Evidence of Association of \textit{APOE} with Age-Related Macular Degeneration: A Pooled Analysis of 15 Studies

Gareth J. McKay,\(^1\)\(^,\)\(^*\) Chris C. Patterson,\(^1\) Usha Chakravarthy,\(^2\) Shilpa Dasari,\(^2\) Caroline C. Klaver,\(^3\) Johannes R. Vingerling,\(^4\) Lintje Ho,\(^4\) Paulus T.V.M. de Jong,\(^5,\)\(^6\) Astrid E. Fletcher,\(^7\) Ian S. Young,\(^1\) Johan H. Seland,\(^8\) Mati Rahu,\(^9\) Gisele Soubrane,\(^10\) Laura Tomazzoli,\(^11\) Fotis Topouzis,\(^12\) Jesús Vique,\(^13,\)\(^14\) Aroon D. Hingorani,\(^15,\)\(^16\) Reecha Sofat,\(^15,\)\(^16\) Michael Dean,\(^17\) Julie Sawitzke,\(^17\) Johanna M. Seddon,\(^18,\)\(^19\) Inga Peter,\(^20\) Andrew R. Webster,\(^21,\)\(^22\) Anthony T. Moore,\(^21,\)\(^22\) John R.W. Yates,\(^21,\)\(^22\)\(^,\)\(^23\) Valentina Cipriani,\(^21,\)\(^22\) Lars G. Fritsche,\(^24\) Bernhard H.F. Weber,\(^24\) Claudia N. Keilhauer,\(^25\) Andrew J. Lotery,\(^26,\)\(^27\) Sarah Ennis,\(^28\) Michael L. Klein,\(^29\) Peter J. Francis,\(^30\) Dwight Stambolian,\(^30\) Anton Orlin,\(^30\) Michael B. Gorin,\(^31\) Daniel E. Weeks,\(^31\) Chia-Ling Kuo,\(^32\) Anand Swaroop,\(^33,\)\(^34\) Mohammad Othman,\(^35\) Atsuhiro Kanda,\(^34\) Wei Chen,\(^35\) Gonzalo R. Abecasis,\(^35\) Alan F. Wright,\(^36\) Caroline Hayward,\(^36\) Paul N. Baird,\(^37\) Robyn H. Guymer,\(^37\) John Attia,\(^38,\)\(^39,\)\(^40\) Ammarin Thakkinstian,\(^41\) and Giuliana Silvestri\(^41\)

\(^1\)Centre for Public Health, Royal Victoria Hospital, Queen’s University Belfast, Belfast, Northern Ireland; \(^2\)Centre for Vision and Vascular Science, Royal Victoria Hospital, Queen’s University Belfast, Belfast, Northern Ireland; \(^3\)Departments of Ophthalmology; \(^4\)Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands; \(^5\)The Netherlands Institute for Neuroscience, KNAW, Amsterdam, The Netherlands; \(^6\)Department of Ophthalmology AMC, Amsterdam, The Netherlands; \(^7\)Department of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom; \(^8\)Eyre Eye Institute, Stavanger University Hospital, University of Bergen, Stavanger, Norway; \(^9\)Department of Epidemiology and Biostatistics, National Institute for Health Development, Tallinn, Estonia; \(^10\)Clinique Ophthalmologique, Universitaire de Creteil, Paris, France; \(^11\)Clinica Oculistica, Universita degli studi di Verona, Verona, Italy; \(^12\)Department of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki, Greece; \(^13\)Departamento Salud Publica, University Miguel Hernandez, Alicante, Spain; \(^14\)CIBERESP, Alicante, Spain; \(^15\)University Centre for Clinical Pharmacology, University College London, London, United Kingdom; \(^16\)Department of Medicine, University College London, London, United Kingdom; \(^17\)Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland; \(^18\)Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts; \(^19\)Tufts Medical Center, Boston, Massachusetts; \(^20\)Department of Genetics & Genomic Sciences, Mount Sinai School of Medicine, New York, New York; \(^21\)Institute of Ophthalmology, University College London, London, United Kingdom; \(^22\)Moorfields Eye Hospital, London, United Kingdom; \(^23\)Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom; \(^24\)Institute of Human Genetics, University of Regensburg, Regensburg, Germany; \(^25\)Department of Ophthalmology, University Hospital Würzburg, Würzburg, Germany; \(^26\)Clinical Neurosciences Division, School of Medicine, University of Southampton, Southampton, United Kingdom; \(^27\)Southampton General Eye Unit, Southampton General Hospital, Southampton, United Kingdom; \(^28\)Geneic Epidemiology & Bioinformatics Group Human Genetics Unit, Southampton, United Kingdom; \(^29\)Department of Ophthalmology, The University of Melbourne, Melbourne, Australia; \(^30\)Centre for Clinical Epidemiology and Biostatistics, University of Newcastle, Newcastle, Australia; \(^31\)Hunter Medical Research Institute, John Hunter Hospital, Newcastle, Australia; \(^32\)Department of General Medicine, John Hunter Hospital, Newcastle, Australia; \(^33\)Section for Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

Communicated by Stephen J. Chanock
Received 25 March 2011; accepted revised manuscript 21 July 2011.
Published online 31 August 2011 in Wiley Online Library (www.wiley.com/humanmutation). DOI: 10.1002/humu.21577

