{3}\right), 37.6(\mathrm{C}-6), 38.6(\mathrm{C}-2)$, $43.4\left(\mathrm{CH}_{2}\right), 46.7(\mathrm{Ala} \mathrm{CH}), 53.7(\beta-\mathrm{Tyr} \mathrm{CH}), 55.2\left(\mathrm{OCH}_{3}\right), 56.7(\mathrm{Trp} \mathrm{CH}), 59.2\left(\mathrm{OCH}_{3}\right), 75.8(\mathrm{C}-7)$, $79.5\left(\mathrm{C}(\mathrm{CH})_{3}\right), 79.8\left(\mathrm{C}(\mathrm{CH})_{3}\right), 82.0\left(\mathrm{CHOCH}_{3}\right), 110.7(\operatorname{Trp~Car}), 111.1(\operatorname{Trp~Car}), 113.7\left(\beta-\mathrm{Tyr} \mathrm{C}_{\mathrm{ar}}\right)$, $118.5\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 119.4\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 122.0\left(\operatorname{Trp~C}_{\mathrm{ar}}\right), 122.1\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 127.2\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 127.9(\mathrm{C}-5), 128.9$ $\left(\beta-\operatorname{Tyr} \mathrm{C}_{\mathrm{ar}}\right), 129.2$ (β-Tyr C_{ar}), 133.7 (C-4), 136.1 (Trp Car), 155.1 (CO), 159.2 ($\beta-\mathrm{Tyr}_{\mathrm{Car}}$), 169.2 (CO), 169.2 (CO), 174.3 (CO), 175.8 (CO); HRMS (ESI): m / z : calcd for $\mathrm{C}_{46} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{10}[M+\mathrm{Na}]^{+}$: 857.46712; found: 857.46651.

Depsipeptide 22d (F). The crude acid 21d, resulting from the hydrolysis of ester 20d ($57 \mathrm{mg}, 0.095$ $\mathrm{mmol})$ and alcohol $7(22 \mathrm{mg}, 0.144 \mathrm{mmol})$ were dissolved in THF (6 mL) and $\mathrm{Ph}_{3} \mathrm{P}(75 \mathrm{mg}, 0.285$ $\mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. This was followed by the dropwise addition of DEAD ($0.130 \mathrm{~mL}, 0.285$ $\mathrm{mmol}, 40 \%$ in toluene). The cooling bath was removed and the mixture stirred overnight at room temperature. The reaction mixture was concentrated in vacuo and the residue purified by flash chromatography (petroleum ether/EtOAc, 2:1) to give ester 22d ($44 \mathrm{mg}, 64 \%$ over two steps) as a colorless foam. R_{f} (petroleum ether/EtOAc, 2:1) $0.29 ;[\alpha]^{20}{ }_{\mathrm{D}}=+10.5\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.78\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 0.88\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right), 0.93(\mathrm{~d}, J$ $\left.=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ala} \mathrm{CH}_{3}\right), 1.02\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.41(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 1.93\left(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.34(\mathrm{dd}, J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), 2.39-2.50 (m, 2H, 2-H, 6-H), $2.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.22\left(\mathrm{dd}, J=15.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}_{2}\right)$, $3.30-3.39\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}_{2}\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.05\left(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.45-4.60(\mathrm{~m}$, 2 H , Ala CH, $7-\mathrm{H}$), $4.85(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 5.34-5.41$ (m, 2H, $\beta-\mathrm{Tyr} \mathrm{CH}, \mathrm{Ala} \mathrm{NH}$), 5.52 (dd, J $=9.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.87-6.94\left(\mathrm{~s}, 3 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}, \beta-\operatorname{Tyr} \mathrm{H}_{\mathrm{ar}}\right), 7.05-7.13\left(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}, \beta-\mathrm{Tyr}\right.$ NH), $7.16\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 7.21-7.29\left(\mathrm{~m}, 2 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{H}_{\mathrm{ar}}\right), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp}$
 $\left(4-\mathrm{CH}_{3}\right), 16.6\left(2-\mathrm{CH}_{3}\right), 17.1\left(6-\mathrm{CH}_{3}\right), 17.6\left(7-\mathrm{CH}_{3}\right), 18.0(\mathrm{Ala} \mathrm{CH} 3), 23.4\left(\operatorname{Trp} \mathrm{CH}_{2}\right), 28.0$
$\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.8\left(\mathrm{NCH}_{3}\right), 37.6(\mathrm{C}-6), 38.6(\mathrm{C}-2), 43.4\left(\mathrm{CH}_{2}\right), 46.7$ (Ala CH$), 53.6$ $(\beta-\mathrm{Tyr} \mathrm{CH}), 56.7(\operatorname{Trp} \mathrm{CH}), 59.2\left(\mathrm{OCH}_{3}\right), 76.0(\mathrm{C}-7), 79.6\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 79.9\left(\mathrm{C}_{3}\left(\mathrm{CH}_{3}\right)_{3}\right), 81.8}\right.$ $\left(\mathrm{CHOCH}_{3}\right), 110.8\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 111.1\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 115.1\left(\mathrm{~d}, J=22.0 \mathrm{~Hz}, \beta-\mathrm{Tyr}_{\mathrm{ar}}\right), 118.5\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right)$, $119.5\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 122.1\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 122.1\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 127.2\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 127.8(\mathrm{C}-5), 129.9(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, β-Tyr Car), 132.7 (d, $J=3.7 \mathrm{~Hz}, \beta-$ Tyr Car 2), 133.8 (C-4), 136.1 (Trp Car), 155.2 (CO), 162.4 (d, $J=$ $146.6 \mathrm{~Hz}, \beta-\mathrm{Tyr} \mathrm{Car}), 169.1$ (CO), 169.3 (CO), 174.4 (CO), 175.8 (CO); HRMS (ESI): m/z: calcd for $\mathrm{C}_{45} \mathrm{H}_{63} \mathrm{FN}_{4} \mathrm{O}_{9}[M+\mathrm{Na}]^{+}: 845.44713$; found: 845.44760.

Depsipeptide 22e ($\mathbf{N O}_{\mathbf{2}}$). The crude acid 21e ($52 \mathrm{mg}, 0.0851 \mathrm{mmol}$) and alcohol $7(32.8 \mathrm{mg}, 0.128$ $\mathrm{mmol}, 1.5$ equiv) were dissolved in THF (1 mL) and $\mathrm{Ph}_{3} \mathrm{P}(40 \mathrm{mg}, 0.152 \mathrm{mmol}, 1.8$ equiv) was added at $0{ }^{\circ} \mathrm{C}$. This was followed by the dropwise addition of DIAD $(0.030 \mathrm{~mL}, 0.152 \mathrm{mmol}, 1.8$ equiv). The cooling bath was removed and the mixture stirred overnight at room temperature. The reaction mixture was concentrated in vacuo and the residue purified by flash chromatography (petroleum ether/EtOAc, $2: 1$ to $1: 1$) to give ester 22e ($62 \mathrm{mg}, 86 \%$) as a colorless foam. R_{f} (petroleum ether/EtOAc, 1:1) 0.30; $[\alpha]^{20}{ }_{\mathrm{D}}=-4.0\left(c \quad 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=0.77\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.91\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.96\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right.$, Ala CH ${ }_{3}$), $1.01\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.41(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.92(\mathrm{dd}, J=$ $13.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.33 (dd, $J=13.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.40-2.51(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}), 2.97(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), 3.17 (dd, $J=15.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.37\left(\mathrm{dd}, J=15.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.40(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.06\left(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.46-4.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ala} \mathrm{CH}, \mathrm{CO}_{2} \mathrm{CH}\right), 4.84(\mathrm{~d}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ala NH), $5.43(\mathrm{dd}, J=8.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}), 5.52$ $(\mathrm{dd}, J=9.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.88\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.07(\mathrm{ddd}, J=7.8,7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp}$ H_{Ar}), $7.15\left(\mathrm{ddd}, J=8.1,7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right.$), $7.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{NH}), 7.30(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), $7.39(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.56\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right.$), $8.04(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.25(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.4,16.6,17.1,17.6$,
 $\mathrm{CH})$, $53.8(\beta-\mathrm{Tyr} \mathrm{CH}), 56.8(\operatorname{Trp} \mathrm{CH}), 59.3\left(\mathrm{OCH}_{3}\right), 76.4\left(\mathrm{CO}_{2} \mathrm{CH}\right), 79.6\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 79.9$
 127.1 (quat. Trp), 127.5 ($=\mathrm{CH}$), 129.1 ($2 \mathrm{C}, \mathrm{Ar)} ,134.0(=\mathrm{C}<$), 136.1 (quat. Trp), 144.3, 147.4, 155.2 (Boc), 168.6, 169.5, 174.5, 175.7; HMRS (ESI): m / z : calcd for $\mathrm{C}_{45} \mathrm{H}_{63} \mathrm{~N}_{5} \mathrm{O}_{11}[M+\mathrm{Na}]^{+}: 872.44163$; found: 872.44212.

