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INTRODUCTION

The community-wide Critical Assessment of techniques for pro-

tein Structure Prediction (CASP) experiments provide a standard

platform to assess the state of the art of structure modeling meth-

ods. Recent CASP experiments have witnessed considerable progress

in template-based modeling (TBM),1–3 where the efforts have been

mainly focused on developing better methods for template identifi-

cation4–6 and on combining multiple threading templates to

improve the quality of comparative models.7–11 However, an

imprudent amalgamation of multiple templates can result in dis-

torted structural models containing non-protein like secondary

structures and steric clashes.12,13 Although these models may have

some level of usefulness, such as fold family classification and do-

main boundary recognition, the local structural inaccuracies render

them inapplicable for high-resolution biological applications like

ligand-docking and virtual screening.14,15

Compared to TBM, not much progress has been observed in ab initio

folding (or free-modeling; FM)16–18 of proteins which lack analogous

templates in the Protein Data Bank (PDB)19 especially since the inven-

tion of the idea of structural fragment assembly.20,21 For I-TASSER,22–

24 although the reassembly of structural fragments excised from the

threading alignments often results in significantly improved models, the
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ABSTRACT

I-TASSER is an automated pipeline for protein

tertiary structure prediction using multiple

threading alignments and iterative structure as-

sembly simulations. In CASP9 experiments, two

new algorithms, QUARK and fragment-guided

molecular dynamics (FG-MD), were added to the

I-TASSER pipeline for improving the structural

modeling accuracy. QUARK is a de novo structure

prediction algorithm used for structure modeling

of proteins that lack detectable template struc-

tures. For distantly homologous targets, QUARK

models are found useful as a reference structure

for selecting good threading alignments and guid-

ing the I-TASSER structure assembly simulations.

FG-MD is an atomic-level structural refinement

program that uses structural fragments collected

from the PDB structures to guide molecular dy-

namics simulation and improve the local struc-

ture of predicted model, including hydrogen-

bonding networks, torsion angles, and steric

clashes. Despite considerable progress in both the

template-based and template-free structure mod-

eling, significant improvements on protein target

classification, domain parsing, model selection,

and ab initio folding of b-proteins are still needed

to further improve the I-TASSER pipeline.
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quality of final models is still essentially dependent on that

of threading templates identified in the PDB library.

In view of these major difficulties in the field and espe-

cially the issues of the I-TASSER pipeline as reflected in the

previous CASP experiments,13,25 we have been working on

the development of two types of methods. First, we devel-

oped REMO26 for atomic structure construction and

improvement of hydrogen-bonding network. Although

REMO shows a significant ability to remove backbone

clashes and to optimize the H-bonding network, it cannot

improve the secondary structures and reduce side-chain

atom clashes when the C-a traces contain severe local struc-

ture distortions. For further refinement of the I-TASSER

models, we recently developed fragment-guided molecular

dynamics (FG-MD),27 which uses constrained molecular

dynamic simulations to adjust the position of each atom in

the protein. Second, we developed an ab initio tertiary

structure prediction algorithm QUARK28,29 which assem-

bles the protein structure models from scratch.

In CASP9, we evaluated the I-TASSER pipeline with

these two new components. Analyzing the efficiency of

these two new methods is the focus of this report.

Although we participated in both human and server pre-

dictions, since the methods used in the two categories

are essentially the same, this report will be mainly on the

automated server predictions.

METHODS

Flowchart of I-TASSER pipeline

The protein structure prediction procedure used by the

human (Zhang) and the two server groups (Zhang-Server

and QUARK) during CASP9 is depicted in Figure 1. The

methods used by Zhang and Zhang-Server groups were

based on standard I-TASSER pipeline and were essentially

the same, except for that the human prediction exploited

the templates in CASP9 Server Section, while Zhang-

Server used threading alignments generated by LOMETS,

a locally installed meta-server threading program.7

LOMETS alignments were also used to define domain

boundaries and to categorize the targets into ‘‘Easy,’’ ‘‘Me-

dium,’’ and ‘‘Hard’’ categories. A target was classified as

‘‘Easy,’’ if the Z-score of the top-scoring templates from all

the threading programs was higher than the program spe-

cific Z-score cutoff (Z0); on the contrary, if none of the

threading programs found a hit with a Z-score >Z0, the

target was classified as ‘‘Hard’’; the rest of the cases were

classified as ‘‘Medium.’’7 We note that there is no definite

correspondence between our target categorization (Easy/

Medium/Hard) and assessor’s target classifications (TBM/

FM) because the prediction is blind and the scoring func-

tion of threading algorithms is imperfect.

For Easy targets, Zhang and Zhang-Server used the

standard I-TASSER pipeline while for the Medium and

Hard targets, they collected spatial restraints from the ab

initio models by QUARK to guide the I-TASSER struc-

ture assembly simulations; the weight of the restraints

was stronger for Hard targets than that for Medium tar-

gets. For Hard targets, LOMETS templates were further

sorted based on their structure similarity to the QUARK

model, with the purpose of fishing out better templates,

and sorted templates were used as input of I-TASSER.