Additional Supporting Information may be found in the online version of this article.
*Correspondence to: Gareth J. McKay, Centre for Public Health, Royal Victoria Hospital, Queen’s University Belfast, Belfast, Northern Ireland BT12 6BA. E-mail: g.j.mckay@qub.ac.uk

Contract grant sponsors: The Guide Dogs for the Blind Association UK (2008-5a to G.S.) and OR2006-022 (to A.T.M. and J.R.W-Y.); Medical Research Council (G0000067 to J.R.W-Y. and A.T.M.); Research and Development Office, Northern Ireland Health Personal Social Services (RRG 4.5 - GS); EVI-GENORET (FP6 - UC); The Deutsche Forschungsgemeinschaft (WE1259/18-1 and WE1259/19-1 to B.H.F.W.); The Alcon Research Institute and the Ruth and Milton Steinbach Foundation New York to B.H.F.W.; Russo Grant (Tufts University School of Medicine; to J.M.S.); Macular Degeneration Research Fund (Tufts Medical Center; to J.M.S.); Massachusetts Lions Eye Research Fund (to J.M.S.); Research to Prevent Blindness USA (to M.L.K. and P.J.F.); Foundation Fighting Blindness (to P.J.F.); Department of Health (via National Institute for Health Research; to J.R.W.Y. and A.T.M.); The National Health & Medical Research Council of Australia Centre for Clinical Research Excellence (to M.M.; to H.R.G.); Victorian Government (to P.N.B. and R.H.G.); Macular Disease Society (to G.M.K. and A.J.L.); T.F.C. Frost Charity (to A.J.L.); British Council for the Prevention of Blindness (to A.J.L.); MRC Biomarker Award (G0601354 to A.H. and A.F.); Estonian Ministry of Education and Science (to M.R.).
ABSTRACT: Age-related macular degeneration (AMD) is the most common cause of incurable visual impairment in high-income countries. Previous studies report inconsistent associations between AMD and apolipoprotein E (APOE), a lipid transport protein involved in low-density cholesterol modulation. Potential interaction between APOE and sex, and smoking status has been reported. We present a pooled analysis (n = 21,160) demonstrating associations between late AMD and APOE ε4 (odds ratio [OR] = 0.72 per haplotype; confidence interval [CI]: 0.65–0.74; P = 4.41 × 10^{-11}) and APOE2 (OR = 1.83 for homozygote carriers; CI: 1.04–3.23; P = 0.04), following adjustment for age group and sex within each study and smoking status. No evidence of interaction between APOE and sex or smoking was found. Ever smokers had significant increased risk relative to never smokers for both neovascular (OR = 1.54; CI: 1.38–1.72; P = 2.8 × 10^{-15}) and atrophic (OR = 1.38; CI: 1.18–1.61; P = 3.37 × 10^{-10}) AMD but not early AMD (OR = 0.94; CI: 0.86–1.03; P = 0.16), implicating smoking as a major contributing factor to disease progression from early signs to the visually disabling late forms. Extended haplotype analysis incorporating rs405509 did not identify additional risks beyond ε2 and ε4 haplotypes. Our expanded analysis substantially improves our understanding of the association between the APOE locus and AMD. It further provides evidence supporting the role of cholesterol modulation, and low-density cholesterol specifically, in AMD disease etiology.

KEY WORDS: age-related macular degeneration; AMD; apolipoprotein E; APOE; case-control association study

Introduction

Age-related macular degeneration (AMD; MIM# 603075) is in its late form, the leading cause of incurable visual impairment among individuals of European descent over the age of 50 [Centers for Disease Control and Prevention, 2004], accounting for more than half of all new cases of registered blindness [Evans and Wormald, 1996].

The socioeconomic burden associated with AMD is increasing in our aging societies with almost 30% of those aged 75 years and above showing early signs of disease [Klein et al., 1992; Vingerling et al., 1995]. AMD is a common disorder of complex etiology with multiple genetic, environmental, and lifestyle factors contributing to the phenotype, although the specifics of the etiology remain largely unresolved [Swaroop et al., 2007]. AMD by definition affects the macular region of the retina that is associated with detailed central vision. AMD is commonly divided into early AMD (eAMD) and late AMD, and the vision impairing late AMD is subdivided into geographic atrophic (GA) and neovascular (NV) AMD or mixed GA and NV together (GANV). eAMD is characterized by drusen formation and pigmenatory changes at the level of the retinal pigment epithelium (RPE), and can progress through atrophy of the pigment epithelium to the visually disabling late atrophic and/or NV phenotypes.