Depsipeptide 22g ($\mathbf{C H}_{\mathbf{2}} \mathbf{O T B S}$). The crude acid $\mathbf{2 1 g}(60.2 \mathrm{mg}, 0.0847 \mathrm{mmol})$ and alcohol 7 (37.7 $\mathrm{mg}, 0.147 \mathrm{mmol}, 1.7$ equiv) were dissolved in THF (1 mL) and $\mathrm{Ph}_{3} \mathrm{P}(40 \mathrm{mg}, 0.152 \mathrm{mmol}, 1.8$ equiv) was added at $0^{\circ} \mathrm{C}$. This was followed by the dropwise addition of DEAD (0.070 mL of 40% in toluene, 1.8 equiv). The cooling bath was removed and the mixture stirred overnight at room temperature. The reaction mixture was concentrated in vacuo and the residue purified by flash chromatography (petroleum ether/acetone, $3: 1$ to $2: 1$) to give ester $\mathbf{2 2 g}$ (64.5 mg , contaminated with diethyl hydrazodicarboxylate (9% mass) byproduct $=58.7 \mathrm{mg}, 73 \%$) as a white foam. $[\alpha]^{20}{ }_{\mathrm{D}}=+3.4$ (c $\left.1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.08\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.77(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.86\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{BuSi}), 0.96\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ala} \mathrm{CH}_{3}\right), 1.01$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.40(\mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}), 1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.92$ (dd, $J=13.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), 2.33 (dd, $J=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.40-2.50(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}), 2.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.17(\mathrm{dd}$, $J=15.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.34\left(\mathrm{dd}, J=15.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.05(\mathrm{~d}, J=$ $\left.4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.49-4.58\left(\mathrm{~m}, 2 \mathrm{H}\right.$, Ala CH, $\left.\mathrm{CO}_{2} \mathrm{CH}\right), 4.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.85(\mathrm{~d}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.38(\mathrm{dd}, J=8.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}), 5.44-5.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ala} \mathrm{NH}, \operatorname{Trp} \mathrm{CH}), 6.77$ $\left(\mathrm{s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}, \beta-\operatorname{Tyr} \mathrm{NH}), 7.09\left(\mathrm{ddd}, J=7.8,7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right)$, $7.13-7.23\left(\mathrm{~m}, 5 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}, \operatorname{Ar}\right), 7.28\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp}$ H_{Ar}), $8.16(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-5.30,-5.28,16.4,16.6,17.1,17.6$, 18.2, 18.4, $23.6\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.0\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 28.3\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),} 30.8\left(\mathrm{NCH}_{3}\right), 37.6,38.6 \text {, }\right.}\right.$ $43.4\left(\mathrm{CH}_{2}\right), 46.7(\mathrm{Ala} \mathrm{CH}), 53.9(\beta-\mathrm{Tyr} \mathrm{CH}), 56.7(\operatorname{Trp} \mathrm{CH}), 59.1\left(\mathrm{OCH}_{3}\right), 64.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 75.9$ $\left(\mathrm{CO}_{2} \mathrm{CH}\right), 79.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $79.8\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 81.9\left(\mathrm{CHOCH}_{3}\right), 110.4 \text { (quat. Trp), 111.1, 118.4, 119.4, }}^{\text {, }}\right.$ $122.0,122.3,126.2,127.1,127.91,127.97,133.7(=C<$), 135.6, 136.0 (quat. Trp), 140.9, 155.1 (Boc), 169.1, 169.3, 174.1, 175.8; HMRS (ESI): m / z : calcd for $\mathrm{C}_{52} \mathrm{H}_{80} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Si}[M+\mathrm{Na}]^{+}$: 971.55359; found: 971.55362.

Depsipeptide 22h ($\mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{O T B S}$). The crude acid 21h ($59.0 \mathrm{mg}, 0.0814 \mathrm{mmol}$) and alcohol 7 ($31.4 \mathrm{mg}, 0.123 \mathrm{mmol}, 1.5$ equiv) were dissolved in THF (1 mL) and $\mathrm{Ph}_{3} \mathrm{P}(42.7 \mathrm{mg}, 0.163 \mathrm{mmol}, 2$ equiv) was added at $0{ }^{\circ} \mathrm{C}$. This was followed by the dropwise addition of DEAD (0.075 mL of 40% in toluene, $0.164 \mathrm{mmol}, 2$ equiv). The cooling bath was removed and the mixture stirred overnight at room temperature. The reaction mixture was concentrated in vacuo and the residue purified by
flash chromatography (petroleum ether/EtOAc, 1:2) to give ester 22h ($51.8 \mathrm{mg}, 66 \%$) as a colorless foam. In this case separation from the diethyl hydrazodicarboxylate byproduct is difficult and requires separation at high R_{f} 's. $[\alpha]^{20}{ }_{\mathrm{D}}=+1.0\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $0.01\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.77\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.87\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{BuSi}\right), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 3 H , Ala CH 3), $1.01\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.41(\mathrm{~s}, 18 \mathrm{H}, t \mathrm{Bu}), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.92(\mathrm{dd}, J=$ $13.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.33\left(\mathrm{dd}, J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.40-2.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}+\mathrm{CH}), 2.75(\mathrm{t}, J$ $\left.=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 2.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.17\left(\mathrm{dd}, J=15.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.34(\mathrm{dd}, J=15.3$, $\left.6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.03(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$, CHOCH_{3}), 4.50-4.59 (m, 2H, Ala CH, $\mathrm{CO}_{2} \mathrm{CH}$), $4.85(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.36$ (dd, $J=8.7$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}), 5.44-5.48(\mathrm{~m}, 2 \mathrm{H}$, Ala NH, $\operatorname{Trp} \mathrm{CH}), 6.79\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.7 \mathrm{~Hz}, \beta-\mathrm{Tyr} \mathrm{NH}), 7.05-7.16\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.27\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right.$), $7.57(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), $8.15(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.36,-5.33,16.4$, 16.6, 17.1, 17.6, 18.2, 18.3, $23.6\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.8$ $\left(\mathrm{NCH}_{3}\right), 37.6,38.6,39.2\left(\mathrm{ArCH}_{2}\right), 43.4\left(\mathrm{CH}_{2}\right), 46.7(\mathrm{Ala} \mathrm{CH}), 53.9(\beta-\mathrm{Tyr} \mathrm{CH})$, $56.7(\mathrm{Trp} \mathrm{CH})$, $59.1\left(\mathrm{OCH}_{3}\right), 64.5\left(\mathrm{CH}_{2} \mathrm{O}\right), 75.8\left(\mathrm{CO}_{2} \mathrm{CH}\right), 79.5\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 79.8\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 82.0\left(\mathrm{CHOCH}_{3}\right), 110.3}\right.$ (quat. Trp), 111.1, 118.4, 119.3, 121.9, 122.3, 127.1 (quat. Trp), 127.9 (3C, $\mathrm{Ar},=\mathrm{CH}$), 129.0 (2C, Ar), 133.7 (=C<), 134.7, 136.1 (quat. Trp), 138.6, 155.1 (Boc), 169.1, 169.2, 174.1, 175.8; HMRS (ESI): m / z : calcd for $\mathrm{C}_{53} \mathrm{H}_{82} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Si}[M+\mathrm{Na}]^{+}$: 985.56924; found: 985.56858.

Depsipeptide 22i (CN). The crude acid 21i ($54.9 \mathrm{mg}, 0.0927 \mathrm{mmol}$) and alcohol $7(35.7 \mathrm{mg}, 0.139$ $\mathrm{mmol}, 1.5$ equiv) were dissolved in THF (0.93 mL) and $\mathrm{Ph}_{3} \mathrm{P}(41.3 \mathrm{mg}, 0.158 \mathrm{mmol}, 1.7$ equiv) was added at $0{ }^{\circ} \mathrm{C}$. This was followed by the dropwise addition of DIAD $(0.031 \mathrm{~mL}, 0.158 \mathrm{mmol}, 1.7$ equiv). The cooling bath was removed and the mixture stirred overnight at room temperature. The reaction mixture was concentrated in vacuo and the residue purified by flash chromatography (petroleum ether/EtOAc, 1:1 to $1: 2$) to give ester $\mathbf{2 2 i}(60.1 \mathrm{mg}, 78 \%)$ as a colorless foam. R_{f} (petroleum ether/EtOAc, 1:2) 0.58; $[\alpha]^{20}{ }_{\mathrm{D}}=-5.0\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=0.77\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ala} \mathrm{CH} 3)$, $1.02\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.41(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.93(\mathrm{dd}, J=$ $13.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.33 (dd, $J=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.40-2.50(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}), 2.97(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 3.19\left(\mathrm{dd}, J=15.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.37\left(\mathrm{dd}, J=15.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.40(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 4.03\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.47-4.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ala} \mathrm{CH}, \mathrm{CO}_{2} \mathrm{CH}\right), 4.85(\mathrm{~d}, J=9.4$ $\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, Ala NH), $5.39(\mathrm{dd}, J=8.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}), 5.51$ (dd, $J=8.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.90\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.09(\mathrm{ddd}, J=7.8,7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp}$ H_{Ar}), 7.15-7.20 (m, 2H, $\left.\operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}, \mathrm{NH}\right), 7.32\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, Ar), $7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.57\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 8.05(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=16.4,16.7,17.1,17.6,18.0,23.5\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $30.9\left(\mathrm{NCH}_{3}\right), 37.5,38.6,43.4\left(\mathrm{CH}_{2}\right), 46.7(\mathrm{Ala} \mathrm{CH}), 54.0(\beta-\mathrm{Tyr} \mathrm{CH}), 56.8(\mathrm{Trp} \mathrm{CH}), 59.3\left(\mathrm{OCH}_{3}\right)$, $76.4\left(\mathrm{CO}_{2} \mathrm{CH}\right), 79.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 79.9\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 81.5\left(\mathrm{CHOCH}_{3}\right), 110.7$ (quat. Trp), 111.1, 111.8, $118.5,118.6,119.6,122.1,122.2,127.1$ (quat. Trp), $127.6(=\mathrm{CH}), 129.0,132.0,134.0(=\mathrm{C}<), 136.1$
(quat. Trp), 142.3, 155.2 (Boc), 168.7, 169.5, 174.5, 175.7; HMRS (ESI): m / z : calcd for $\mathrm{C}_{46} \mathrm{H}_{63} \mathrm{~N}_{5} \mathrm{O}_{9}[M+\mathrm{Na}]^{+}: 852.45180$; found: 852.45123.