The QUARK server generally predicted the models by

ab initio folding. But for Easy targets which have signifi-

cant templates available, it uses the I-TASSER program

but with a slightly different way of combination of the

LOMETS threading templates (see below). All the proce-

dures were kept fully automated.

The I-TASSER pipeline consisted of three steps: template

identification, structure assembly, model selection and full-

atomic model refinements, which are described below.

Template identification

The target sequences were first threaded through a

non-redundant PDB structure library to identify template

structures that may have a similar structure or similar

structural motif as the query protein. The threading in I-

TASSER is conducted by LOMETS,7 which includes eight

individual threading programs: FUGUE,30 HHSEARCH,4

MUSTER,5 PROSPECT2,31 SAM-T02,32 SPARKS2,33

PPA-I,23 and SP3.34 In Zhang-server, the I-TASSER

pipeline used six threading programs (HHSEARCH,

MUSTER, PROSPSECT2, SPARKS2, PPA-I, and SP3)

which on average had a better performance in our

benchmarking tests. The QUARK server (for Easy targets)

used all the eight LOMETS threading programs plus two

in-house threading programs PPA-II and PPA-III23 to

include more diverse alignments. In the human predic-

tion (Zhang), threading alignments generated by

HHSEARCH, MUSTER, PROSPECT2, PPA-I and the

models submitted by five CASP servers (Zhang-Server,

QUARK, RAPTORX, Baker-ROBETTASERVER, and

HHpredA) were used for collecting spatial restraints and

structural fragments.

Figure 1
Modeling flowchart by Zhang, Zhang-Server, and QUARK in CASP9.
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For Hard targets, most of the top templates have a

Z-score < Z0 and their ranking order in LOMETS is close

to random. A recent study35 showed that the folds present

in current PDB library are nearly complete for single-do-

main proteins, indicating that appropriate templates should

be detectable for almost all the proteins. Considering this,

we compare the top 5 QUARK ab initio models to the top

20 templates identified by each threading programs and

then re-rank the templates of all LOMETS programs based

on their TM-score to the closest QUARK models. We used

the best TM-score rather than the average TM-score to all

five QUARK models because a significant match of the

threading template to any ab initio models can be consid-

ered as a meaningful hint to speculate that the template

might have some right aspects since threading and QUARK

are two distinct approaches. Furthermore, only 20 tem-

plates were selected because we assume that a reasonable

threading program should have a meaningful alignment in

its top 20 hits; including more templates will increase

number of false positive templates after sorting. We note

that although we use the QUARK models to re-rank the

templates, only the original LOMETS alignments will be

input into the I-TASSER simulations.

The purpose of the template sorting is to exploit the

ab initio models to fish out correct templates from the

PDB pool. Indeed, we noticed that even a partially folded

QUARK model (i.e., only part of the structure is correct)

can sometimes identify templates with correct full-length

fold. Since I-TASSER uses top 20 (for Easy targets) or

top 50 (for Medium/Hard targets) threading templates, a

correctly sorted list with better threading alignments put

at the top, will improve the final I-TASSER models.

Structure assembly simulations

In I-TASSER, continuous fragments are excised from

threading templates and exploited for assembling full-

length models,23,36 while the unaligned loop regions are

built by ab initio modeling procedure37 on a lattice sys-

tem. The I-TASSER force field includes four components:

(1) general knowledge-based statistical terms from the

PDB (Ca/side-chain correlations,37 hydrogen-bond,38 and

hydrophobicity39); (2) spatial restraints collected from

threading templates7; (3) sequence-based Ca/Cb/side-
chain center contact predictions by SVMSEQ40,41; and

(4) distance map from segmental threading.42 As men-

tioned above, for Medium and Hard target, I-TASSER also

uses spatial restraints collected from QUARK models.

SVMSEQ is a Support Vector Machine (SVM) based

residue–residue contact prediction algorithm that only uses

sequence information.40 It was trained using local window

features (position-specific scoring matrices, secondary

structure types and solvent accessibility predictions) and

in-between segment features (residue separations, second-

ary structure of the contacting residues, and state distribu-

tions of the contacting residues). Nine sets of contact

predictions are generated based on the three atom types

(Ca, Cb, and side-chain center), each with three different

contact cutoffs (6, 7, and 8Å). All nine ab initio contact

predictions are used as restraints during I-TASSER simula-

tion, with weights proportional to their confidence.41

I-TASSER structure assembly procedure consists of two

sets of iterative Monte Carlo simulations.23 The first

round uses the threading templates as initial structures.

In the second round, the simulations start from the clus-

ter centroids generated by SPICKER,43 which clusters all

the trajectories from the first set of simulations. Spatial

restraints, which are collected from the PDB structures

hit by TM-align44 using the cluster centroids as query

structures, are also incorporated in the I-TASSER simula-

tions. The purpose of the second stage is to refine the

local geometry as well as to improve the global topology

of the SPICKER centroids.

