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Bias in low-multipole cosmic microwave background reconstructions

Craig J. Copi,1� Dragan Huterer,2� Dominik J. Schwarz3� and Glenn D. Starkman1�
1CERCA/Department of Physics/ISO, Case Western Reserve University, Cleveland, OH 44106-7079, USA
2Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040, USA
3Fakultät für Physik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

Accepted 2011 July 22. Received 2011 July 11; in original form 2011 April 12

ABSTRACT
The large-angle, low-multipole cosmic microwave background (CMB) provides a unique
view of the largest angular scales in the Universe. Study of these scales is hampered by the
facts that we have only one Universe to observe, only a few independent samples of the
underlying statistical distribution of these modes, and an incomplete sky to observe due to the
interposing Galaxy. Techniques for reconstructing a full sky from partial-sky data are well
known and have been applied to the large angular scales. In this work, we critically study the
reconstruction process and show that, in practice, the reconstruction is biased due to leakage of
information from the region obscured by foregrounds to the region used for the reconstruction.
We conclude that, despite being suboptimal in a technical sense, using the unobscured region
without reconstructing is the most robust measure of the true CMB sky. We also show that for
noise-free data reconstructing using the usual optimal, unbiased estimator may be employed
without smoothing, thus avoiding the leakage problem. Unfortunately, directly applying this to
real data with noise and residual, unmasked foregrounds yields highly biased reconstructions
requiring further care to apply this method successfully to the real-world CMB.
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1 IN T RO D U C T I O N

Several prominent anomalies in the large-angle, low-� cosmic mi-
crowave background (CMB) have been identified, starting with pio-
neering observations by the Cosmic Background Explorer (COBE;
Bennett et al. 1996), and confirmed and extended with the high-
precision observations from the Wilkinson Microwave Anisotropy
Probe (WMAP; Bennett et al. 2003). These anomalies include the
unexpectedly low correlations at scales above 60◦ (Bennett et al.
1996, 2003; Copi et al. 2010; Sarkar et al. 2011), the alignments
of the largest multipoles with each other and the Solar system (de
Oliveira-Costa et al. 2004; Schwarz et al. 2004; Land & Magueijo
2005; Copi et al. 2006), a parity asymmetry at low multipoles (Kim
& Naselsky 2010a,b,d,c) and the spatial asymmetries in the distri-
bution of power observed at smaller scales (Eriksen et al. 2004a,b;
Hansen et al. 2009). Numerous attempts have been made to explain
or explain away these anomalies (Slosar & Seljak 2004; Hajian
2007; Afshordi, Geshnizjani & Khoury 2009; Bennett et al. 2011)
– none of them successful (for a review see Copi et al. 2010, and
references therein).

The most peculiar and robust CMB anomaly is arguably the
lack of correlation on large angular scales first observed by COBE
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(Bennett et al. 1996) and confirmed and further quantified through
the S1/2 statistic by WMAP (Spergel et al. 2003). Subsequent study
of the two-point angular correlation function, C(θ ), has found fur-
ther oddities; the large-angle correlation is mainly missing outside
of the Galactic region, there being essentially no correlation on large
angles. The large-angle correlation that is observed comes from the
foreground-removed Galactic region of the reconstructed full-sky
map (Copi et al. 2009). From the internal linear combination (ILC)
map,1 the full-sky map created from the individual frequency bands
which provides our best picture of the full-sky microwave back-
ground radiation, it is found that the lack of correlation is unlikely
at the approximately 95 per cent level. However, when solely the
region outside the Galaxy of the individual frequency or ILC maps
are analysed, the lack of correlation is rare at the approximately
99.975 per cent level (Copi et al. 2009).