Depsipeptide 22k ($\mathbf{P h}$). The crude acid 21k ($81.5 \mathrm{mg}, 0.127 \mathrm{mmol}$) and alcohol $7(39.2 \mathrm{mg}, 0.152$ $\mathrm{mmol}, 1.2$ equiv) were dissolved in THF (1.3 mL) and $\mathrm{Ph}_{3} \mathrm{P}(50 \mathrm{mg}, 0.190 \mathrm{mmol}, 1.5$ equiv) was added at $0{ }^{\circ} \mathrm{C}$. This was followed by the dropwise addition of DIAD $(0.037 \mathrm{~mL}, 0.190 \mathrm{mmol}, 1.5$ equiv). The cooling bath was removed and the mixture stirred overnight at room temperature. The reaction mixture was concentrated in vacuo and the residue purified by flash chromatography (petroleum ether/EtOAc, 2:1 to $1: 1$ to $0: 1$) to give ester $22 \mathrm{k}(62.6 \mathrm{mg}, 56 \%)$ as a colorless foam. $[\alpha]^{20}{ }_{\mathrm{D}}=-10.0\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.77\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.89\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ala} \mathrm{CH}_{3}\right), 1.01\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.41(\mathrm{~s}, 18 \mathrm{H}, t-\mathrm{Bu}), 1.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.93\left(\mathrm{dd}, J=13.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.34(\mathrm{dd}, J=13.9,6.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.40-2.51(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}), 2.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.24\left(\mathrm{dd}, J=15.7,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.37 (dd, $\left.J=15.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.10\left(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.50-$ 4.62 (m, 2H, Ala CH, $\left.\mathrm{CO}_{2} \mathrm{CH}\right), 4.86(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.56(\mathrm{~m}, 2 \mathrm{H}$, Ala NH, $\beta-\mathrm{Tyr} \mathrm{CH})$, $5.56(\mathrm{dd}, J=9.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.90\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.08-7.20\left(\mathrm{~m}, 3 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}, \beta-\mathrm{Tyr}\right.$ NH), 7.29-7.35 (m, 4H), 7.41 (t, 2H), 7.46 (d, $2 \mathrm{H}, J=8.1 \mathrm{~Hz}$), $7.52(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.59(\mathrm{~d}$, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 8.18(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.4,16.6,17.1,17.6$, 18.1, $23.4\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $30.8\left(\mathrm{NCH}_{3}\right), 37.6,38.6,43.4\left(\mathrm{CH}_{2}\right), 46.7$ (Ala $\mathrm{CH})$, $53.9(\beta-\mathrm{Tyr} \mathrm{CH}), 56.8(\operatorname{Trp} \mathrm{CH}), 59.2\left(\mathrm{OCH}_{3}\right), 76.0\left(\mathrm{CO}_{2} \mathrm{CH}\right), 79.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 79.8$
 127.19, 127.24, $127.8(=\mathrm{CH}$), 128.4, 128.7, $133.7(=\mathrm{C}<$), 135.8, 136.1 (quat. Trp), 140.72, 140.76, 155.1 (Boc), 169.2, 169.3, 174.3, 175.8. HMRS (ESI): m / z : calcd for $\mathrm{C}_{51} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{9}[M+\mathrm{Na}]^{+}$: 903.48785; found: 903.48732.

Chondramide A analogues

Deprotection. Double Boc-deprotection was carried out in 1:10 v/v solution of TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature overnight at 0.03 M concentration of a substrate (the progress of reaction was easily monitored by TLC in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}$ 10:1:0.1 and NMR, in each case complete and clean conversion was achieved after $\sim 20 \mathrm{~h}$). The solvent was removed in vacuo. For azeotropic removal of TFA, the residue was taken up in toluene ($3 \times 0.5 \mathrm{~mL}$) and concentrated in vacuo each time.
Macrolactam formation. In most cases macrolactamization was carried out at 0.0025 m concentration instead of 0.001 m without loss of efficacy. The crude product from the deprotection step was dissolved in DMF and $i \operatorname{Pr}_{2} \mathrm{NEt}$ (5 equiv), HOBt (1.5 equiv), and TBTU (1.5 equiv) were added. The solution was stirred at room temperature for 20 h and then diluted with water and EtOAc. The aqueous layer was extracted with EtOAc (3 times) and the combined organic layers were washed with 5% aqueous KHSO_{4} solution, water, saturated NaHCO_{3} solution, water, and
saturated NaCl solution. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography.

Chondramide 2b (Me). To a stirred solution of compound 22b ($42 \mathrm{mg}, 0.051 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) was added TFA ($38 \mu \mathrm{~L}, 0.51 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and after stirring for 22 h , the solvent was removed in vacuo. For azeotropic removal of TFA the residue was taken up in toluene ($3 \times 0.5 \mathrm{~mL}$) and concentrated in vacuo each time. The crude product was dissolved in DMF (50 mL) and $i \operatorname{Pr}_{2} \mathrm{NEt}(34 \mu \mathrm{~L}, 0.204 \mathrm{mmol})$, HOBt $(24.0 \mathrm{mg}, 0.179 \mathrm{mmol})$ and TBTU $(56.0 \mathrm{mg}, 0.179 \mathrm{mmol})$ were added. The solution was stirred at room temperature for 20 h and then diluted with water $(25 \mathrm{~mL})$ and EtOAc $(25 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$ and the combined organic layers were washed with 5% aqueous KHSO_{4} solution (25 mL), water (25 mL), saturated NaHCO_{3} solution (25 mL), water $(2 \times 25 \mathrm{~mL})$ and saturated NaCl solution $(20 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification by flash chromatography (petroleum ether/acetone, 2:1) of the residue to give depsipeptide $\mathbf{2 b}$ ($11 \mathrm{mg}, 33 \%$ over two steps) as a colorless foam. R_{f} (petroleum ether/acetone, 2:1) $0.18 ;[\alpha]^{20}{ }_{\mathrm{D}}=+23.9\left(c 0.83, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$): $\delta=0.81\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, Ala $\left.\mathrm{CH}_{3}\right), 0.86\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right), 0.91(\mathrm{~d}, J=6.8$ $\left.\mathrm{Hz}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 1.08\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 1.69\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 1.98-2.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.15-2.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.45-2.55(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.60-2.71(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H})$, $3.01\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Trp} \mathrm{CH}_{2}\right), 3.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.88(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}$, CHOCH_{3}), 4.48-4.57 (m, 1H, 7-H), 4.74-4.81 (m, 1H, Ala CH), 4.82-4.85 (m, 1H, 5-H), 5.06 (d, J $=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}), 5.52(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.83\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 6.97(\mathrm{t}, J=$ $7.1,1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}$), $7.00-7.08\left(\mathrm{~m}, 5 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{H}_{\mathrm{ar}}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 7.25\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 7.55(\mathrm{~d}$, $\left.J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=16.0\left(4-\mathrm{CH}_{3}\right), 17.9\left(6-\mathrm{CH}_{3}\right), 18.4$ (Ala $\left.\mathrm{CH}_{3}\right), 18.9\left(7-\mathrm{CH}_{3}\right), 19.0\left(2-\mathrm{CH}_{3}\right), 21.2\left(\mathrm{ArCH}_{3}\right), 26.5\left(\operatorname{Trp} \mathrm{CH}_{2}\right), 30.9\left(\mathrm{NCH}_{3}\right), 38.7(\mathrm{C}-6), 40.2(\mathrm{C}-$ 2), $45.9(\mathrm{Ala} \mathrm{CH}), 46.0\left(\mathrm{CH}_{2}\right), 55.9(\beta-\mathrm{Tyr} \mathrm{CH}), 56.9(\mathrm{Trp} \mathrm{CH}), 58.2\left(\mathrm{OCH}_{3}\right), 79.2(\mathrm{C}-7), 83.3$ $\left(\mathrm{CHOCH}_{3}\right), 110.1(\operatorname{Trp~Car}), 112.2(\operatorname{Trp~Car}), 119.4(\operatorname{Trp~Car}), 119.6(\operatorname{Trp~Car}), 122.2(\operatorname{Trp~Car}), 124.4$ (Trp Car), 128.3 (β-Tyr Car), 128.5 (Trp Car), 129.0 (C-5), 129.9 ($\beta-\mathrm{Tyr}_{\mathrm{ar}}$), 134.7 (C-4), 137.4 (β Tyr C_{ar}), 137.9 ($\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}$), 138.4 ($\beta-\mathrm{Tyr} \mathrm{C}_{\mathrm{ar}}$), 171.3 (CO), 173.4 (CO), 174.9 (CO), 176.9 (CO); HRMS (ESI): m / z : calcd for $\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{6}[M+\mathrm{Na}]^{+}$: 667.34661; found: 667.34683.