Model selection and refinements

The structures in low-temperature replicas of I-

TASSER and QUARK simulations are clustered by

SPICKER.43 Cluster centroids are generated by averaging

the Ca coordinates of all the clustered decoys. Next, full-

atomic models are constructed by REMO26 from these

cluster centroids, while optimizing the hydrogen-bonding

network, where a H-bonding list is pre-constructed based

on secondary structure predictions and the 3D backbone

model. REMO can quickly build the initial full-atomic

models from Ca traces but often the models have local

structure and side-chain atom distortions. Finally, all the

models generated by REMO are submitted to FG-MD,27

with the purpose of improving the local geometry and

hydrogen-bonding, and reducing backbone and side-

chain steric clashes in the model. FG-MD simulations are

carried out in vacuum, as implemented in LAMMPS45

package. The force field consists of energy terms from

Amber99,46 Ca repulsive potential, statistical hydrogen-

bonding potential, and distance restraints collected from

both the template and structural fragments searched by

TM-align44 in the PDB library, using initial I-TASSER/

QUARK models as the probe. The distance restraints are

generated by combination of distance maps from initial

model, TM-align global template, and TM-align frag-

ments at each location. FG-MD refinement simulation is

the last step of structure predictions pipeline used by

both I-TASSER and QUARK servers and the refined

models are used as final models for submission.

QUARK ab initio structure assembly

QUARK is an ab initio structure prediction method that

uses atomic-level knowledge-based force field and replica-

exchange Monte Carlo simulation to generate high quality

3D structures.28,29 For a given target, QUARK first

generates a set of small structural fragments of 1–20

I-TASSER CASP9 Pipeline
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residues by ‘‘gapless threading’’ of the target sequence

through the PDB library and ranks them based on a compos-

ite scoring function consisting of sequence and structure pro-

files, predicted secondary structure, and torsion angles. The

range of fragment length was optimized based on a large scale

benchmarking test.47 The ‘‘gapless threading’’ here refers to a

procedure to scan the query sequence fragments along the

PDB structure from N- to C-terminal without gap/insertion

allowed. This is essentially different from the normal thread-

ing algorithms which include gaps/insertions in the query-

template alignments. Also, the normal threading programs

usually use the entire sequence of query proteins rather than

the fragmental sequences except for special purpose.42

Top 200 fragments at each residue position are exploited

for assembling full length 3D models using replica-

exchange Monte Carlo simulations. The protein chain here

is described by a reduced model, consisting of main-chain

atoms and side-chain center to reduce the number of

explicitly treated degrees of freedom and the intra-molecular

interactions in the polypeptide chain. The structure assembly

simulations are guided by a composite force field which

consists of atomic-level and knowledge-based energy terms

along with distance profiles collected from the fragment

library. Energy terms such as H-bond potential, excluded

volume, and statistical potentials are calculated based on the

pairwise atomic distances in the reduced model.

Two types of movements are implemented in the Monte

Carlo simulations: (a) continuous movements which

include bond-length, bond-angle and torsion-angle modi-

fications, and segmental rotation, shift, and perturbation;

(b) discontinuous movements including helix repack, b

repair, b-turn reform, and fragment replacement by that

from the template fragment library. During the fragment

replacement movements, more shorter fragments are

attempted to substitute the old ones as the simulation

runs longer. This is for the purpose of increasing the ac-

ceptance rate, since when decoy structures become more

compact it is much harder to accept new big movements.

Twenty independent Monte Carlo runs are imple-

mented; each run has 40 replicas covering 500 simulation

cycles. Decoys from 10 low temperature replicas are clus-

tered by the SPICKER program. The final atomic models

are constructed from the cluster centroids by REMO26

and FG-MD,27 as described above.

RESULTS

Based on CASP assessor’s definitions, 116 CASP targets

were split into 147 domains and assessed in the server sec-

tion. Among the 147 domains, 118 are TBM targets, while

29 domains are free-modeling targets (FM, including three

TBM/FM targets). As some of the targets had very close

templates in the PDB library, only 78 domains were eval-

uated in the human section. Because much more targets

were tested in the server section and the methods used by

our server and human predictions are identical, we will

mainly focus on automated server predictions.

I-TASSER draws templates closer to native

I-TASSER fragment assembly simulations are guided by

spatial information collected from LOMETS threading tem-

Figure 2
Comparison between the first Zhang-Server models and the threading templates by LOMETS. RMSD (a) and TM-score (b) values of the template

and the final model are calculated in the same set of aligned residues.
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plates. Accordingly, a comparison between the final model

and initial templates is important to analyze whether the

initial template structures were brought closer to the native

states in the final predicted model. Figure 2 shows a head-

to-head comparison of structure similarity (RMSD and

TM-score) between the Zhang-Server models and LOMETS

threading templates, where all the values are calculated in

the same threading aligned region. As shown in Figure 2, I-

TASSER simulations improved the template structures for

129 out of 147 test cases according to RMSD. The average

RMSD and TM-score of the top threading template in the

aligned regions are 7.3 Å and 0.578, with an average align-

ment coverage of 91%. After the I-TASSER refinement simu-

lations, the structure of the same aligned region had an

RMSD of 6.0 Å and TM-score of 0.634, a 10% TM-score

increase without considering the effect of the enlarged cover-

age. Here and afterwards, the percentage of the TM-score

improvement is calculated based on the relative difference,

i.e., the ratio of the absolute difference to the value before

the improvement (10% in this case). This should not be con-

fused with the ratio of the absolute difference versus the best

possible model with a TM-score5 1 (5.6% in this case).