The study of the large-angle CMB presents special problems that
must be treated carefully. Since there is only one Universe to observe
and a few independent modes at low �, large sky coverage is needed,
and even with this coverage, very little independent information
about the ensemble is available. Further, given the observed low
quadrupole power, Cobs

2 ∼ 100–200 (μK)2, compared to the best-
fitting � cold dark matter (�CDM) model, C�CDM

2 ∼ 1300 (μK)2,

1 The ILC map and all data from the WMAP mission are freely available
online at http://lambda.gsfc.nasa.gov/.
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large-angle studies are particularly sensitive to assumptions and
unintended biases.

One suggestive example of this is provided by the ILC map itself.
If we use a pixel-based estimator for the C� as implemented in SPICE

(Chon et al. 2004), we can easily determine the quadrupole power
inside and outside the WMAP-provided analysis mask KQ75y7 to
be

C inside
2 ≈ 610 (μK)2, Coutside

2 ≈ 80 (μK)2. (1)

The KQ75y7 mask cuts out approximately 25 per cent of the sky.
Taking the weighted average of these values produces the intriguing
result

0.25C inside
2 + 0.75Coutside

2 ≈ 200 (μK)2, (2)

a value consistent with the WMAP-reported C2 (Larson et al. 2011).
Again, we stress that this is a suggestive example, not a careful anal-
ysis; the pseudo-C� (PCL) estimator employed here is suboptimal,
we have not included errors on the estimates, etc. It does, however,
show the wide discrepancy between the Galactic region and the rest
of the sky, a common theme for the ILC map. Further, it shows how
a large value mixed in from a small region of the sky significantly
impacts the final result.

In a recent paper (Efstathiou, Ma & Hanson 2010), the authors
claimed that the low S1/2 results are due to the use of a suboptimal
estimator (the pixel-based estimator) of C(θ ) and proposed an al-
ternative based on reconstructing the full sky. This proposal avoids
addressing the question of why the partial sky contains essentially
no correlations on large angular scales and instead focuses on a
new question that centres on the issue of how the full sky is recon-
structed. In this work, we carefully study full-sky reconstruction
algorithms and their effects on the low-� CMB.

It is well known that contamination affects the reconstruc-
tion of the low multipoles (Bielewicz, Górski & Banday 2004;
Naselsky, Verkhodanov & Nielsen 2008; Liu & Li 2009; Aurich &
Lustig 2011). In particular, Aurich & Lustig (2011) have found that
smoothing of full-sky map prior to analysis, as required by a recon-
struction algorithm (see Efstathiou et al. 2010, and our discussion
below), leaks information from the region inside the mask to pixels
outside the mask. They showed that the pixels outside the mask have
errors that are a significant fraction of the mean CMB temperature.
They further find that it is safest to calculate the two-point angular
correlation function on the cut sky. Here we confirm and extend
these results.

Alternative analyses, such as that suggested in Efstathiou et al.
(2010), must be performed with care. In this work, we carefully
study the full-sky reconstruction, based on the cut-sky data, in a Uni-
verse with low quadrupole power. In Section 2, we briefly present
the formalism typically employed in CMB studies. Section 3 con-
tains our results, and we conclude in Section 4. Ultimately, we find
that if a full-sky map, such as the ILC, is a faithful representation
of the true CMB sky, then a reconstruction algorithm can reproduce
its properties. This is not surprising: if the full-sky map is already
trusted, there is no need to perform a reconstruction and nothing is
gained by doing so. However, if part of the full sky is not trusted or
is known to be contaminated, then, by reconstructing without prop-
erly accounting for the assumptions implicit in the algorithm, the
final results will be biased towards the full-sky values. Again, this is
not surprising; if information from the questioned region is allowed
to leak into the rest of the map, then it will affect the final results
and nothing will be learned about the validity of the reconstruction.