Chondramide 2c (OMe). To a stirred solution of compound 22c ($87.0 \mathrm{mg}, 0.104 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{~mL})$ was added TFA $(154 \mu \mathrm{~L}, 2.08 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and after stirring for 22 h , the solvent was removed in vacuo. For azeotropic removal of TFA the residue was taken up in toluene $(3 \times 0.5 \mathrm{~mL})$ and concentrated in vacuo each time. The crude product was dissolved in DMF (104 mL) and $i \operatorname{Pr}_{2} \mathrm{NEt}(71 \mu \mathrm{~L}, 0.416 \mathrm{mmol})$, HOBt $(49.0 \mathrm{mg}, 0.364 \mathrm{mmol})$ and TBTU $(114 \mathrm{mg}, 0.364 \mathrm{mmol})$ were added. The solution was stirred at room temperature for 20 h and then diluted with water $(50 \mathrm{~mL})$ and $\mathrm{EtOAc}(50 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$ and the combined organic layers were washed with 5% aqueous KHSO_{4} solution $(50 \mathrm{~mL})$, water $(50 \mathrm{~mL})$, saturated NaHCO_{3} solution $(50 \mathrm{~mL})$, water $(2 \times 40 \mathrm{~mL})$ and saturated NaCl solution $(50 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (petroleum ether/ethyl acetate, $2: 7$) to give depsipeptide $2 \mathrm{c}(21.3 \mathrm{mg}, 31 \%$ over two steps) as a colorless foam. R_{f} (petroleum ether/EtOAc, 2:7) $0.20 ;[\alpha]^{20}{ }_{\mathrm{D}}=+6.0(c 0.40, \mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=0.83\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ala} \mathrm{CH}_{3}\right), 0.86(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, 7-$ $\left.\mathrm{CH}_{3}\right), 0.92\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 1.08\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 1.69\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 2.04$ (dd, $\left.J=13.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23\left(\mathrm{dd}, J=12.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.46-2.58(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H})$, 2.61-2.72 (m, 1H, 2-H), 2.97-3.06 (m, 2H, Trp $\left.\mathrm{CH}_{2}\right), 3.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.48-4.56(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 4.75-4.81(\mathrm{~m}, 1 \mathrm{H}$, Ala CH), $4.81-4.85(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 5.05(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}), 5.53(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp}$ $\mathrm{CH}), 6.77\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{Har}_{\mathrm{ar}}\right), 6.83\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 6.95-7.01\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 7.04(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{Har}), 7.05-7.08\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 7.25\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 7.57(\mathrm{~d}, J$ $\left.=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=16.0\left(4-\mathrm{CH}_{3}\right), 17.9\left(6-\mathrm{CH}_{3}\right), 18.4$ (Ala $\left.\mathrm{CH}_{3}\right), 18.9\left(7-\mathrm{CH}_{3}\right), 19.0\left(2-\mathrm{CH}_{3}\right), 26.5\left(\mathrm{Trp} \mathrm{CH}_{2}\right), 30.9\left(\mathrm{NCH}_{3}\right), 38.7(\mathrm{C}-6), 40.2(\mathrm{C}-2), 45.9(\mathrm{Ala}$ $\mathrm{CH}), 46.1\left(\mathrm{CH}_{2}\right), 55.6(\beta-\mathrm{Tyr} \mathrm{CH}), 55.7\left(\mathrm{OCH}_{3}\right), 56.9(\operatorname{Trp} \mathrm{CH}), 58.2\left(\mathrm{OCH}_{3}\right), 79.2(\mathrm{C}-7), 83.4$ $\left(\mathrm{CHOCH}_{3}\right), 110.1\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 112.2\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 114.6\left(\beta-\mathrm{Tyr} \mathrm{C} \mathrm{C}_{\mathrm{ar}}\right), 119.4\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 119.6\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right)$, $122.3\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right)$, $124.5\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 128.5\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 129.0(\mathrm{C}-5), 129.5\left(\beta-\mathrm{Tyr} \mathrm{C}_{\mathrm{ar}}\right), 132.5\left(\beta-\mathrm{Tyr} \mathrm{C} \mathrm{C}_{\mathrm{ar}}\right)$, $134.7(\mathrm{C}-4), 137.9\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 160.5\left(\beta-\mathrm{Tyr} \mathrm{C}_{\mathrm{ar}}\right), 171.2(\mathrm{CO}), 173.4(\mathrm{CO}), 174.9(\mathrm{CO}), 176.9(\mathrm{CO})$; HRMS (ESI): m/z: calcd for $\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{7}[M+\mathrm{Na}]^{+}$: 683.34152 ; found: 683.34136 .

Chondramide 2d (F). To a stirred solution of compound 22d ($30 \mathrm{mg}, 0.036 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1$ mL) was added TFA ($40 \mu \mathrm{~L}, 0.54 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and after stirring for 22 h , the solvent was removed in vacuo. For azeotropic removal of TFA the residue was taken up in toluene $(3 \times 0.5 \mathrm{~mL})$ and concentrated in vacuo each time. The crude product was dissolved in DMF (36 mL) and $i \operatorname{Pr}_{2} \mathrm{NEt}(24 \mu \mathrm{~L}, 0.144 \mathrm{mmol})$, HOBt ($17 \mathrm{mg}, 0.126 \mathrm{mmol}$) and TBTU ($29 \mathrm{mg}, 0.126 \mathrm{mmol}$) were added. The solution was stirred at room temperature for 20 h and then diluted with water (20 mL) and EtOAc (20 mL). The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were washed with 5% aqueous KHSO_{4} solution (20 mL), water (20 mL), saturated NaHCO_{3} solution (20 mL), water $(2 \times 20 \mathrm{~mL})$ and saturated NaCl solution (20 mL). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (petroleum ether/acetone, 2:1) of the residue to give depsipeptide $\mathbf{2 d}(9.00 \mathrm{mg}$, 31% over three steps) as a colorless foam. R_{f} (petroleum ether/acetone, 2:1) $0.16 ;[\alpha]^{20}{ }_{\mathrm{D}}=+13.3(\mathrm{c}$ $0.67, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=0.87\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, 7-\mathrm{CH}_{3}\right.$), $0.91(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{Ala} \mathrm{CH} 3$), $0.92\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 1.09\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 2-\mathrm{CH}_{3}\right), 1.70(\mathrm{~s}, 3 \mathrm{H}, 4-$ CH_{3}), $2.05\left(\mathrm{dd}, J=13.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.16-2.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.46-2.58(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.63-$ $2.73(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.07\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Trp} \mathrm{CH}_{2}\right), 3.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82$ (d, $\left.J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.48-4.55(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 4.78-4.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ala} \mathrm{CH}, 5-\mathrm{H}), 5.05(\mathrm{~d}$, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \beta$-Tyr CH), $5.52(\mathrm{dd}, J=8.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.79\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 6.88-$ $6.94\left(\mathrm{~m}, 2 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{H}_{\mathrm{ar}}\right), 6.95-7.00\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 7.03-7.09\left(\mathrm{~m}, 3 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{H}_{\mathrm{ar}}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 7.25(\mathrm{~d}$, $\left.J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right), 7.58\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{ar}}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=16.0$ $\left(4-\mathrm{CH}_{3}\right), 18.0\left(6-\mathrm{CH}_{3}\right), 18.5(\mathrm{Ala} \mathrm{CH} 33), 19.0\left(7-\mathrm{CH}_{3}, 2-\mathrm{CH}_{3}\right), 26.7\left(\operatorname{Trp} \mathrm{CH}_{2}\right), 30.9\left(\mathrm{NCH}_{3}\right), 38.7$ (C-6), $40.2(\mathrm{C}-2), 45.9(\mathrm{Ala} \mathrm{CH}), 46.2\left(\mathrm{CH}_{2}\right), 55.5(\beta-\mathrm{Tyr} \mathrm{CH}), 57.0(\mathrm{Trp} \mathrm{CH}), 58.2\left(\mathrm{OCH}_{3}\right), 79.4$ $(\mathrm{C}-7), 83.1\left(\mathrm{CHOCH}_{3}\right), 109.9\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 112.2\left(\operatorname{Trp~C}{ }_{\mathrm{ar}}\right), 115.4(\mathrm{~d}, J=21.2 \mathrm{~Hz}, \beta$-Tyr Car $), 119.4$ $\left(\operatorname{Trp} \mathrm{C}_{\mathrm{ar}}\right), 119.6\left(\mathrm{Trp} \mathrm{C}_{\mathrm{ar}}\right), 122.3\left(\mathrm{Trp} \mathrm{C}_{\mathrm{ar}}\right), 124.5\left(\mathrm{Trp} \mathrm{C}_{\mathrm{ar}}\right), 128.5\left(\mathrm{Trp} \mathrm{C}_{\mathrm{ar}}\right), 129.0(\mathrm{C}-5), 130.2(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, \beta-\mathrm{Tyr} \mathrm{C}_{\mathrm{ar}}$), 134.7 (C-4), 136.4 (d, $J=2.9 \mathrm{~Hz}, \beta-\operatorname{Tyr} \mathrm{C}_{\mathrm{ar}}$), 137.9 (Trp Car), 171.2 (CO), 173.3 (CO), 174.8 (CO), 176.9 (CO); HRMS (ESI): m / z : calcd for $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{FN}_{4} \mathrm{O}_{6}[M+\mathrm{Na}]^{+}$: 671.32153 ; found: 671.32177 .