Advances in our understanding of the genetic basis of the disease have identified risk and protective variants in several genes associated with the complement pathway and chronic inflammation such as factor H (CFH) [Edwards et al., 2005, Hageman et al., 2005; Haines et al., 2005; Hughes et al., 2006; Klein et al., 2005], component 2 (CC2)/factor B (CFB) region [Gold et al., 2006; McKay et al., 2009], component 3 (C3) [Maller et al., 2007; McKay et al., 2010; Park et al., 2009; Yates et al., 2007], and complement factor 1 (C1F) [Fageress et al., 2009]. Beyond the complement pathway, chromosome 10q26 and specifically the age-related maculopathy susceptibility 2 (ARMS2) locus has been implicated as a second major genetic contributor to the AMD disease process [Dewan et al., 2006; Jakobsdottir et al., 2005; Rivera et al., 2005; Yang et al., 2006]. The high linkage disequilibrium that exists between ARMS2 and the serine protease HTRA1 makes it difficult to determine the source of the genetic effect at this locus, although data have been reported supporting mitochondrial involvement through interaction with translocase of outer mitochondrial membrane proteins and colocalization to the mitochondrial-rich ellipsoid region of the photoreceptors [Fritsche et al., 2008; Kanda et al., 2007]. Mitochondrial dysfunction and oxidative stress have been implicated in AMD disease etiology with reports of increased mitochondrial damage in the neural retina and RPE with ageing. Reports of mitochondrial genomic variation and associated increased AMD risk [Canter et al., 2008; San Giovanni et al., 2009] provide an excellent rationale for the involvement of oxidative stress in the disease pathway. More recently, TIMP3, a metalloproteinase involved in degradation of the extracellular matrix, hepatic lipase C (LIPC), and cholesterylester transfer protein (CETP), key genes involved in the metabolism of triglycerides and high-density lipoproteins (HDL), were implicated in AMD pathogenesis through genome-wide association studies (GWAS) [Chen et al., 2010; Neale et al., 2010].

One of the first reported genetic associations with AMD was the protective effect exerted by the ε4 haplotype of apolipoprotein E (APOE; MIM# 107741), a lipid transport protein that acts as a ligand for the low-density lipoprotein (LDL) receptor, which is involved in the maintenance and repair of neuronal cell membranes [Klaver et al., 1998; Souied et al., 1998]. Association of APOE with AMD pathogenesis is supportive of mechanisms such as immunoregulation and cell signaling [Zarbin, 2004]. Variation at two single nucleotide polymorphisms (SNPs) within the coding sequence of the APOE gene, rs429358 and rs7412, results in different isoforms reported to attenuate binding affinity to the LDL receptor. For example, ε2 has a much reduced binding affinity leading to lower total cholesterol levels with respect to ε3 and ε4, which reveal a higher binding affinity with higher total cholesterol levels [Siest et al., 1995]. Three allelic variants derived from these SNPs commonly referred to as ε2, ε3, and ε4 are differentiated on the basis of cysteine (Cys) and arginine (Arg) residue interchanges at positions 112 (rs429358) and 158 (rs7412) in the amino acid sequence and give rise to 6 diplo-
Materials and Methods

Study Population, Risk Factors, and Clinical Phenotypes

Initially 18 research groups likely to have APOE genetic data in a well-phenotyped dataset were invited to participate. The analysis originated from 15 of these studies in 40 centers based in 11 countries that had data on APOE in AMD patients and suitable controls: nine European countries (United Kingdom, Germany, the Netherlands, Norway, Estonia, Italy, France, Greece, and Spain), six centers in the United States and one in Australia [Augood et al., 2004; Baird et al., 2006; Bergeron-Sawitzke et al., 2009; Conley et al., 2005; Dandekar et al., 2006; Ennis et al., 2008; Francis et al., 2009; Fritsche et al., 2009; Haan et al., 2006; Hadley et al., 2010; McKay et al., 2009; Zareparsi et al., 2004]. Some studies have reported increased risk of AMD associated with ε2 [Baird et al., 2004; Schmidt et al., 2002; van Leeuwen et al., 2004; Zareparsi et al., 2004] while others have suggested that effect modification by sex [Baird et al., 2004; Schmidt et al., 2002] or smoking status may occur [Schmidt et al., 2005].

Previously, pooled data and meta-analyses in much smaller sample sizes indicated a significant protective effect associated with ε4 and a nonsignificant increased risk associated with ε2 [Bojanowski et al., 2006; Thakkinstian et al., 2006; van Leeuwen et al., 2004]. In our investigation, we invited contributing studies to pool individual sample data to assess APOE genotype in AMD with respect to accompanying clinical phenotype data and to test for interaction with sex, age, and smoking status.

Control subjects were classified on the basis of direct clinical examination or by retinal imaging and were graded as having either no signs of AMD in either eye, or had fewer than five hard drusen of diameter ≤ 63μm and no focal pigmentary irregularities such as hyperpigmentation or hypopigmentation (i.e., grades 0a and 0b using the definitions of the Wisconsin Age-Related Maculopathy Grading System; n = 10,623). Cases were classified according to AMD diagnosis in the worst eye. Participants with drusen > 63μm and/or focal pigmentary irregularities but had not progressed to late AMD, were classified as eAMD (i.e., grades 1a–3; n = 4,143). Late AMD was defined as those individuals with geographic atrophy (grade 4a) and/or exudative AMD (grade 4b) in at least one eye. Samples with late AMD were subcategorized to those with NV without GA (n = 3,935), GA without NV (n = 1,370), and both NV and GA in the same or fellow eye (GANV; n = 1,089). Cases of macular disease due to other primary causes that mimic NV AMD, such as myopic maculopathy, adult vitelliform, any retinal scarring, and idiopathic macular telangiectasia, were excluded.