The average result of comparison between the final

predicted models and the initial templates is summarized

in Table I. As shown in column 4, the threading align-

ments of the TBM targets often have higher alignment

coverage than that of FM targets. If we compare the aver-

age TM-score of the first threading templates to the first

I-TASSER model (columns 5 and 8), the improvements

of the I-TASSER model over threading are 8% and 36%

for TBM and FM targets on the threading aligned

regions, respectively. The larger improvement observed

for FM targets is mainly because template detection for

FM targets is by definition more difficult and most of

the top threading alignments are incorrect, thus leaving

more room for improvement by I-TASSER simulations.

Meanwhile, when comparing the best template with the

best models, the improvements are 3% for TBM targets

and 28% for FM targets. Here and afterwards, ‘‘the best

template’’ refers to the best template identified by

LOMETS threading, which should not be confused with

the ‘‘best possibly templates’’ in the PDB library.

Although above RMSD and TM-score improvements

have been mainly calculated in the threading aligned

regions, the I-TASSER simulations generated improve-

ments through the whole chain. To count this, we list the

full-chain TM-score data in the last column of Table I,

where the TM-score increases over the first (best)

template are 13% (7%) and 61% (52%) for the TBM

and FM targets, respectively.

Figure 3 shows three typical examples which reflect

both gain and loss in the I-TASSER simulations. For the

two TBM targets, T0606-D1 and T0614-D1, both first

LOMETS templates have an incorrect fold [shown in

left panel of Fig. 3(a,b)]. The best templates were

detected by LOMETS but with a very low rank (shown

in the middle panel). The final Zhang-Server models

have a higher accuracy than the best templates for both

cases. The global topology of Zhang-Server model1 for

T0606-D1 [Fig. 3(a) right panel] was significantly

improved (TM-score 5 0.68) over the best identified

template (TM-score 5 0.63), because I-TASSER simula-

tions correctly folded the C-terminal region (146–157)

of the protein, which was incorrectly oriented in the

threading template. The C-terminal region of the best

threading template is isolated and disconnected with the

other aligned region. I-TASSER simulation makes the

two parts continuous and compact guided by the force

field especially the terms of hydrophobicity and distance

restraints that were collected from multiple templates.

Similarly, the I-TASSER simulations improved the local

b-sheet packing for T0614-D1, resulting in Zhang-server

Model1 [Fig. 3(b) right panel] have a lower (1.79 Å)

RMSD and higher TM-score (0.81) than the best identi-

fied template (RMSD 5 2.68 Å; TM-score 5 0.79).

T0569 is a TBM target where I-TASSER simulation

deteriorated the quality of the template [Fig. 3(c)]

where the first Zhang-Server model has a lower TM-

score (0.46) than the initial template (0.54) in the

threading aligned regions. However, if we examine the

five submitted models, the fifth Zhang-Server model has

a higher TM-score (0.57) than the initial template. The

main reason is that most threading algorithms hit

2kvzA as their first hit (which has a TM-score of 0.4),

Table I
Comparison of Threading Templates and Zhang-Server Final Models

First (best) template First (best) model

Nt
a Rali

b Covc TM-scoreali
d Rali

b Rall
e TM-scoreali

d TM-scoreall
f

TBM 118 4.7 (4.0) 93% (93%) 0.671 (0.721) 3.8 (3.4) 4.3 (3.9) 0.724 (0.743) 0.755 (0.773)
FM 29 17.7 (16.5) 85% (82%) 0.194 (0.237) 14.9 (13.8) 15.2 (14.1) 0.264 (0.303) 0.312 (0.361)
All 147 7.3 (6.4) 91% (91%) 0.578 (0.627) 6.0 (5.5) 6.4 (5.9) 0.634 (0.657) 0.667 (0.691)

aNumber of targets.
bRMSD to native of the threading aligned region (Å).
cCoverage of the aligned region.
dTM-score to native of the threading aligned region.
eRMSD to native of the full-length model (Å).
fTM-score to native of the full-length model.
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while only two programs found the closest structural

template 3i57A (TM-score 5 0.64). This example high-

lights the typical issue of model ranking in I-TASSER

when the majority threading programs consistently hit

the incorrect (usually the second best) template while

the best template is hit only by the minority of the

threading programs.

Human versus server predictions

Although both Zhang and Zhang-Server predictions

were based on an automated I-TASSER modeling proce-

dure, human predictions have on average a higher TM-

score mainly because the human predictions had a broad

range of template selections from the CASP servers which

have on average a better quality than the LOMETS

Figure 3
Examples of the predicted models (thick backbone) superimposed on the native structures (thin backbone). (a) T0606-D1; (b) T0614-D1; (c)

T0569-D1. The first template, best template in top 10, and the first Zhang-Server model are listed in the left, middle, and right panel, respectively.

Blue to red runs from N- to C-terminal. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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threading, especially for FM targets. A head-to-head

comparison between Zhang and Zhang-Server in Figure 4

shows how much the better templates influence the

I-TASSER modeling results. Obviously there are more

proteins, in which the human models have higher TM-

score or lower RMSD than that for the sever models.