In any reconstruction of unknown values from the properties of
existing data, assumptions must be made. Often these assumptions

are not explicitly stated. For the work presented here, we take the
observed microwave sky outside of the Galactic region as defined
through the KQ75y7 mask to be a fair sample of the CMB. This
partial-sky region is known to have essentially no correlations on
large angular scales; it is unlikely in the best-fitting �CDM model
at the 99.975 per cent level (Copi et al. 2009). Our study shows
the bias introduced into full-sky reconstructions when an admixture
of a region with larger angular correlations is included prior to
reconstruction. We stress that results of the partial-sky analysis are
not being questioned, instead a new question is being asked: how
should the full sky be reconstructed when there is a wide disparity
between the statistical properties of the region outside the Galaxy
and that inside?

2 R ECONSTRUCTI ON FORMALI SM

Optimal, unbiased estimators for both the C� and a�m are well
known and discussed extensively in the literature (see, for exam-
ple, Tegmark 1997; Efstathiou 2004; de Oliveira-Costa & Tegmark
2006; Efstathiou et al. 2010). Here we provide a brief overview of
the maximum likelihood estimator (MLE) technique and introduce
our notation. For details including discussions of invertibility of the
matrices, proofs of optimality, etc., see the references.

The microwave temperature fluctuations on the sky can be rep-
resented by the vector x(êj ),

x = Ya + n, (3)

where Y is the matrix of the Y�,m(êj ), j runs over all pixels on the sky,
êj is the radial unit vector in the direction of pixel j, a is the vector
of a�m coefficients and n is the noise in each pixel. For the work
considered here, we are only interested in the large-angle, low-�
behaviour, so we assume that n can be ignored and set n = 0 in
what follows. When working with the WMAP data at low resolution,
this is justified; for example, the W-band maps at Nside = 16 have
pixel noise σpix < 3 μK. At higher resolution this is not as clearly
justified. In this work we study reconstruction bias independent of
pixel noise, so we may ignore n for our simulations. When setting
n = 0, we are further assuming that the region we are analysing is
free of foregrounds. This is a standard, though implicit, assumption
when reconstructions are performed. The covariance matrix is then
given by

C = 〈xxT〉 = S. (4)

Here the angle brackets, 〈 · 〉, represent an ensemble average. This is
the expectation value of the theoretical two-point angular correlation
function, not its measured value. As is customary, we call S the
signal matrix despite the fact that it is not the two-point angular
correlation measured on the sky. We do not include a noise matrix,
N, in our covariance since we are neglecting noise.

2.1 Reconstructing the a�m

To reconstruct the a�m, we define the signal matrix as the two-point
angular correlation function of the unreconstructed modes:

C = S =
�max∑

�=�recon+1

C�P
�. (5)

Here P� is the matrix of the weighted Legendre polynomials,

P�
i,j ≡ 2� + 1

4π
P�(êi · êj ), (6)
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and we assume that all modes with 2 ≤ � ≤ �recon are to be re-
constructed. Here �max is the maximum multipole considered. We
have chosen �max = 4Nside + 2 for this work. The optimal, unbiased
estimator is then given by (de Oliveira-Costa & Tegmark 2006)

â = Wx, W ≡ [YTC−1Y]−1YTC−1. (7)

Note that here and throughout we work in the real spherical har-
monic basis, so Y is a real matrix. The covariance matrix of our
estimator is

� ≡ 〈ââT〉 − 〈â〉〈â〉T = [YTC−1Y]−1. (8)

The signal matrix, C, need not include all pairs of pixels on the
sky. When it does, a reconstruction will produce precisely the spher-
ical harmonic decomposition. Conversely, when a sky is masked,
we only include the unmasked pixels in C. The process of ‘masking’
is thus performed by removing the masked pixels from the signal
matrix, and this process is equivalent to assigning infinite noise to
the masked pixels.