All participants provided prior written informed consent, and the protocols were reviewed and approved by local institutional review boards. Recruitment procedures and detailed AMD grading methods for each study have been described previously [Augood et al., 2004; Baird et al., 2006; Bergeron-Sawitzke et al., 2009; Conley et al., 2005; Dandekar et al., 2006; Ennis et al., 2008; Francis et al., 2009; Fritsche et al., 2009; Haan et al., 2006; Hadley et al., 2010; McKay et al., 2009; Vingerling et al., 1995; Yates et al., 2007; Zareparsi et al., 2004].
Statistical Analysis

Analysis was restricted to samples derived from participants of self-reported European descent and who had been assessed for AMD through retinal photography or clinical examination. Call rates for all SNPs were verified and minor allele frequencies assessed; departure from Hardy–Weinberg Equilibrium (HWE) was determined separately in cases and controls, using the χ^2 goodness-of-fit test ($P < 0.01$). Associations between haplotype and AMD and possible effect modification by smoking, age, and sex were assessed using likelihood-ratio χ^2 tests in the logistic regression model. Sex and age were considered to be potential confounding variables, particularly in population surveys where cases of AMD were older and more often female than those who were AMD free. To allow for this and also for the different control group selection criteria employed in the various case–control studies, sex and age (categorized in five year groups) were included in all logistic regression models as were interactions between sex and study and between age group and study. Similar findings were obtained with age treated as a continuous variable rather than categorized.

To assess the most appropriate genetic model two diplotype analyses were explored separately with $\epsilon 3\epsilon 3$ assigned as the reference group in each: (1) $\epsilon 2\epsilon 2, \epsilon 2\epsilon 3,$ and $\epsilon 3\epsilon 3$; and (2) $\epsilon 4\epsilon 4, \epsilon 3\epsilon 4,$ and $\epsilon 3\epsilon 3$. The diplotype effects were estimated using the model-free approach [Minelli et al., 2005], which does not assume that the underlying genetic model is known in advance and makes use of the information available on all diplotypes. Odds ratios (ORs), OR$_1$ (comparing $\epsilon 2\epsilon 2$ with $\epsilon 3\epsilon 3$), OR$_2$ $(\epsilon 2\epsilon 3 \text{ vs. } \epsilon 3\epsilon 3)$, OR$_3$ $(\epsilon 4\epsilon 4 \text{ vs. } \epsilon 3\epsilon 3)$, and OR$_4$ $(\epsilon 3\epsilon 4 \text{ vs. } \epsilon 3\epsilon 3)$ were estimated, adjusting for study, age group, sex, and smoking status, using methods previously described [Minelli et al., 2005; Thakkinstian et al., 2006]. These ORs were modeled on a logarithmic scale accounting for both between and within study variation. The ratios $\lambda_1 = \log \text{OR}_1/\log \text{OR}_2$ and $\lambda_2 = \log \text{OR}_2/\log \text{OR}_4$ were estimated. These parameters capture information about the genetic model, as follows; the model is recessive if $\lambda = 0$, dominant if $\lambda = 1$, and additive if $\lambda = 0.5$. A homozygous or heterosis model is appropriate for $\lambda > 1$ or $\lambda < 0$. Additionally, logistic regression was used to fit various genetic models and the Akaike Information Criteria was calculated to choose the most appropriate genetic model. ORs with 95% confidence intervals (CIs) were then estimated after first checking that there was no evidence of heterogeneity in genetic effects between studies. This was done using likelihood-ratio tests to assess the significance of interactions in the logistic model.

Multinomial logistic regression was used to test if the contribution of APOE and smoking to AMD varied between the three late AMD subphenotypes (GA, NV, and GANV) and between eAMD and late AMD. In these analyses, the various disease subgroups were compared with a common control group. The multinominal logistic regression was fitted using the mlogit command in STATA (StataCorp, College Station, TX) while the remainder of the analysis was performed in SPSS (SPSS Inc, Chicago, IL).

Results

APOE Haplotype and Diplotype Frequencies

Of the 10,537 classified cases, 4,143 (39%) were categorized as eAMD and 6,394 (61%) as late AMD (Table 1). Late AMD cases were further categorized by subphenotype: GA: $n = 1,370$ (21%); NV: $n = 3,993$ (62%); and GANV: $n = 1,089$ (17%). APOE haplotype frequencies in controls varied between studies ranging from 6.7% to 10.8% for $\epsilon 2$, 70.8% to 81.8% for $\epsilon 3$, and 9.5% to 20.8% for $\epsilon 4$ (Supp. Table S1). APOE haplotype frequencies also differed by phenotype with less variation in $\epsilon 2$ (7.9–10.2%) and $\epsilon 3$ (78.0–80.9%) than in $\epsilon 4$ (9.1–14.1%) (Supp. Table S2). No evidence for departure from HWE was detected in participating studies for any SNP, and genotyping quality control metrics are provided (Supp. Table S3).

Assessment of Genetic Model

The most appropriate genetic models for the APOE diplotype were assessed from parameters λ_1 and λ_2 representing the ratio of risks in specific diplotypes [Minelli et al., 2005]. The parameter λ_3, estimated as 0.49 (CI: 0.29–0.89), was strongly indicative of an additive model for $\epsilon 4$ ($\lambda_2 = 0.5$). The parameter λ_4 was estimated at 0.14 (CI: 0.01–0.89) suggesting a recessive model for $\epsilon 2$ was likely ($\lambda_4 = 0$) although an additive model ($\lambda_4 = 0.5$) could not be excluded (Table 2). This choice of model was further supported by the Akaike Information Criteria that attained its minimum value for the recessive model (12807.37) compared to the values obtained for the general (12809.37), additive (12811.34), and dominant models (12811.84). This model is most in keeping with the diplotype comparisons shown in Figure 1 ($\epsilon 2\epsilon 3$ and $\epsilon 2\epsilon 4$ vs. $\epsilon 3\epsilon 3$), which clearly indicate minimal increase in risk associated with a single copy of $\epsilon 2$.