The average TM-scores of the human models for the FM

and TBM targets are improved by 5% and 3%, respec-

tively, over the server models. Next, we look into several

cases (T0529, T0564, and T0608) in more detail which

reveal the major reasons of the improvement in our

human predictions.

T0529 is a large protein of 569 residues, consisting of

two-domains. The N-terminal domain is a FM target,

while the C-terminal domain is a TBM target. Based on

whole-chain threading alignments generated by LOMETS,

the query sequence was split into three-domains; how-

ever, all the domains were still classified as Hard targets

by LOMETS. The final models were generated by assem-

bling the models of the three individual domains. Since

the sequence was split based on automated domain split-

ting procedure, the domain boundaries were defined

incorrectly. Subsequently, correct templates for the sec-

ond domain were not identified by LOMETS, resulting in

a low accuracy final model [TM-score 5 0.26, left panel

of Fig. 5(a)]. During the human prediction, it was

noticed that multiple server models showed convergence

in the second domain region and the domain boundaries

were therefore correctly identified. After the correct do-

main splitting, correct templates like 1y97A were hit by

multiple threading programs and the final model submit-

ted by ‘‘Zhang’’ had a TM-score 5 0.55 [right panel of

Fig. 5(a)].

T0564 is a small single-domain beta protein (89 resi-

dues) which includes two b-hairpins and two pairs of

long-range b sheets [Fig. 5(b)]. The first Zhang-Server

model has a TM-score 5 0.36, while the second Zhang-

Server model has a TM-score 5 0.56. The incorrect rank-

ing of models is again because the best templates (1gutA

and 1wjjA) were hit by only a minority of threading pro-

grams. In the human prediction, more correct templates

from the CASP servers were included which helped to

improve the accuracy of spatial restraints, resulting in the

biggest I-TASSER cluster having the correct fold.

T0608 is a two-domain a1b protein of 279 residues.

The first domain T0608-D1 is a short a-helical domain

with no detectable templates, while the second domain is

a TBM target with 2gu1A as the closest structure tem-

plate. Zhang-Server attempted to fold this protein as a

whole chain, which resulted in an incorrectly predicted

topology (TM-score 5 0.17) for T0608-D1 [shown in

the left panel of Fig. 5(c)]. During the human prediction,

the target was split into two domains, because the I-

TASSER ab initio routine is better suited for handling

small single-domain proteins.23 Moreover, models gener-

ated by QUARK were of a better quality than the thread-

ing templates, which further improved the quality of spa-

tial restraints, resulting in first human model with a

much improved TM-score 5 0.32, although it was still

far from satisfactory [right panel of Fig. 5(c)].

Template re-ranking by QUARK model
improves the quality of top templates

During the server modeling, threading alignments of

30 targets were re-ranked based on their structure simi-

Figure 4
Comparison between the first predicted models by Zhang-Server and Zhang for 78 human targets.
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larity to QUARK ab initio models, in which 11 were

TBM targets and 19 were FM targets. These are the tar-

gets which were judged by LOMETS as Hard targets.

Nevertheless, there are indeed some targets which have

good templates detected by some threading programs

with low rank. In these cases, QUARK-based re-ranking

may help improve the template selection. To evaluate the

effect of re-ranking, in Table II we list the TM-scores of

the templates with and without re-ranking. Average TM-

score of the QUARK ab initio models used for re-ranking

templates, which has an alignment coverage 100%, is

shown in column 11.

For the TBM targets, the average TM-score of the first

template after re-ranking was increased from 0.361 to

0.437, showing an overall improvement of 21%. The

absolute increase of TM-score is 0.076. However, the TM-

score of the best in top 10 templates was improved only

marginally from 0.507 to 0.522, an improvement of 3%.

Figure 6 shows the scatter plot of TM-score of the

QUARK re-ranked templates versus the original threading

templates compared to the native structures. For the first

template, only two TBM targets (T0548-D2 and T0630-

D1) had an obviously worse TM-score than the original

template [Fig. 6(a)]. For the best in top 10 templates, only

T0630-D1 has an obviously lower TM-score [Fig. 6(b)]. If

we compare the QUARK model and the re-ranked tem-

plates, the TM-score of the first template (0.437) is 15%

even better than the TM-score of the full-length QUARK

model (0.380) which was used as the reference to select

the templates. As we observed, the QUARK ab initio mod-

els sometime matches only part of the template which are

supposed to be correct; but the entire region of the

selected template structure turns out to be correct, which

has a higher TM-score than the QUARK models. Here,

the part of the consensus structure between the ab initio

model and the threading template served as a fingerprint

to pick up the entire template.

For the FM targets, since no threading alignments have

a significant Z-score, the original ranking of templates

based on Z-score is usually unreliable because the corre-

lation of the TM-score and Z-score is very weak in this

region of Z-score.7 In this situation, a structural similar-

ity between threading template and the model built by

ab initio simulations can be more meaningful. As shown

in Table II, the TM-score of the templates sorted by the

QUARK models is higher for both the first and the best

templates than that of the original templates. Figure 6

shows that there are dominantly more points of Hard

targets above the diagonal line. The overall TM-score

improvements after template re-ranking for FM targets

are 28% and 7% for the first and the best in top 10 tem-

plates, respectively (Table II).