2.2 Reconstructing the C�

To reconstruct the C�, we define the signal matrix as the two-point
angular correlation of all the modes:

C = S =
�max∑
�=2

C�P
�. (9)

Note that this differs from our previous definition (5). The optimal,
unbiased estimator for the C� is then constructed from an unnor-
malized estimator, y�. Let

y� ≡ xTE�x, E� ≡ 1

2
C−1P�C−1. (10)

The correlation matrix of this estimator is the Fisher matrix,

F�,�′ = 〈 y� y�′ T〉 − 〈 y�〉〈 y�′ 〉T = 1

2
Tr[C−1P�C−1P�′

]. (11)

Finally, this gives the optimal, unbiased estimator of the C�:

Ĉ� =
∑

�′
F−1

�,�′ y�′ . (12)

Though the full Fisher matrix can be calculated, it turns out to
be nearly diagonal for reasonably small masks such as the WMAP
KQ75y7 mask. In this case, the approximations

F�,�′ ≈ 2� + 1

2Ĉ2
�

δ�,�′ , F−1
�,�′ ≈ 2Ĉ2

�

2� + 1
δ�,�′ (13)

may be employed. We have confirmed the validity of this approx-
imation and have employed it when applicable in our subsequent
analyses.

2.3 Relating the estimators

The optimal, unbiased estimators for a�m and C� are related to each
other. If we define the weighted harmonic coefficients by

β ≡ �−1 â, (14)

then

y� = 1

2

∑
m

|β�m|2 (15)

is identical to (10) from which we may calculate Ĉ� (de Oliveira-
Costa & Tegmark 2006; Efstathiou et al. 2010).

In our discussion we have been careful to note that C is defined
differently when used as an estimator for the a�m versus the C�.
In practice, when the signal-to-noise ratio is large, the estimator
for the a�m is not sensitive to the precise values and range of the
C� employed. However, to find Ĉ� from â through the weighted
harmonic coefficients (14), the full signal matrix (9) must be used
when calculating the covariance matrix (8) and Fisher matrix (11).

The above discussion shows that equation (12) is the optimal, un-
biased estimator for the C�. Even so, given â from (7) it is tempting
to define a naive estimator for the C� via

Ce
� ≡ 1

2� + 1

∑
m

|â�m|2 (16)

and use this to reconstruct C(θ ) (see fig. 5 of Efstathiou et al. 2010).
In general, this is a poor definition for the estimator as clearly an
optimal, unbiased estimator for some quantity does not provide an
optimal, unbiased estimator for the square of that quantity. Its use
leads to a biased estimator for the C� and a biased reconstruction of
C(θ ). We will explore both this estimator and the optimal, unbiased
one below.

2.4 Two-point angular correlation function

The two-point angular correlation function is defined as a sky av-
erage, that is by a sum over all pixels on the sky separated by the
angle cos θi,j = êi · êj :

C(θi,j ) ≡
∑
i,j

xi xj . (17)

Ideally, the two-point angular correlation function would also con-
tain an ensemble average over realizations of the underlying model.
Since we only have one Universe, this ensemble average cannot be
calculated. However, for a statistically isotropic Universe, the sky
average and ensemble average are equivalent. This definition has
the additional benefit that it can be calculated on a fraction of the
sky.

Alternatively, the two-point angular correlation function may be
expanded in a Legendre series,

C(θi,j ) =
∑

�

2� + 1

4π
C�P�(cos θi,j ). (18)

Note that for partial-sky coverage or lack of statistical isotropy the
C� in this expression are not the same as the Ĉ� obtained from the
a�m (see Copi et al. 2007, for a discussion). This subtlety will not
be important for the following work.

2.5 S1/2 statistic

To quantify the lack of large-angle correlations, the S1/2 statistic has
been defined by Spergel et al. (2003) to be

S1/2 ≡
∫ 1

−1/2
[C(θ )]2 d(cos θ ). (19)

Expanding C(θ ) in terms of the C� as above (18), we find

S1/2 =
∑
�,�′

C�I�,�′C�′ , (20)

where

I�,�′ ≡ (2� + 1)(2�′ + 1)

(4π)2

∫ 1

−1/2
P�(cos θ )P�′ (cos θ ) d(cos θ ) (21)

is a known matrix (see Copi et al. 2010) that can be evaluated.
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The estimator generally employed for S1/2 is