Chondramide 2e ($\mathbf{N O}_{\mathbf{2}}$). To a stirred solution of compound 22e ($62.7 \mathrm{mg}, 0.0738 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.2 \mathrm{~mL})$ was added TFA $(0.22 \mathrm{~mL}, 0.34 \mathrm{~g}, 2.98 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and after stirring for 22 h , the solvent was removed in vacuo (TLC control: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 10: 1: 0.1$). For azeotropic removal of TFA the residue was taken up in toluene ($3 \times 0.5 \mathrm{~mL}$) and concentrated in vacuo each time. The crude product was dissolved in DMF (30 mL) and $i \operatorname{Pr}_{2} \mathrm{NEt}(64 \mu \mathrm{~L}, 47.7 \mathrm{mg}, 0.369 \mathrm{mmol}, 5$ equiv), $\mathrm{HOBt}(19.9 \mathrm{mg}, 0.147 \mathrm{mmol}, 2$ equiv) and TBTU ($47.4 \mathrm{mg}, 0.147 \mathrm{mmol}, 2$ equiv) were added. The solution was stirred at room temperature for 20 h and then diluted with water $(20 \mathrm{~mL})$ and EtOAc (20 mL). The aqueous layer was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$ and the combined organic layers were washed with 5% aqueous KHSO_{4} solution (20 mL), water (20 mL), saturated NaHCO_{3} solution (20 mL), water $(2 \times$ 20 mL) and saturated NaCl solution (20 mL). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (petroleum ether/EtOAc, 1:3 to 0:1) to give depsipeptide 2e ($27.3 \mathrm{mg}, 48 \%$) as a colorless foam. $R_{\mathrm{f}}(\mathrm{EtOAc}) 0.41 ;[\alpha]^{20}{ }_{\mathrm{D}}=+18.5\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $0.84\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.85\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.07\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.17(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.88\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.36-2.51(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{CH}$, CH_{2}), $2.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.17\left(\mathrm{dd}, J=15.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.31(\mathrm{dd}, J=$ $\left.15.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.75\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.77-4.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ala} \mathrm{CH}, \mathrm{CO}_{2} \mathrm{CH}\right)$, $4.90(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.30(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{CH}), 5.60(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH})$, $6.50\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Ala NH), $6.82\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{NH}), 7.10$ (ddd, $J=8.1,7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), 7.17 (ddd, $J=8.1,7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), $7.24(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.32\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.59\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right.$), 8.06 (d, $J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.11(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.8,16.6,17.3,18.6$, 20.0, $23.6\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{NCH}_{3}\right), 37.0,40.2,44.1\left(\mathrm{CH}_{2}\right), 45.2(\mathrm{Ala} \mathrm{CH}), 54.4(\beta-\mathrm{Tyr} \mathrm{CH}), 56.0(\mathrm{Trp}$ CH), $58.2\left(\mathrm{OCH}_{3}\right), 76.8\left(\mathrm{CO}_{2} \mathrm{CH}\right), 81.9\left(\mathrm{CHOCH}_{3}\right), 110.2$ (quat. Trp), 111.2, 118.5, 119.6, 122.2, 122.3, 123.4, 127.1 (quat. Trp), $127.8(=\mathrm{CH}), 127.9,134.3(=\mathrm{C}<$), 136.1 (quat. Trp), 144.5, 147.3, 169.77, 169.82, 174.1, 174.5; HMRS (ESI): m / z : calcd for $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{8}[M+\mathrm{Na}]^{+}: 698.31603$; found: 698.31672.

Chondramide $\mathbf{2 f} \mathbf{(\mathbf { N H } _ { \mathbf { 2 } })}$. By catalytic hydrogenation: A solution of chondramide $\mathbf{2 e}(6.1 \mathrm{mg}, 9.03$ $\mu \mathrm{mol})$ in methanol $(0.5 \mathrm{~mL})$ was hydrogenated overnight in a round bottom flask connected to a hydrogen filled balloon, using $10 \% \mathrm{Pd}$ on carbon (TLC control: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 10: 1$). Upon complete conversion, the solvent was evaporated and the residue purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 30: 1\right.$ to $\left.20: 1\right)$ to afford chondramide $2 \mathrm{f}(2.7 \mathrm{mg}, 47 \%)$ as white foam. A mixed fraction, containing $2 \mathbf{f}$ and another unknown compound as major components was also isolated. Complete conversion was observed, but the reaction was not very clean, likely because of formation of RNO and/or RNHOH, as suggested by LC/MS examination of the mixed fraction. No evidence for competitive hydrogenation of the double bond was found.
By reduction with sodium dithionite: Alternatively, reduction of chondramide $\mathbf{2 e}$ ($5.8 \mathrm{mg}, 8.58$ $\mu \mathrm{mol})$ was carried out in solution in THF $(0.5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ in the presence of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(20$ $\mathrm{mg}, 0.115 \mathrm{mmol}$) overnight at room temperature. Conversion was high but not complete. The reaction mixture was diluted with saturated NaCl solution and EtOAc with addition of some saturated NaHCO_{3} solution. The water phase was extracted once more with EtOAc. The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The desired NH_{2}-chondramide $\mathbf{2 f}$ ($2 \mathrm{mg}, 36 \%$) was isolated successfully by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1\right.$ to $20: 1$) as a white foam. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right) 0.26 .[\alpha]^{20}{ }_{\mathrm{D}}=+24.9\left(c 0.35, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.80\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.85\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, Ala CH_{3}), $1.15\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.80\left(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.33-$ $2.40(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}), 2.53\left(\mathrm{~d}, J=10.4,13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.14(\mathrm{dd}, J=15.5$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.27\left(\mathrm{dd}, J=15.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.68\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, 3.75 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}$), 4.77-4.84 (m, 2H, Ala CH, 7-H), $4.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 5.25(\mathrm{dd}, J=7.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}), 5.60(\mathrm{dd}, J=7.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.58$ (d, $J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ala NH), 6.58 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.81$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), 6.92-6.96 (m, $3 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{NH}, \mathrm{Ar}), 7.11$ (ddd, $J=8.1,7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), 7.17 (ddd, $J=8.1,7.8,1.0 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), $7.30\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.90\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.87(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp}$ $\mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.3,16.6,17.6,18.6,20.5,23.3\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{NCH}_{3}\right), 37.1$, $40.3,43.8\left(\mathrm{CH}_{2}\right), 45.3(\mathrm{Ala} \mathrm{CH}), 53.9(\beta-\mathrm{Tyr} \mathrm{CH}), 55.7(\mathrm{Trp} \mathrm{CH}), 58.0\left(\mathrm{OCH}_{3}\right), 77.2\left(\mathrm{CO}_{2} \mathrm{CH}\right)$, $82.6\left(\mathrm{CHOCH}_{3}\right), 110.7$ (quat. Trp), 111.0, $115.0(2 \mathrm{C}, \mathrm{Ar}), 118.6,119.4,122.05,122.11,127.2$ (quat. Trp), 127.7 (quat. Ar), 127.9 ($2 \mathrm{C}, \mathrm{Ar}$), $128.4(=\mathrm{CH}$), $134.1(=\mathrm{C}<$), 136.1 (quat. Trp), 145.9, 169.6, 170.6, 174.0, 174.5; HMRS (ESI): m / z : calcd for $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$: 668.34186; found: 668.34224 .

Chondramide $\left.\mathbf{2 g} \mathbf{(} \mathbf{C H}_{\mathbf{2}} \mathbf{O H}\right)$. To a stirred solution of compound $\mathbf{2 2 g}$ (64.7 mg , which corresponds to $\sim 58.9 \mathrm{mg}$ of pure peptide, 0.0621 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added TFA $(0.2 \mathrm{~mL}, 0.307 \mathrm{~g}$, 2.69 mmol) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and after stirring for 22 h , the solvent was removed in vacuo (TLC control: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 10: 1: 0.1$). For azeotropic removal of TFA the residue was taken up in toluene $(3 \times 0.5 \mathrm{~mL})$ and concentrated
in vacuo each time. NMR examination indicated complete deprotection and installation of $\mathrm{CH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{CF}_{3}$ in place of $\mathrm{CH}_{2} \mathrm{OTBS}\left(\delta=5.25, \mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{CF}_{3}\right)$. The crude product was dissolved in DMF (25 mL , that corresponds to 0.0025 M concentration of the starting amino acid) and $i \operatorname{Pr}_{2} \mathrm{NEt}$ ($54 \mu \mathrm{~L}, 40 \mathrm{mg}, 0.310 \mathrm{mmol}, 5$ equiv), HOBt ($16.7 \mathrm{mg}, 0.124 \mathrm{mmol}, 2$ equiv) and TBTU ($39.9 \mathrm{mg}, 0.124 \mathrm{mmol}, 2$ equiv) were added. The solution was stirred at room temperature for 20 h and then diluted with water $(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were washed with 5% aqueous KHSO_{4} solution (20 mL), water (20 mL), diluted $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution (20 mL , at this point trifluoroacetic ester moiety is hydrolyzed), water ($2 \times 20 \mathrm{~mL}$) and saturated NaCl solution (20 mL). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 20: 1\right)$ to give depsipeptide $\mathbf{2 g}(8.1 \mathrm{mg}, 20 \%)$ as a colorless foam.