There are only three targets, including two FM targets

(T0578-D1 and T0621-D1) and one TBM target (T0630-

D1), where the best template after re-ranking is worse

than the best template in the original ranking. In all

Figure 5
Examples of structure modeling by Zhang-Server (left) and Zhang

(right). (a) T0529-D2; (b) T0564-D1; (c) T0608-D1. Models (thick

backbone) are superimposed on the native structure (thin backbone)

with blue to red running from N- to C-terminal. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table II
Comparison of Threading Templates With and Without Re-Ranking

LOMETS templates
Templates with
re-ranking

QUAb ModcFirst Besta First Besta

Type Nt Covd TMe Covd TMd Covd TMe Covd TMe TMe TMe

TBM 11 85% 0.361 89% 0.507 97% 0.437 95% 0.522 0.380 0.542
FM 19 91% 0.214 88% 0.304 90% 0.273 92% 0.326 0.311 0.349
All 30 88% 0.268 88% 0.379 92% 0.333 93% 0.398 0.336 0.420

aThe best in top 10 templates.
bThe first model by QUARK ab initio folding.
cThe first submitted model in Zhang-Server.
dCoverage of the threading alignment over the target sequence.
eAbbreviation of TM-score.
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these cases, native structures contain several b-sheets
with long-range contacts. These examples highlight the

inability of QUARK to fold b-proteins of complex topol-

ogy, because the current ab initio programs tend to build

all b-proteins into b-hairpins of short-range contacts,

which are often worse than those generated by threading

procedure. Therefore, re-ranking procedure does not

work well for the b-proteins.
Figure 7 illustrates the procedure of I-TASSER model-

ing for the Hard targets by combining the LOMETS and

QUARK-based template re-ranking. The shown example

is from a FM target T0618, with six helices and one short

b-hairpin. The long loop (15–73) between the 2nd and

3rd helices spans around the helices 4 and 5, which con-

stitute a helix bundle of complex topology. Before re-

ranking, the top 10 templates found by LOMETS all have

very low coverage and wrong topology with the best tem-

plate having a TM-score 5 0.26. The ab initio model

generated by QUARK has a TM-score 5 0.30 with the

helices 1, 2, 6 approximately correctly packed. Subse-

Figure 6
Comparison of the threading templates before and after re-ranking by QUARK models. (a TM-score of the first template. (b) TM-score of the best

in top 10 templates.

Figure 7
Flowchart of the I-TASSER simulation for Hard targets with LOMETS templates sorted by QUARK models. The example shown is from T0618-D1.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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quently, the LOMETS templates are sorted based on the

TM-score to the QUARK model, resulting in the best

template in top 10 having a TM-score 5 0.36. Further-

more, I-TASSER simulations are guided by restraints

from QUARK model as well as re-ranked top templates,

resulting in a much improved model with a TM-score 5
0.44. According to Table II, the average TM-score of the

first I-TASSER model is 0.420 which is around 57%

higher than the first LOMETS template for the 30 Hard

targets.

Ab initio contact prediction by SVMSEQ

The topology of protein structures can be specified by

the residue–residue contact maps. For TBM targets, when

most of the top threading alignments by LOMETS are

correct, template-based contact maps have a high accu-

racy. For FM targets, the coverage and accuracy of the

contact map are usually low since template alignments

are often diverged and incorrect. Therefore, the sequence

based contact predictions may become useful to protein

structure predictions. Table III shows a comparison

between the Ca and side-chain contacts by LOMETS and

SVMSEQ40 for all the 147 domains. For TBM targets,

the average accuracy and coverage by LOMETS are 0.632

and 0.728 for Ca, which are much higher than that of

the SVMSEQ (0.348 and 0.279). For the FM targets,

however, both the coverage and accuracy of the Ca and

side-chain contacts by the SVMSEQ predictions are

higher than that of the template-based contact predic-

tions. Especially, there were a substantial number of new

native contacts (18 Ca and 19 side-chain contacts) which

were not predicted by LOMETS, which demonstrates a

complement between the ab initio contact prediction and

the template-based contact prediction. A combination of

these two complementary contacts predictions will result

in significantly improved accuracy of contact restraints

which is essential for I-TASSER structure assembly.41

T0604-D1, the N-terminal domain of VP0956 protein

from Vibrio parahaemolyticus, is a typical example show-

ing the help of the sequence-based contact prediction on

protein structure modeling. This domain is a FM target

and most ab initio folding programs failed to fold this

protein, mainly because of long-range paired b-sheets.
However, Zhang-Server built a high-resolution model

with a RMSD 2.66 Å to native. The whole chain thread-

ing of T0604 by LOMETS has no reliable alignment and

only 9 out of 92 Ca contact predictions was correct,

where the total number of contacting pairs (Ca distance

<8 Å) in the native structure is 121. Even running

LOMETS on the T0604-D1 sequence, the accuracy of

template-based Ca contacts is only 15.2%. SVMSEQ pre-

dicts 97 contacting pairs, out of which 63 are correct,

and 55 are new contacts. The correct and wrong contacts

are shown in red and blue, respectively, in Figure 8(a).