Ŝ1/2 =
∑
�,�′

Ĉ�I�,�′ Ĉ�′ . (22)

Even with Ĉ� itself an optimal, unbiased estimator of C�, this does
not produce an optimal, unbiased estimator for S1/2 (Pontzen &
Peiris 2010). For the unbiased estimator (12), we have〈
Ĉ�Ĉ�′

〉 =
∑
�̃,�̃′

F−1
�,�̃

F−1
�̃′,�′

〈
y�̃ y�̃′ T

〉

=
∑
�̃,�̃′

F−1
�,�̃

F−1
�̃′,�′

(〈 y�̃〉〈 y�̃′ 〉T + F�̃,�̃′
)

=
∑

�̃

(∑
�̃′

〈
F−1

�,�̃
y�̃

〉 〈
F−1

�′,�̃′ y�̃′
〉T

+ F−1
�,�̃

δ�′,�̃

)

≈ C�C�′ + 2

2� + 1
C2

� δ�,�′ . (23)

In the second line we have used the definition of the Fisher matrix
(11), the third line is an algebraic simplification, and in the final
line we have again used (12), the fact that Ĉ� is unbiased, and the
approximation from (13). With this, it now straightforward to see
that

〈
Ŝ1/2

〉 =
∑
�,�′

〈Ĉ�Ĉ�′ 〉I�,� = S1/2 +
∑

�

2C2
�

2� + 1
I�,�

�= S1/2. (24)

It is thus clear that (22) is a biased estimator and, in fact, is biased
towards larger values of S1/2.

As noted by Pontzen & Peiris (2010), this is of ‘pedagogical
interest’ but does not affect the studies of low S1/2. The Monte
Carlo simulations employed (see Copi et al. 2009, for example)
account for this bias. It does suggest that an alternative measure of
the lack of large-angle correlations is desirable.

2.6 Assumptions

Efstathiou et al. (2010) claim that the full-sky, large-angle CMB
can be reconstructed solely from the harmonic structure of the CMB
outside the masked, Galactic region, and independent of the contents
of the masked portion of the sky. We will demonstrate in what
follows that this claim does not hold up to closer scrutiny.

It is clear that without assumptions regarding the harmonic struc-
ture inside the masked region nothing can be said about it. In princi-
ple, the low-� harmonic structure inside the masked region could be
anything, ranging from no power to large power or wild oscillations,
making the full-sky reconstruction impossible.

Assuming a cosmological origin for the observed microwave
signal outside the masked region, it seems reasonable to assume
that it will be consistent with the signal inside the masked region.
With that assumption, the harmonic structure outside the masked
region can be extended into the masked region. For actual, full-sky
maps, there is a further assumption: the region inside the mask is
well enough determined and statistically close enough to the region
outside the mask that it does not bias the reconstruction. This latter
assumption turns out not to be true as we demonstrate below.

Note also that if the region inside the mask is trusted, then there
is no need to perform either masking or the reconstruction at all;
the full-sky map can be analysed directly. Therefore, validity of the
stringent assumptions required for the reconstruction obviates the
very need for the reconstruction.

When the reconstruction formalism described above is applied to
actual data, further assumptions are implicit. In our development, we
have assumed that the temperature fluctuations contain pure CMB
signal. In practice, besides pixel noise (which we have not included
as described above), the data may contain unknown foregrounds.
To avoid contamination by foregrounds, it is common to analyse
a foreground-cleaned map, such as the ILC map, and to mask the
most contaminated regions of the sky. In following this approach,
care must be taken not to reintroduce contamination in the data prior
to reconstruction. As we will show below, the standard process of
preparing data for reconstruction, in particular smoothing the full-
sky map, violates this requirement.