Association of APOE with Late AMD

Initial comparison of diplotype frequencies between late AMD and controls used the $\epsilon 3\epsilon 3$ diplotype as a reference for calculating ORs, CI, and P values. ORs were estimated after adjustment for age group and sex within each study and for smoking status (ever vs. never). The $\epsilon 2\epsilon 2$ diplotype showed a significantly increased risk for late AMD after adjustment for age group and sex within each study and for smoking status ($OR = 1.83; CI: 1.04–3.23; P = 0.04$), with nonsignificant differences in risk associated with the two heterozygous $\epsilon 2\epsilon 3$ diplotypes ($\epsilon 2\epsilon 3$: OR = 0.97; CI: 0.85–1.10; $P = 0.62$; $\epsilon 2\epsilon 4$: OR = 0.88; CI: 0.64–1.20; $P = 0.41$) relative to the reference $\epsilon 3\epsilon 3$ diplotype. Both the heterozygous $\epsilon 3\epsilon 4$ diplotype (OR = 0.71; CI: 0.64–0.80; $P = 5.54 \times 10^{-6}$) and the homozygous $\epsilon 4\epsilon 4$ diplotype (OR = 0.45; CI: 0.29–0.69; $P = 2.97 \times 10^{-4}$) showed significantly decreased risks compared to the reference $\epsilon 3\epsilon 3$ diplotype for late AMD (Fig. 1).

The estimate of the risk per $\epsilon 4$ haplotype with late AMD was OR = 0.72; CI: 0.65–0.79; $P = 4.41 \times 10^{-11}$. Addition of interaction terms to the logistic model suggested no evidence of heterogeneity of the $\epsilon 4$ haplotype risk between studies ($\chi^2 = 15.0, df = 14, P = 0.38$; Fig. 2). The risk estimate for the $\epsilon 2\epsilon 2$ diplotype relative to the $\epsilon 3\epsilon 3$ diplotype was OR = 1.83; CI: 1.04–3.23; $P = 0.036$, with little evidence of heterogeneity between studies ($\chi^2 = 19.8, df = 14, P = 0.14$).

Analyses of APOE Diplotype and AMD Subphenotype

Tests for heterogeneity of the OR for $\epsilon 4$ between studies were not significant for any of the four AMD subphenotypes (NV: $\chi^2 = 12.0, df = 14, P = 0.61$; GA: $\chi^2 = 9.90, df = 14, P = 0.77$; GANV: $\chi^2 = 15.2, df = 14, P = 0.37$; eAMD: $\chi^2 = 19.4, df = 14, P = 0.15$). These results indicate that risk estimates per $\epsilon 4$ haplotype were homogeneous across studies and so can be validly pooled. Corresponding tests for the $\epsilon 2\epsilon 2$ diplotype were not considered robust because of the very low frequency of this diplotype and consequently are not presented.
Table 2. Multivariable Analysis of APOE Genotype and AMD Subphenotype were Adjusted for Age Group and Gender within Each Study and for Smoking Status

<table>
<thead>
<tr>
<th>Risk</th>
<th>Late AMD (n = 6,199)</th>
<th>GA (n = 1,320)</th>
<th>GANV (n = 1,058)</th>
<th>eAMD (n = 4,102)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>P</td>
<td>OR (95% CI)</td>
<td>P</td>
</tr>
<tr>
<td>recε2a</td>
<td>1.83 (1.04–3.22)</td>
<td>0.04</td>
<td>0.97 (0.85–1.10)</td>
<td>0.62</td>
</tr>
<tr>
<td>addε4b</td>
<td>0.72 (0.65–0.79)</td>
<td>4.41 × 10¹⁻¹¹</td>
<td>0.74 (0.69–0.83)</td>
<td>7.88 × 10⁻⁸</td>
</tr>
<tr>
<td>λ1</td>
<td>0.14 (0.01–0.89)</td>
<td>0.01</td>
<td>0.49 (0.27–0.82)</td>
<td>0.01</td>
</tr>
<tr>
<td>λ2</td>
<td>0.49 (0.27–0.82)</td>
<td>0.01</td>
<td>0.49 (0.27–0.82)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Assessment of ε2ε2 risk by AMD subphenotype (Table 2) resulted in similar nonsignificant increases in risk after adjustment for age group, sex, smoking status, and ε4 (NV: OR = 1.86; CI: 1.00–3.48; GA: OR = 1.59; CI: 0.68–3.69; GANV: OR = 1.82; CI: 0.68–4.85; eAMD: OR = 1.59; CI: 0.96–2.65). Multinomial logistic regression analysis showed no significant difference in the ε2ε2 effect between the three late AMD subphenotypes (χ² = 0.35, df = 2, P = 0.84) or between all late AMD combined and eAMD (χ² = 0.01, df = 1, P = 0.91) (Fig. 3A).

There was a significant decrease in risk associated with each copy of ε4 (Table 2) in all AMD subphenotypes (NV: OR = 0.74; CI: 0.66–0.83; GA: OR = 0.65; CI: 0.55–0.77; GANV: OR = 0.71; CI: 0.59–0.85; eAMD: OR = 0.84; CI: 0.77–0.92) after adjustment for age group, sex, smoking status, and ε2. The multinomial logistic model tests for differences in the ε4 effects between the three late AMD subphenotypes (χ² = 4.33, df = 2, P = 0.11) and between all late AMD and eAMD (χ² = 2.52, df = 1, P = 0.11) were not significant (Fig. 3B).