Note. $\mathrm{ArCH}_{2} \mathrm{OTFA}$ is hydrolyzed in a few minutes in weakly alkaline media during washings (as was the case in synthesis of $\mathbf{2 h}$). But in this case the less polar product (on TLC), which was initially assumed to be $\mathrm{ArCH}_{2} \mathrm{OTFA}$ ester, in fact was stable to hydrolysis and was eventually proved to be the $\mathrm{ArCH}_{2} \mathrm{OBt}$ ether!). Obviously, the benzylic trifluoroacetate has led to extensive formation of the nucleophilic substitution product due to enhanced susceptibility to nucleophilic attack.

2g: $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right) 0.14 ;[\alpha]^{20}{ }_{\mathrm{D}}=+23.4\left(c 0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=0.77\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.86\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ala} \mathrm{CH} 3)$, $1.16\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.87\left(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.27(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH})$, $2.35-2.42(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}), 2.48\left(\mathrm{dd}, J=13.1,11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.00(\mathrm{dd}, J=$ $15.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.27\left(\mathrm{dd}, J=15.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.78(\mathrm{~d}, J=8.1$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.72-4.78(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 4.79-4.86(\mathrm{~m}, 1 \mathrm{H}$, Ala CH$), 4.89$ (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.26(\mathrm{dd}, J=8.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}), 5.49(\mathrm{dd}, J=7.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{Trp} \mathrm{CH}), 6.54\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Ala NH), $6.56\left(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 6.82(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{NH}$), $7.07-7.11$ (m, 3H, $\operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$, Ar), 7.16 (ddd, $J=8.1,7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), 7.24 $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.29\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.58\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 8.13(\mathrm{~s}$, $1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.9,16.4,17.7,18.8,20.0,23.9\left(\mathrm{CH}_{2}\right), 30.2$ $\left(\mathrm{NCH}_{3}\right), 37.2,40.2,44.2\left(\mathrm{CH}_{2}\right), 45.2(\mathrm{Ala} \mathrm{CH}), 54.5(\beta-\mathrm{Tyr} \mathrm{CH}), 55.9(\mathrm{Trp} \mathrm{CH}), 58.1\left(\mathrm{OCH}_{3}\right), 65.1$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 76.5\left(\mathrm{CO}_{2} \mathrm{CH}\right), 82.1\left(\mathrm{CHOCH}_{3}\right)$, 109.8 (quat. Trp), 111.2, 118.4, 119.3, 121.9, 122.5, 127.0 (quat. Trp), 127.2 (2C, Ar), 127.5 ($2 \mathrm{C}, \mathrm{Ar}$), 128.2 ($=\mathrm{CH}$), 133.1 ($=\mathrm{C}<$), 136.1, 137.8, 140.0, 169.4, 170.5, 173.9, 174.4; HMRS (ESI): m / z : calcd for $\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}: 683.34152$; found: 683.34136 .

Chondramide $\mathbf{2 h}\left(\mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{O H}\right)$. To a stirred solution of depsipeptide $\mathbf{2 2 h}(18.2 \mathrm{mg}, 0.0189$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ was added TFA $(0.06 \mathrm{~mL}, 0.092 \mathrm{~g}, 0.808 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction
mixture was allowed to warm to room temperature and after stirring for 22 h , the solvent was removed in vacuo (TLC control: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 10: 1: 0.1$). For azeotropic removal of TFA the residue was taken up in toluene ($3 \times 0.5 \mathrm{~mL}$) and concentrated in vacuo. NMR examination indicated complete deprotection and installation of $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{CF}_{3}$ in place of $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBS}$. The crude product was dissolved in DMF (7.50 mL , that corresponds to 0.0025 M concentration of the starting amino acid) and $i \operatorname{Pr}_{2} \mathrm{NEt}(16 \mu \mathrm{~L}, 11.8 \mathrm{mg}, 0.092 \mathrm{mmol}, 5$ equiv), $\mathrm{HOBt}(5.1 \mathrm{mg}, 0.038$ $\mathrm{mmol}, 2$ equiv) and TBTU ($12.1 \mathrm{mg}, 0.038 \mathrm{mmol}$, 2 equiv) were added. The solution was stirred at room temperature for 20 h and then diluted with water $(10 \mathrm{~mL})$ and $\operatorname{EtOAc}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\operatorname{EtOAc}(3 \times 10 \mathrm{~mL})$ and the combined organic layers were washed with 5% aqueous KHSO_{4} solution (10 mL), water (10 mL), diluted $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution (10 mL , at this point complete hydrolysis of trifluoroacetic ester moiety should be secured), water ($2 \times 10 \mathrm{~mL}$) and saturated NaCl solution $(10 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. In case of incomplete hydrolysis, the residue was dissolved in MeOH , catalytic amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added and the silution stirred for 5 minutes until disappearance of the trifluoroacetate residue $\left(R_{\mathrm{f}}(\mathrm{EtOAc}) 0.4,{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=4.50\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{CF}_{3}\right)\right)$. But normally, the trifluoroacetate is hydrolized within a few minutes in weakly alkaline media during washings, which was also observed by TLC. The crude product was purified by flash chromatography (EtOAc) to give depsipeptide $\mathbf{2 h}(7.7 \mathrm{mg}, 60 \%)$ as a colorless foam. R_{f} $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right) 0.14 ; R_{\mathrm{f}}(\mathrm{EtOAc}) 0.3 ;[\alpha]^{20}{ }_{\mathrm{D}}=+6.3\left(c 0.80, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.77\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.86\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, Ala CH_{3}), $1.16\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.81(\mathrm{bt}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.91(\mathrm{~d}, J$ $\left.=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35-2.47\left(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{CH}, \mathrm{CH}_{2}\right), 2.87\left(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}\right), 2.92(\mathrm{dd}, J=$ $\left.14.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.28(\mathrm{dd}, J=14.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), $3.75\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 3.94-4.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.68-4.74(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H})$, $4.80-4.86(\mathrm{~m}, 1 \mathrm{H}$, Ala CH), $4.88(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.22(\mathrm{dd}, J=8.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr}$ CH), 5.41 (dd, $J=6.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.46-6.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ala} \mathrm{NH}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 6.52(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{NH}$), 7.02 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.08-7.17$ (m, 4H, $\operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}, \mathrm{Ar}$), 7.27 (d, 1H, Trp $\left.\mathrm{H}_{\mathrm{Ar}}\right), 7.59\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 8.43(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 16.27, 16.30, 17.8, 18.9, 19.7, $24.4\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{NCH}_{3}\right), 37.4,38.6\left(\mathrm{ArCH}_{2}\right), 40.1,44.4\left(\mathrm{CH}_{2}\right), 45.1$ (Ala CH), $54.5(\beta-\mathrm{Tyr} \mathrm{CH}), 56.1(\operatorname{Trp} \mathrm{CH}), 58.0\left(\mathrm{OCH}_{3}\right), 63.5\left(\mathrm{CH}_{2} \mathrm{OH}\right), 76.7\left(\mathrm{CO}_{2} \mathrm{CH}\right), 82.1$ $\left(\mathrm{CHOCH}_{3}\right), 109.3$ (quat. Trp), 111.2, 118.3, 119.1, 121.7, 122.8, 126.9 (quat. Trp), 127.2 (2C, Ar), 128.2 ($=\mathrm{CH}$), 129.1 ($2 \mathrm{C}, \mathrm{Ar}$), 133.7 ($=\mathrm{C}<$), 136.1 (quat. Trp), 136.6, 138.2, 169.2, 170.6, 173.7, 174.2; HMRS (ESI): m / z : calcd for $\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{7}[M+\mathrm{Na}]^{+}: 697.35717$; found: 697.35723.