3 R ESULTS

To explore how data handling prior to reconstruction affects the
results, we have performed a series of Monte Carlo simulations of
�CDM based on reconstruction procedures suggested in the liter-
ature. We have employed the simplest best-fitting �CDM model
from WMAP based solely on the WMAP data. This is model
‘lcdm+sz+lens’ with ‘wmap7’ data from the lambda site. Our
results are insensitive to the exact details of the model since we
are performing a theoretical study to examine relative differences
between reconstructions and not performing parameter estimation.
Our simulations are performed at Nside = 128 unless otherwise
noted, and we will focus on the reconstruction of a2m and C2. Fur-
ther, our simulations only consider �recon = 10, reconstructed from
the pixels outside the KQ75y7 mask provided by WMAP and de-
graded to the appropriate resolution, and use the data from the
WMAP 7-year release.

A collection of realizations of the full sky is created as follows.

(i) Generate a random sky at Nside = 512 from the best-fitting
�CDM model.

(ii) Extract the a2m and calculate the power in the quadrupole,
denote this value by C2.

(iii) Rescale the a2m so that the C2 in the map has a fixed value,
for example rescale so that C2 = 100 (μK)2 by replacing the a2m

with a2m → a2m

√
100 (μK)2/C2. Note that this does not change

the phase structure of the a2m.
(iv) Smooth the map with a 10◦ Gaussian beam, if desired.
(v) Degrade the map to the desired resolution (Nside = 128 or

16).
(vi) Repeat the rescaling of the a2m for each value of C2 that

we wish to consider. In our simulations, we consider C2 =
10–104 (μK)2. This ensures that the same map realization is used
with only the quadrupole power changed.

This procedure constitutes a single realization. The results in this
work are based on at least 20 000 realizations.

Degrading masks requires an extra processing step. Pixels near
mask boundaries turn from the usual 1 or 0 to denote inclusion
or exclusion from the analysis, respectively, to fractional values.
We redefine our degraded masks by setting all pixels with a value
greater than 0.7 to 1 and all others to 0. For the KQ75y7 mask, this
process leaves about 70 per cent of the pixels for analysis. To be
precise, at Nside = 128 this leaves 136 828 unmasked pixels and at
Nside = 16 there are 2157 pixels left.

A map with a modest angular resolution contains all the low-�
CMB information, so it may seem surprising that we employ Nside =
128 in our studies. Instead, it is common in low-� studies to employ
a map at Nside = 16, corresponding to pixels of approximately 3◦ in
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size (see Efstathiou et al. 2010, for a recent example of this). The
effects of the choice of resolution, the need for smoothing a map
prior to analysis and the leaking of information this causes will now
be explored.

3.1 Choice of map resolution

The study of large-angle, low-� properties of the CMB appears
naively not to require high-resolution maps. Maps degraded to the
resolution corresponding to Nside = 16 are commonly employed
(de Oliveira-Costa & Tegmark 2006; Efstathiou et al. 2010). When
a map is degraded by averaging over pixels, high-frequency noise
is introduced as may be seen in Figs 1 and 2. These figures show
the reconstructed a2m using the optimal, unbiased estimator from
equation (7) for realizations with C2 = 100 (μK)2. The solid, red
lines (dashed, blue lines) show the 5th and 95th percentile lines
from our realizations for the reconstructed real (imaginary) parts of
each a2m, using maps degraded to Nside = 128 (Fig. 1) and Nside =
16 (Fig. 2) and pixels outside the KQ75y7 mask. As expected from
an unbiased estimator, the reconstructed values track the true values
(Fig. 1). Further, we see that the a21 are best determined, and the
a20 and a22 have larger variances due to the mask which produces
greater admixture of ambiguous modes for these cases. However,
for Nside = 16 (Fig. 2), we see that the reconstruction does not track
the true values and is instead biased. This bias is due to the averaging
done to degrade the maps and becomes more significant the more
the map is degraded. From this, we conclude that the coupling of the
small-scale modes to the large-scale modes caused by using maps
with resolution that is too coarse can be at least partly responsible
for reconstruction bias.