Sex and APOE Haplotype

Due to variability in recruitment procedures, including the use of some spouse controls in several of the case-control studies, sex was treated primarily as a confounder rather than an independent risk factor in the analysis. However, tests for differences between...
Figure 3. Odds ratio associated with (A) \(\varepsilon_2\) diplotype (recessive model) and (B) \(\varepsilon_4\) haplotype and late AMD (GA, NV, and GANV samples combined) were estimated after adjustment for age group and gender within each study and smoking status. A: \(\varepsilon_2\) diplotype (recessive model): OR = 1.83; CI: 1.04–3.23; \(P = 0.04\) (Table 2). B: \(\varepsilon_4\) per haplotype (additive model): OR = 0.72; CI: 0.65–0.79; \(P = 4.41 \times 10^{-11}\) (Table 2). No significant heterogeneity in associated risk was detected between each late AMD subphenotype (\(\varepsilon_2\): \(\chi^2 = 0.35, \text{df} = 2, P = 0.84\); \(\varepsilon_4\): \(\chi^2 = 4.33, \text{df} = 2, P = 0.11\)) or between all late AMD and eAMD (\(\varepsilon_2\): \(\chi^2 = 0.01, \text{df} = 1, P = 0.91\); \(\varepsilon_4\): \(\chi^2 = 2.52, \text{df} = 1, P = 0.11\)).

Sexes were estimated in the late AMD risk associated with APOE by fitting interaction terms within the logistic regression model. These indicated no effect modification by sex for either \(\varepsilon_2\) (\(\chi^2 = 0.56, \text{df} = 1, P = 0.46\)) or \(\varepsilon_4\) (\(\chi^2 = 0.47, \text{df} = 1, P = 0.49\)). Analysis of APOE diplotype and late AMD in males and females separately is presented in Supp. Figure S1.

Smoking Status and AMD

Smoking status (ever smoker vs. never smoker) was associated with a highly significant increased risk for late AMD after adjustment for age group and sex (OR: 1.50; CI: 1.36–1.65; \(P = 7.92 \times 10^{-17}\); Table 2). Tests for differences between ever smokers and never smokers in the late AMD risk associated with APOE were obtained by fitting interaction terms. These indicated no significant effect modification by smoking for either \(\varepsilon_2\) (\(\chi^2 = 0.08, \text{df} = 1, P = 0.78\)) or \(\varepsilon_4\) (\(\chi^2 = 1.91, \text{df} = 1, P = 0.17\)). Analysis of APOE diplotype and late AMD in never smokers and ever smokers separately is presented in Supp. Figure S2.

Extended APOE Haplotype

Genotype data to estimate extended haplotype frequencies (rs405509, rs429358, and rs7412), with adjustment for age, sex,

The test for differences in the effect of smoking between each late AMD subphenotype was not significant (\(\chi^2 = 3.4, \text{df} = 2, P = 0.18\)), but a difference in the effect of smoking was detected between late AMD and eAMD (\(\chi^2 = 66.5, \text{df} = 1, P < 0.00001\); Fig. 4). Significant heterogeneity in the effect of smoking was also detected between studies (Fig. 4; eAMD: \(\chi^2 = 34.0, \text{df} = 14, P = 0.002\); NV: \(\chi^2 = 48.9, \text{df} = 14, P < 0.001\); Late AMD: \(\chi^2 = 52.4, \text{df} = 14, P < 0.001\)). Moderate but nonsignificant heterogeneity was detected for the effect of smoking in GA (\(\chi^2 = 21.9, \text{df} = 14, P = 0.08\)) but none in GANV (\(\chi^2 = 11.7, \text{df} = 14, P = 0.63\)).

Test for differences between ever smokers and never smokers in late AMD risk associated with APOE were obtained by fitting interaction terms within the logistic regression model. These indicated no significant effect modification by smoking status for either \(\varepsilon_2\) (\(\chi^2 = 0.08, \text{df} = 1, P = 0.78\)) or \(\varepsilon_4\) (\(\chi^2 = 1.91, \text{df} = 1, P = 0.17\)). Analysis of APOE diplotype and late AMD in never smokers and ever smokers separately is presented in Supp. Figure S2.

Extended APOE Haplotype

Genotype data to estimate extended haplotype frequencies (rs405509, rs429358, and rs7412), with adjustment for age, sex,
and smoking were available for 1,739 late AMD cases and 4,725 controls. Haplotype frequency estimates using UNPHASED [Dudbridge, 2008] are presented in Table 3 and linkage disequilibrium values in Supp. Figure S3. Comparison of ORs between the different haplotypes based on the genotype at rs405509 (i.e., G-ε2 vs. T-ε2, G-ε3 vs. T-ε3, G-ε4 vs. T-ε4) showed no significant difference in effect between G-ε2 and T-ε2 (OR = 1.58; CI: 0.85–2.95; P = 0.15), between G-ε3 and T-ε3 (OR = 0.99; CI: 0.88–1.11; P = 0.85), or between G-ε4 and T-ε4 (OR = 1.07; CI: 0.71–1.62; P = 0.75) following adjustment for age, sex, and smoking status. Comparison of extended haplotypes against a reference category G-ε3/G-ε3 did not identify significant variation in risk beyond G-ε3/G-ε4 (OR = 0.61; CI: 0.38–0.99; P = 0.04) and T-ε4/T-ε4 (OR = 0.27; CI: 0.08–0.85; P = 0.03).