Chondramide $2 \mathbf{i}(\mathbf{C N})$. To a stirred solution of depsipeptide $22 \mathbf{i}(24.5 \mathrm{mg}, 0.0295 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.9 \mathrm{~mL})$ was added TFA $(0.09 \mathrm{~mL}, 0.138 \mathrm{~g}, 1.21 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and after stirring for 22 h , the solvent was removed in vacuo (TLC control: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 10: 1: 0.1$). For azeotropic removal of TFA the residue was taken up in toluene ($3 \times 0.5 \mathrm{~mL}$) and concentrated in vacuo each time. The crude product was dissolved in

DMF (11.8 mL , that corresponds to 0.0025 M concentration of the starting amino acid) and $i \mathrm{Pr}_{2} \mathrm{NEt}$ ($26 \mu \mathrm{~L}, 19.3 \mathrm{mg}, 0.149 \mathrm{mmol}, 5$ equiv), HOBt ($8.0 \mathrm{mg}, 0.059 \mathrm{mmol}, 2$ equiv) and TBTU (18.9 mg , 0.059 mmol , 2 equiv) were added. The solution was stirred at room temperature for 20 h and then diluted with water $(20 \mathrm{~mL})$ and $\mathrm{EtOAc}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{EtOAc}(3 \times$ 20 mL) and the combined organic layers were washed with 5% aqueous KHSO_{4} solution (20 mL), water (20 mL), saturated NaHCO_{3} solution (20 mL), water $(2 \times 20 \mathrm{~mL})$ and saturated NaCl solution $(20 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (petroleum ether/EtOAc, 1:3 to 0:1 or petroleum ether/acetone, 3:2) to give depsipeptide $2 \mathbf{i}(8.7 \mathrm{mg}, 45 \%)$ as a colorless foam. In order to obtain pure 2i, the chromatography was done twice. $R_{\mathrm{f}}(\mathrm{EtOAc}) 0.4 ;[\alpha]^{20}{ }_{\mathrm{D}}=+20.1$ (c 0.8, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.81\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $1.05\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.17\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.85(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.35-2.44(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}), 2.50\left(\mathrm{dd}, J=10.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.94(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{3}\right), 3.10\left(\mathrm{dd}, J=15.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.30(\mathrm{dd}, J=15.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.75\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.76-4.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ala} \mathrm{CH}, 7-\mathrm{H}), 4.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 5.30(\mathrm{dd}, J=8.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{CH}), 5.62(\mathrm{t}, J=7.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.49(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}$, Ala NH), $6.85\left(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right.$), $7.08-7.13\left(\mathrm{~m}, 2 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{NH}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right)$, 7.19 (ddd, $\left.J=8.1,7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.60\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}\right), 7.98(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.5,16.7,17.3,18.6,20.2,23.4\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{NCH}_{3}\right), 37.0,40.2$, $44.0\left(\mathrm{CH}_{2}\right), 45.2(\mathrm{Ala} \mathrm{CH}), 54.4(\beta-\mathrm{Tyr} \mathrm{CH}), 55.9(\mathrm{Trp} \mathrm{CH}), 58.2\left(\mathrm{OCH}_{3}\right), 76.5\left(\mathrm{CO}_{2} \mathrm{CH}\right), 81.9$ $\left(\mathrm{CHOCH}_{3}\right), 110.4$ (quat. Trp), 111.2, 111.5, 118.55, 118.60, 119.6, 122.16, 122.20, 127.1 (quat. $\mathrm{Trp}), 127.8(=\mathrm{CH}), 127.8,132.1,134.4$ (=C<), 136.1 (quat. Trp), 143.4, 169.82, 169.92, 174.2, 174.5; HMRS (ESI): m / z : calcd for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{6}[M+\mathrm{Na}]^{+}: 678.32621$; found: 678.32685 .

 $\mathrm{mL})$ were added at $10{ }^{\circ} \mathrm{C} \mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{mg}, 0.072 \mathrm{mmol})$ and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(0.01 \mathrm{~mL})$. The reaction mixture was stirred for $5-10 \mathrm{~min}$ when TLC (EtOAc) showed complete conversion. The reaction mixture was diluted with water $(0.5 \mathrm{~mL})$ and extracted twice with EtOAc. The combined organic extracts were washed with water, saturated NaCl solution, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 15: 1\right.$ to $\left.10: 1\right)$ to afford chondramide $\mathbf{2 j}$ ($3 \mathrm{mg}, 67 \%$) as white foam (contaminated with $1.9 \% \mathrm{w} / \mathrm{w}$ DMSO). $[\alpha]^{20}{ }_{\mathrm{D}}$ $=+26.7\left(c 0.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.79\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.85(\mathrm{~d}, J$ $\left.=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.09\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right.$, Ala $\left.\mathrm{CH}_{3}\right), 1.17\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.64(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $1.87\left(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35-2.42(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{CH}), 2.48(\mathrm{dd}, J=10.9,13.4 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), $2.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.03\left(\mathrm{dd}, J=14.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.30(\mathrm{dd}, J=$ $\left.14.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.77\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.74-4.86(\mathrm{~m}, 2 \mathrm{H}$, Ala CH, $7-\mathrm{H}), 4.89$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 5.26(\mathrm{dd}, J=8.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}), 5.57(\mathrm{t}, J=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp}$ CH), $5.68\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{CONH}_{2}\right), 6.14\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{CONH}_{2}\right), 6.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ala} \mathrm{NH}), 6.70(\mathrm{~d}, J=$
$2.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), $6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\operatorname{Tyr} \mathrm{NH}), 7.09-7.19\left(\mathrm{~m}, 4 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}, \mathrm{Ar}\right), 7.33(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), $7.60-7.64\left(\mathrm{~d}+\mathrm{d}, 3 \mathrm{H}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}, \mathrm{Ar}\right), 8.14(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.8,16.6,17.6,18.8,20.1,23.8\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{NCH}_{3}\right), 37.1,40.2$, $44.1\left(\mathrm{CH}_{2}\right)$, $45.2(\mathrm{Ala} \mathrm{CH}), 54.5(\beta-\operatorname{Tyr} \mathrm{CH}), 56.0(\operatorname{Trp~CH}), 58.2\left(\mathrm{OCH}_{3}\right), 77.2\left(\mathrm{CO}_{2} \mathrm{CH}\right), 82.0\left(\mathrm{CHOCH}_{3}\right)$, $110.2,111.3,118.5,119.4,122.1,122.3$, 127.1, 127.2, 127.4, 128.1, 132.6, 134.1 ($=\mathrm{C}<$), 136.1, $142.3,169.1,169.6,170.2,174.0,174.4$; HMRS (ESI): m / z : calcd for $\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{7}[M+\mathrm{Na}]^{+}:$ 696.33677; found: 696.337415.

Chondramide 2k (Ph). To a stirred solution of compound $\mathbf{2 2 k}(62.4 \mathrm{mg}, 0.0708 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.1 \mathrm{~mL})$ was added TFA $(0.21 \mathrm{~mL}, 0.322 \mathrm{~g}, 2.82 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and after stirring for 21 h , the solvent was removed in vacuo [TLC control: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3}, 10: 1: 0.1, R_{\mathrm{f}}$ (amino ester intermediate) 0.47 , (amino acid) 0.2]. For azeotropic removal of TFA the residue was taken up in toluene ($3 \times 0.5 \mathrm{~mL}$) and concentrated in vacuo each time. The crude product was dissolved in DMF (35 mL , that corresponds to 0.002 M concentration of the starting amino acid) and $i \operatorname{Pr}_{2} \mathrm{NEt}(62 \mu \mathrm{~L}, 46.0 \mathrm{mg}, 0.356 \mathrm{mmol}, 5$ equiv), HOBt ($14.3 \mathrm{mg}, 0.106 \mathrm{mmol}, 2$ equiv) and TBTU ($34.1 \mathrm{mg}, 0.106 \mathrm{mmol}, 2$ equiv) were added. The solution was stirred at room temperature for 20 h and then diluted with water $(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$ and the combined organic layers were washed with 5% aqueous KHSO_{4} solution (20 mL), water (20 mL), saturated NaHCO_{3} solution (20 mL), water $(2 \times 20 \mathrm{~mL})$ and saturated NaCl solution $(20 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (EtOAc) to give depsipeptide $\mathbf{2 k}(27.3 \mathrm{mg}, 54 \%)$ as a colorless foam. $R_{\mathrm{f}}(\mathrm{EtOAc}) 0.4 ;[\alpha]^{20}{ }_{\mathrm{D}}=+20.3\left(c 2.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.74(\mathrm{~d}, J$ $\left.=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.84\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.16(\mathrm{~d}, J=6.8$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.81\left(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.33-2.40(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{CH}), 2.55$ (dd, $\left.J=13.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.16\left(\mathrm{dd}, J=15.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.27(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.30\left(\mathrm{dd}, J=15.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOMe}), 4.78-4.86(\mathrm{~m}$, 2 H , Ala CH, $7-\mathrm{H}$), 4.91 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$), 5.41 (dd, $J=9.1,7.1, \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{Tyr} \mathrm{CH}$), 5.68 (dd, $J=9.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{CH}), 6.60(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ala NH), $6.84(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Trp}$ H_{Ar}), 7.09-7.18 (m, 3H, $\beta-\operatorname{Tyr} \mathrm{NH}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), 7.23-7.36 (m (d+d+t), 4H, Ar, $\operatorname{Trp} \mathrm{H}_{\text {Ar }}$), $7.43(\mathrm{dd}, J=$ $7.1,7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.55(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.62(\mathrm{~d}, 1 \mathrm{H}, J=7.6$ $\mathrm{Hz}, \operatorname{Trp} \mathrm{H}_{\mathrm{Ar}}$), $8.05(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Trp} \mathrm{NH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.1,16.6,17.5,18.6,20.5$, $23.2\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{NCH}_{3}\right), 37.0,40.3,43.8\left(\mathrm{CH}_{2}\right), 45.3(\mathrm{Ala} \mathrm{CH}), 54.2(\beta-\mathrm{Tyr} \mathrm{CH}), 55.7(\operatorname{Trp~CH})$, $58.0\left(\mathrm{OCH}_{3}\right), 75.9\left(\mathrm{CO}_{2} \mathrm{CH}\right), 82.4\left(\mathrm{CHOCH}_{3}\right), 110.5$ (quat. Trp$), 111.1,118.6,119.4,122.0,122.1$, 127.0, 127.1 (quat. Trp), 127.2, 127.3, $127.4(=\mathrm{CH}$), 128.4, 128.8, 134.2 ($=\mathrm{C}<$), 136.1 (quat. Trp), 136.6, 140.55, 140.58, 169.9, 170.3, 174.1, 174.6; HMRS (ESI): m/z: calcd for $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{6}$ $[M+\mathrm{Na}]^{+}: 729.36226$; found: 729.36180.