The correct contacts mainly occur along the b pairs

Table III
Sequence-Based Versus Template-Based Contact Predictions

Ca contacts Side-chain contacts

LOMETS SVMSEQ LOMETS SVMSEQ

NPa Acc Cov Acc Cov NNb NPa Acc Cov Acc Cov NNb

TBM 308 0.632 0.728 0.348 0.279 5 371 0.626 0.554 0.284 0.193 15
FM 206 0.143 0.185 0.194 0.197 18 243 0.183 0.133 0.185 0.149 19
All 287 0.532 0.617 0.317 0.263 8 345 0.536 0.468 0.264 0.184 16

aNumber of contact pairs in native structure.
bNumber of new native contact pairs predicted by SVMSEQ but not by LOMETS.

Figure 8
Structure modeling result for the FM target T0604-D1. (a) Contact predictions by SVMSEQ with the true positive contacts in solid red lines and

the false positive contacts in dash blue lines. (b) The first Zhang-Server model. (c) The experimental structure.
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and some within the loop regions. By comparing the

Zhang-Server model and the native structure in Figure

8(b,c), it is observed that the three beta strands are

almost perfectly packed and the two alpha helices in the

model have exactly the same orientations as in the native

structure.

Model quality improved by FG-MD

The models generated after I-TASSER simulation are

reduced protein models, where each residue is repre-

sented by its Ca and side-chain center of mass. Con-

struction of full atomic models from the Ca traces, while

retaining the global topology, is a non-trivial problem,

especially, considering that the SPICKER cluster centroids

are average structures and contain severely distorted local

structures.

There are a number of available tools which can be

used for atomic structure construction and refine-

ment.26,48–50 In Table IV, we show a comparison

between the quality of the final models constructed from

SPICKER cluster centroids by three different procedures,

i.e., PULCHRA,50 REMO,26 and FG-MD,27 where FG-

MD started the atomic-level refinement from the REMO

models. Since all the targets were submitted by Zhang-

Server as full-length models, for simplicity, the evaluation

is done on 116 full-length targets without splitting them

into domains.

Although the PULCHRA and REMO models on aver-

age have similar RMSD and TM-score, REMO models

include 7% more hydrogen bonds than PULCHRA mod-

els, where H-bonds are calculated by HBPLUS.51 If we

define HB-score as the ratio of the number of the native

H-bonds in the model to the total number of H-bonds

in the native structure, the HB-score of the REMO mod-

els is 6.3% higher than that of the PULCHRA models.

Compared to REMO, the models generated after FG-MD

refinement show a small improvement in RMSD (by 0.29

Å) and TM-score (by 1%), while the HB-score of the

models increased on average by 28.8%; this is mainly

attributed to the additional H-bonding energy terms

introduced in the MD simulations.27

Another important ability of the atomic structure con-

struction is to remove the steric clashes. To evaluate this

ability, we define a clash-score which counts the total num-

ber of clashes between every pair of atoms including

hydrogen atoms. Here, we use HAAD52 to add hydrogen

atoms in all three models by PULCHRA, REMO, and FG-

MD. Since none of these models are specifically optimized

for clashes based on HAAD H-atoms, this comparison

should be more objective than by considering the clashes

of heavy atoms only. As a result, PULCHRA has the weak-

est ability in excluding the steric clashes, which has on av-

erage 331.2 clashed pairs in the model. The REMO models

have 32% less clashes (250.6) than the PULCHRA models,

while FG-MD further reduces the number of clashes by 28

times compared to REMO. Most of the clashed pairs in

FG-MD were from the H-atoms added by the HAAD pro-

gram, which are not optimized by MD simulations. The

average number of clashes of our submitted models is 9.0,

which is comparable to 10.3, the number of clashes in

CASP9 experimental structures whose hydrogen atoms are

also added by HAAD.

Finally, we exploit the standard MolProbity program53

to evaluate the overall quality of our atomic models.

Table IV
Model Quality by PULCHRA, REMO, and FG-MD on 116 Targets

RMSD
(�) TM-score

No.
HB HB-score Clash-score MPscore

PULCHRA 7.658 0.663 128 0.349 331.2 4.653
REMO 7.656 0.664 137 0.371 250.6 4.247
FG-MD1

REMO 7.364 0.673 193 0.478 9.0 2.942

Figure 9
Modeling result of the target T0530. (a) Ca trace generated by the SPICKER cluster centroid. (b) Full atomic model by REMO from the Ca trace.

(c) Final model refined by FG-MD. (d) The experimental structure. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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MolProbity provides a MPscore for each structural

model, which is a log-weighted combination of the num-

ber of various structural outliers, including side-chain

rotamer outliers, Ramachandran outliers, and steric

clashes. A structure with a numerically lower MPscore

indicates better quality.53 As shown in Table IV, the aver-

age MPscore of the FG-MD models is 2.942 which is

44% lower than that of the REMO models where the

MPscore of the REMO model is 10% lower than that of

the models by PULCHRA.

In Figure 9, we show an example from Target T0530

to demonstrate the procedure of atomic structure con-

struction and refinement. The protein has a coiled

b-hairpin structure [Fig. 9(d)]. Figure 9(a) shows the

starting Ca trace model generated after SPICKER cluster-

ing. This model has a high TM-score of 0.811 to native,

but contains 44 Ca clashes. Starting from this initial

structure, full-atomic model is generated by REMO [Fig.