Discussion

The results generated for ε4 from this pooled data analysis (OR = 0.72 per haplotype; CI: 0.65–0.79; P = 4.41 × 10^{-11}) provide support for previous studies that identified a protective role with late AMD [Bojanowski et al., 2006; Klaver et al., 1998; Soudi et al., 1998]. Previous studies of APOE were dominated by smaller reports involving multiple comparisons that tend to be more liable to publication biases. By conducting a pooled analysis in a large dataset of both published and previously unreported studies, we attempted to clarify the relationship between AMD risk and APOE. Variation in geographic distribution of APOE haplotype frequencies as measured in this large study also highlights the limitations of small studies whose power to detect associations diminishes with decreased haplotype frequency; for example, the frequency of the ε4 haplotype in the control samples from the Edinburgh study (9.5%) was less than half that observed in the Melbourne study (20.8%), and a study in Edinburgh would thus have lower power than a study in Melbourne for any given sample size.

While the significantly increased risk associated with ε2 for AMD has been reported previously [Fritsche et al., 2009], most studies have found nonsignificant increases in risk. This study has demonstrated a significant increased risk associated with ε2 for late AMD only (OR = 1.83; CI: 1.04–3.23; P = 0.04), with a corresponding low population attributable risk. The wide CIs and imprecise estimates associated with the rare ε2ε2 diploptotype meant that, although our results were most consistent with a recessive genetic model, we could not entirely exclude an additive genetic model. Little heterogeneity was detected between studies for the genetic effect exerted by either ε2 or ε4 and, indeed, the genetic effects were not significantly different across all subphenotypes of AMD.

Previous reports have suggested that APOE effects may be stronger in women [Baird et al., 2004; Schmidt et al., 2002]. Our analyses did not find evidence of interaction between APOE haplotype risk and sex. Adjustment for both age and sex within studies was made using a logistic regression model, to adjust for possible confounding, but the differing designs of the studies included in this analysis were such that we could not use the data to assess the effect of age and sex on AMD risk. This would be best addressed in a population-based longitudinal study. An earlier meta-analysis examining the effect of APOE haplotype on coronary risk found no effect modification by sex in more than 100,000 participants [Bennet et al., 2007]. Similarly, we did not find evidence to support APOE effect modification by sex in AMD.

Smoking status (ever smoker vs. never smoker) showed an increased risk associated with late AMD (OR = 1.50; CI: 1.36–1.65) after adjustment for age group, sex, and APOE diploptotype, and showed a nonsignificant difference in effect size between late AMD subphenotypes. Our finding of no significant association between smoking status and eAMD suggests that smoking exacerbates early symptoms leading to the progression from eAMD to late AMD, supporting previous epidemiology-based findings [Clemons et al., 2005; Klein et al., 2008; Smith et al. 1996; Vingerling et al., 1996; Xu et al., 2006]. Cigarette smoke may influence macular pigment concentrations [Hammond et al., 1996; Stryker et al., 1988], increase oxidative stress [Beatty et al., 2000], and impair choroidal microcirculation [Suner et al., 2004], all processes hypothesized to be involved in the pathogenesis of AMD. Significant heterogeneity in smoking effect was detected across studies for late AMD, which may be attributable in part to variation in smoking criteria definitions. Standardization

Table 3. Extended Haplotypes were Inferred from Genotype Data at rs405509 (G/T), rs429358 (T/C), and rs7412 (C/T)

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>Frequency</th>
<th>Confidence</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-ε2</td>
<td>0.069</td>
<td>0.076</td>
<td>1.58</td>
</tr>
<tr>
<td>T-ε2</td>
<td>0.021</td>
<td>0.005</td>
<td>1.00</td>
</tr>
<tr>
<td>G-ε3</td>
<td>0.441</td>
<td>0.426</td>
<td>0.99</td>
</tr>
<tr>
<td>T-ε3</td>
<td>0.371</td>
<td>0.343</td>
<td>1.00</td>
</tr>
<tr>
<td>G-ε4</td>
<td>0.027</td>
<td>0.034</td>
<td>1.07</td>
</tr>
<tr>
<td>T-ε4</td>
<td>0.071</td>
<td>0.116</td>
<td>1.00</td>
</tr>
<tr>
<td>G-ε3/G-ε3</td>
<td>0.184</td>
<td>0.186</td>
<td>1.00</td>
</tr>
<tr>
<td>G-ε3/T-ε3</td>
<td>0.343</td>
<td>0.283</td>
<td>1.21</td>
</tr>
<tr>
<td>G-ε3/T-ε4</td>
<td>0.135</td>
<td>0.118</td>
<td>0.95</td>
</tr>
<tr>
<td>G-ε3/T-ε4</td>
<td>0.083</td>
<td>0.122</td>
<td>0.80</td>
</tr>
<tr>
<td>G-ε3/G-ε2</td>
<td>0.063</td>
<td>0.066</td>
<td>1.10</td>
</tr>
<tr>
<td>G-ε3/G-ε4</td>
<td>0.020</td>
<td>0.029</td>
<td>0.61</td>
</tr>
<tr>
<td>T-ε4/T-ε4</td>
<td>0.053</td>
<td>0.083</td>
<td>0.77</td>
</tr>
<tr>
<td>T-ε3/G-ε2</td>
<td>0.069</td>
<td>0.058</td>
<td>1.10</td>
</tr>
<tr>
<td>T-ε4/G-ε2</td>
<td>0.018</td>
<td>0.019</td>
<td>1.32</td>
</tr>
<tr>
<td>T-ε2/T-ε3</td>
<td>0.012</td>
<td>0.005</td>
<td>1.03</td>
</tr>
<tr>
<td>T-ε4/T-ε4</td>
<td>0.003</td>
<td>0.013</td>
<td>0.27</td>
</tr>
</tbody>
</table>

UNPHASED [Dudbridge, 2008] was used to estimate extended haplotype frequencies for late AMD (n = 1,739) and controls (n = 4,725), and to obtain odds ratios (OR) with 95% confidence intervals (CIs) adjusted for age group, center, and smoking status.