LC-MS-traces of some of the chondramide A analogues

Chon $\mathrm{NO}_{2} \mathbf{2 e}$

Chon $\mathrm{CH}_{2} \mathrm{OH} 2 \mathrm{~g}$

Chon CN 2i

Chon $\mathrm{CONH}_{2} \mathbf{2} \mathbf{j}$ (mixture of the hydrolysis reaction, the Chon CN peak is at $\sim 8.94 \mathrm{~min}$)

Proof of structure of benzotriazolyl ether

Alkaline hydrolysis $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}\right.$, rt, overnight) of the less polar product, which was initially assumed to be the $\mathrm{CH}_{2} \mathrm{OTFA}$ ester (because of the high shift benzylic methylene proton, δ $=5.49$, s, overlapped, $2 \mathrm{H}, \mathrm{ArCH} \mathrm{H}_{2} \mathrm{OBt}$), did not lead to the desired chondramide, and the polar compound, that obviously must be some open-chained chondramide derivative (acid), was isolated by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH} 10: 1: 0.05 ; \mathrm{R}_{\mathrm{f}}\right.$ in 10:1:0.1 is 0.38$)$. NMR examination revealed that the high shift benzylic methylene proton $\left(\delta=5.48, \mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{OBt}\right)$ is still present. It became clear that during macrolactamization, the trifluororacetate changed to a functionality stable to hydrolysis. This could be only benzotriazolyl ether, resulting from nucleophilic attack of HOBt present in excess in the reaction mixture. Unambigouosly, this was proved by HRMS analysis of the acid. HMRS (ESI): m/z: calcd for $\mathrm{C}_{43} \mathrm{H}_{53} \mathrm{~N}_{7} \mathrm{O}_{8}[M+\mathrm{Na}]^{+}$: 818.38479; found: 818.38525 .
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the products

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of enoate 9 d in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of enoate $\mathbf{9} \mathbf{g}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of enoate $\mathbf{9 h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of diol 17 c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of diol 17d in CDCl_{3}

\qquad -1 \qquad u

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of diol 17 d in CDCl_{3}

17d
-173.0
-163.7
-161.2

NWMF

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of diol $\mathbf{1 7} \mathrm{g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of diol 17 h in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of diol $\mathbf{1 7} \mathrm{h}$ in CDCl_{3}

[^5]${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of diol $\mathbf{1 7 k}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of diol $\mathbf{1 7 k}$ in CDCl_{3}

17k

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of azide $\mathbf{1 8 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ spectrum of azide $\mathbf{1 8 c}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of azide 18 c in CDCl_{3}

Г

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of azide 18d in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of azide $\mathbf{1 8 e}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of azide $\mathbf{1 8} \mathbf{g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ spectrum of azide $\mathbf{1 8} \mathrm{h}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of azide $\mathbf{1 8} \mathrm{h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of azide $\mathbf{1 8 i}$ in CDCl_{3}

\iint $18 i$

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of azide $\mathbf{1 8 i}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of azide $\mathbf{1 8 k}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of azide $\mathbf{1 8 k}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of methyl 3-azido-2-methoxypropanoate 19 b in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of methyl 3-azido-2-methoxypropanoate 19 b in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of methyl 3-azido-2-methoxypropanoate 19d in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of methyl 3-azido-2-methoxypropanoate 19 d in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of methyl 3-azido-2-methoxypropanoate 19 e in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of methyl 3-azido-2-methoxypropanoate 19 g in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of methyl 3-azido-2-methoxypropanoate 19h in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of methyl 3-azido-2-methoxypropanoate 19 h in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ spectrum of methyl 3-azido-2-methoxypropanoate 19 i in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of methyl 3-azido-2-methoxypropanoate 19 i in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of methyl 3-azido-2-methoxypropanoate 19j in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of methyl 3-azido-2-methoxypropanoate 19 j in CDCl_{3}

180
$80 \quad 170$
160
150 140 130 120 110 100 90 80 70 60

50 40 30
${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of methyl 3-azido-2-methoxypropanoate 19 k in CDCl_{3}

19k

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of methyl 3-azido-2-methoxypropanoate 19 k in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of methyl 3-amino-2-methoxypropanoate $\mathbf{8 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of methyl 3-amino-2-methoxypropanoate 8 b in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of methyl 3-amino-2-methoxypropanoate 8c in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of methyl 3-amino-2-methoxypropanoate 8d in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of methyl 3-amino-2-methoxypropanoate 8d in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of methyl 3-amino-2-methoxypropanoate $\mathbf{8 g}$ in CDCl_{3}

OTBS

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of methyl 3-amino-2-methoxypropanoate $\mathbf{8 h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of methyl 3-amino-2-methoxypropanoate 8i in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of methyl 3-amino-2-methoxypropanoate 8 j in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of methyl 3-amino-2-methoxypropanoate $8 \mathbf{j}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR（ 400 MHz ）spectrum of methyl 3－amino－2－methoxypropanoate $\mathbf{8 k}$ in CDCl_{3}

\int

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of methyl 3-amino-2-methoxypropanoate $\mathbf{8 k}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of tripeptide $\mathbf{2 0 c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of tripeptide 20d in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of tripeptide 20d in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of tripeptide $\mathbf{2 0} \mathbf{g}$ in CDCl_{3}

(1)
${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of tripeptide $\mathbf{2 0}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ spectrum of tripeptide $\mathbf{2 0 i}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of tripeptide $\mathbf{2 0} \mathbf{i}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of tripeptide 20k in CDCl_{3}
(1.05

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of tripeptide 20k in CDCl_{3}

$$
5
$$

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of tripeptide $\mathbf{2 0} \mathbf{j}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of tripeptide $\mathbf{2 0} \mathbf{j}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of tripeptide acid $\mathbf{2 1} \mathbf{e}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of tripeptide acid $\mathbf{2 1} \mathbf{e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ spectrum of tripeptide acid $\mathbf{2 1 g}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of tripeptide acid $\mathbf{2 1 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ spectrum of tripeptide acid $\mathbf{2 1} \mathrm{h}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of tripeptide acid $\mathbf{2 1} \mathbf{h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ spectrum of tripeptide acid $\mathbf{2 1 i}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of tripeptide acid 21i in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of tripeptide acid $\mathbf{2 1} \mathbf{k}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of tripeptide acid $\mathbf{2 1} \mathbf{k}$ in CDCl_{3}

$\stackrel{N}{\sim}$

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of depsipeptide 22b in CDCl_{3}

(

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of depsipeptide $\mathbf{2 2 c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of depsipeptide 22d in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of depsipeptide 22d in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of depsipeptide 22e in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of depsipeptide 22e in CDCl_{3}

180	

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of depsipeptide $\mathbf{2 2} \mathrm{g}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of depsipeptide 22h in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of depsipeptide 22i in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR（ 100 MHz ）spectrum of depsipeptide 22i in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of depsipeptide $\mathbf{2 2 k}$ in CDCl_{3}
8.GLL-

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of chondramide $\mathbf{2 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of chondramide $\mathbf{2 c}$ in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of chondramide $\mathbf{2 d}$ in $\mathrm{CD}_{3} \mathrm{OD}$

ค这

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of chondramide $\mathbf{2 e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum of chondramide $\mathbf{2 g}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of chondramide $\mathbf{2 h}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of chondramide $\mathbf{2 i}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of chondramide $\mathbf{2 j}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectrum of chondramide $\mathbf{2 k}$ in CDCl_{3}

[^0]: ${ }^{1}$ M. Hatsuda, T. Kuroda, M. Seki, Synth. Commun. 2003, 33, 427-434.
 ${ }^{2}$ G. Moyna, H. J. Williams, A. I. Scott, Synth. Commun. 1996, 26, 2235-2239.

[^1]: ${ }^{3}$ (a) M. Beck, S. Jaunich, A. W. Frahm, Arch. Pharm. 1986, 319, 29-37; (b) G. Xie, P. Chellan, J. Mao, K. Chibale, G. S. Smith, Adv. Synth. Catal. 2010, 352, 1641-1647.
 ${ }^{4}$ Z. Zhang, Z. Wang, J. Org. Chem. 2006, 71, 7485-7487.

[^2]: ${ }^{5}$ R. Imashiro, M. Seki, J. Org. Chem. 2004, 69, 4216-4226.
 ${ }^{6}$ A. R. Hajipour, K. Karami, A. Pirisedigh, A. E. Ruoho, J. Organomet. Chem. 2009, 694, 2548-2554.

[^3]: ${ }^{7}$ P. Liu, W. He, Y. Zhao, P.-A. Wang, X.-L. Sun, X.-Y. Li, S.-Y. Zhang, Chirality 2008, 20, 75-83.

[^4]: ${ }^{8}$ E. J. Corey, M. C. Noe, J. Am. Chem. Soc. 1996, 118, 319-329.

[^5]: 180 170 160 150 140 130 120 110 100

 90 | 80 |
 | :--- |
 | 171 | 70 60 50 40 30 20 10