9(b)], which has a similar TM-score of 0.809 to native

and 33 hydrogen bonds (HB-score 5 0.44). Although

REMO removed all the Ca clashes in the model, it intro-

duced 82 atomic clashes between other heavy atoms. Fig-

ure 9(c) shows the final model generated after FG-MD

refinement simulation, starting from the REMO model.

The FG-MD simulations not only removed all the atomic

clashes, but also improved the main-chain topology

(TM-score 5 0.818). The number of H-bonds in the

FG-MD model is also higher with an improved HB-score

of 0.49.

Despite the ability of FG-MD in improving the local

structures, the average improvement on the global back-

bone topology by FG-MD is small (with a TM-score

increasing � 0.2% compared to the I-TASSER models).

The major driven force for the observed template

improvements is attributed to the use of multiple thread-

ing templates.3

DISCUSSION

The I-TASSER CASP9 pipeline, without human inter-

vention, showed encouraging results on protein tertiary

structure modeling, which is required for the genome-

scale applications. Compared to the last CASP experi-

ments, progress was observed in ab initio folding and

high-resolution refinement with the development of

QUARK and FG-MD. For distantly homologous proteins,

QUARK ab initio models provided a reasonable structural

framework for generating spatial restraints and for re-

ranking of threading templates; while sequence-based ab

initio contact predictions by SVMSEQ further helped

guide the I-TASSER fragment assembly simulations.

Finally, FG-MD improved the local quality and some-

times main-chain topology of the predicted models,

thus improving the biological usability of the predicted

structures.

Generally, threading-based structural assembly method

works well when appropriate templates are detected,

while QUARK-based ab initio folding generates better

models for FM targets. However, correct determination

of target type (TBM or FM) is critical for choosing the

appropriate methodology for structure modeling. The

challenge is at the weakly homologous modeling region,

where reasonable templates can be available even when

the threading alignment scores are low. Correspondingly,

these templates are often ranked low. We found that a

combination of the threading alignment score (Z-score)

and the structural similarity (i.e., average pairwise TM-

score) between the templates identified by different

threading programs provides a more accurate classifica-

tion of the targets.15 For FM targets that contain

b-sheets with long-range contacts and complex topology,

we observed that the TBM generates better results than

ab initio folding. This on one hand advises us the way to

choose the appropriate method for FM target modeling;

on the other hand, it highlights the inability of ab initio

folding method to model complicated b-sheet topology,

which is the major problem we want to solve in the next

step of QUARK development. One possible way to

address the problem is to use the predicted residue con-

tacts (e.g., by SVMSEQ) or b-sheets (e.g., by BETApro54

or ASTRO-FOLD55,56) to guide the fold assembly simu-

lation. In the first principles method ASTRO-FOLD,

which performs ab initio folding without using database

templates, hydrophobic contacts are maximized for the

prediction of b-sheet topology through solving a combi-

natorial optimization problem. The predicted contacts

have demonstrated the ability of improving the tertiary

structure ensemble of b and a 1 b proteins.

Model selection is a classic issue in the CASP experi-

ment. I-TASSER has the advantage in refining the mod-

els, which are on average significantly better than the

initial threading templates; mainly attributed to the use

of consensus spatial restraints collected from multiple

templates. However, I-TASSER sometimes fails to select

the best model as the first model, when the best template

is detected only by minority of threading programs and

the majority of the threading alignments consistently hit

an incorrect template. Here, the second condition is

essential for I-TASSER’s failure in selecting the best tem-

plate, while it was observed that I-TASSER can often pick

up the best template if the templates by the majority of

the threading programs are diverged. When the majority

of the threading programs hit a common (incorrect or

second best) template, the consensus restraints can be

too strong and distract the template selection of the

I-TASSER modeling.

Incorrect domain splitting is another long-standing

issue in protein structure prediction. Threading-based

domain splitting, i.e., based on template structure and

unaligned regions in threading alignment, has been

shown as a powerful method for domain detection.
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However, for the extremely difficult targets, iterative thread-

ing might become necessary. T0529 is one such example,

where the I-TASSER server infers incorrect domain bound-

ary because most of the LOMETS programs generate weak

alignments for the entire query sequence. In the human

prediction, the region of 378–569 emerges as an independ-

ent domain with the alignments of a higher confident score

in the second round of LOMETS when threading was run

on the roughly split sequence based on the first round; this

eventually results in the correct detection of the C-terminal

domain, a template-based domain target.

Several protein targets in CASP9 were solved in their

quaternary structure form. For example, T0629-D2 is a

long tail fiber protein from bacteriophage T4, with three

identical protein chains intertwined together to form an

elongated six-stranded antiparallel b-strand structure.

The core of this structure is stabilized by the alternate

hydrophilic and hydrophobic regions, where the hydro-

philic residues also form coordination site for seven iron

ions. All the structure modeling methods failed to gener-

ate a reasonable structure for this domain, highlighting

the need to extend the current tertiary structure model-

ing method for quaternary structure modeling to model

these complex protein structures.
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