Diplotypes with frequency ≥1% in both cases and controls are omitted.

*Adjusted for study, age, gender, and smoking status.
of definitions could not be imposed retrospectively beyond the level of ever smoker versus never smoker. As such, this study is limited in its ability to estimate the effect of smoking on disease outcome. Previous reports of effect modification of APOE haplotype by smoking status were not supported in this study suggesting that APOE haplotype and smoking status are independent risk factors.

Previously, rs405509 has been implicated in attenuating APOE promoter activity and subsequent expression [Artiga et al., 1998; Campillos et al., 2003; Ramos et al., 2005] with possible consequences in attenuating AMD risk [Fritsche et al., 2009]. Results reported in this analysis, however, do not support an influence of rs405509, with OR comparisons showing no significant difference in effect between G-ε2 and T-ε2, G-ε3 and T-ε3, or G-ε4 and T-ε4 following adjustment for age group, sex, and smoking status. However, several slight differences between this study and that of Fritsche and colleagues are worthy of consideration. First, Fritsche and colleagues compared haplotype frequencies between all AMD cases and controls while this study compared frequencies between late AMD only and controls. Second, the original study compared the frequency of each haplotype combination against all others combined while this study compared the frequency of each haplotype against a single reference haplotype (G-ε3/G-ε3). Third, while rs405509 should sufficiently define the extended APOE haplotype reported previously, additional SNPs were genotyped by Fritsche and colleagues that were not replicated in this study.

The retina hosts the body’s second highest level of APOE production after the liver and is likely to play an important role in the maintenance of normal retinal function [Anderson et al., 2001]. Several possible mechanisms of APOE effect on AMD have been proposed such as variability in isoform dimerization potential associated with lipid cholesterol transport or variation in receptor binding affinity [Klaver et al., 1998]. In addition, the positively charged ε4 haplotype has been proposed to improve permeability of Bruch’s membrane, for lipid transport and reducing debris accumulation associated with drusen formation [Crabb et al., 2002; Souied et al., 1998]. In older eyes, evidence supporting reduced lipoprotein transportation across Bruch’s membrane was reported as a consequence of age, leading to drusen deposition and RPE insult [Curcio et al., 2009]. More recently evidence to support ε4 as a potential lipoprotein transporter of the macular pigments lutein and zeaxanthin, has been suggested [Loane et al., 2010] and reduced dietary intake of these carotenoids has been associated with increased risk of AMD [Seddon et al., 1994]. As such, variation in genes that modulate retinal cholesterol levels may influence AMD risk [Connor et al., 2007].

The strengths and limitations of the current study should be considered. Our analysis is almost five times larger than published meta-analyses [Bojanowski et al., 2006; Swaroop et al., 2007; Thakkinstian et al., 2006] and, although we cannot completely exclude publication bias in our estimates, this should be limited by our inclusion of both published and unpublished studies. Access to individual level data enabled appropriate adjustment to limit potential confounding by sex, age, and smoking, and assessment of potential interaction between covariates. In addition, phenotypic subclassification facilitated stratification by disease subtypephenotype identifying smoking as a major contributing factor to late AMD but not as a risk factor for the early form of the disease. However, variation in recruitment procedures between studies and indeed study type, that is, case control versus population, limited the ability to measure the full influence of age, sex, and smoking on disease risk. Nevertheless, comparison of effect sizes between population and case control studies, showed no significant differences in the ORs for ε2ε2, ε4, and smoking status between the two different study designs.

Recent GWAS identified novel variants in the LIPC and CETP genes associated with AMD and cholesterol level modulation, suggesting some alleles may influence cholesterol levels in the macula and in the blood in opposite directions [Chen et al., 2010; Neale et al., 2010]. Improved understanding of APOE effect on AMD disease etiology will improve accuracy of AMD risk prediction models, eventually offering some therapeutic benefit. While the complexity surrounding APOE and cholesterol modulation within the retina remains, potential benefit derived from statin therapy for the treatment of cardiovascular disease (CVD) warrants further investigation in AMD, given the overlap in risk factors for both conditions [Snow and Seddon, 1999]. While ε4 significantly increases risk associated with CVD, atherosclerosis, Alzheimer’s disease (AD), and other demen- tias [Ang et al., 2008], it clearly plays a protective role with respect to AMD. The mechanisms by which APOE and cholesterol levels modulate AMD risk, especially with respect to the opposing effects reported for other complex diseases such as AD and CVD, are worthy of further investigation.

Acknowledgments

The authors thank the patients, their families, and the control subjects who participated in the study.

References

Francis PJ, Hamon SC, Ott J, Weleber RG, Klein ML. 2009. Polymorphisms in...