Figure 1. The 95th and 5th percentile lines for the a2m reconstructed from
the pixels outside the KQ75y7 mask at Nside = 128 (and thus �max = 514)
of �CDM realizations with C2 = 100 (µK)2, as discussed in the text. The
red, solid lines are for the real part of the a2m and the blue, dashed lines are
for the imaginary part. The black, solid line shows the expected result for a
perfect reconstruction. We see that the reconstruction is unbiased, that is it
tracks the true value.

Figure 2. The same as Fig. 1, now reconstructed from the pixels outside
the KQ75y7 mask at Nside = 16 (and thus �max = 66). Here we see that the
reconstruction is biased.

3.2 Smoothing the map

In practice, raw degraded maps are not used for the reasons shown in
the previous section; instead, the maps are smoothed with a Gaussian
beam with full width at half-maximum of at least the size of the
pixels and then degraded. In this work, we employ a smoothing
scale of 10◦, consistent with Efstathiou et al. (2010). Smoothing the
maps studied in the previous section prior to reconstructing the a�m

produces the results shown in Figs 3 and 4. With smoothing, we
see that the a�m estimator is unbiased for both resolutions, Nside =
128 and 16. Smoothing is thus an essential step when working with
low-resolution maps.

Figure 3. The same as Fig. 1, now reconstructed from maps smoothed
with a 10◦ Gaussian beam applied to the full-sky map. As in Fig. 1, the
reconstruction is unbiased.
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Figure 4. The same as Fig. 3, now reconstructed from maps with Nside =
16. The reconstruction is now also unbiased.

In Figs 3 and 4, we also see that the variance in the reconstructed
values is resolution-dependent with the smaller variance provided
by the higher resolution maps. Again this is not surprising, and can
be understood as follows. Our covariance matrix in equation (8)
does not include a noise term; yet, we have introduced noise by
degrading. Smoothing does a good job at reducing the noise to a
level where the reconstruction is unbiased; however, there is still
residual noise that affects the covariance of the estimator. The higher
the resolution, the smaller this noise. The best results are obtained
by working at the highest resolution that is feasible. For this reason,
we work at Nside = 128 in our simulations. See Appendix A for
technical details.

3.3 Reconstructing the a�m

We have now seen that the estimator in equation (7) is an optimal,
unbiased estimator for the a�m when we work at high resolution
and/or smooth the maps prior to reconstruction (Figs 1, 3 and 4).
Although this has only been shown for C2 = 100 (μK)2, we have
verified that this is true independent of the quadrupole power.

As noted above, the fact that we are smoothing the maps prior
to masking imposes assumptions on the maps. For the realizations
discussed above, the assumptions are met; the region inside the
mask is, statistically, identical to the region outside. However, for
real data the Galaxy is a bright foreground that must be removed.
The WMAP ILC procedure attempts to do this and produce a full-sky
CMB map. Even so, masking is often performed to avoid relying on
the information inside this region since it may still be contaminated
by Galactic foregrounds.

Unfortunately, when the map is smoothed, information leaks out
of the masked region and biases the reconstruction as shown in
Figs 5 and 6. For this analysis, for each synthetic map we filled
the masked region with the corresponding portion (i.e. the masked
region) taken from the ILC map. We then smoothed and degraded the
resulting synthetic map. In these two figures, we show the true and
reconstructed values of the coefficients a2m; we also show the ILC
map’s a2m for reference. We clearly see the bias in the reconstructed
a2m and its correlation with the ILC values. If arec

2m < aILC
2m , then arec

2m is

Figure 5. The same as Fig. 3, now with the masked region filled in with
the ILC map prior to smoothing and rescaling. We clearly see that the
reconstructed a2m are not unbiased. The bias in reconstructing a20 and a22 is
particularly apparent. This is due to the leakage of information from inside
the masked region.

Figure 6. The same as Fig. 5, now with C2 = 1000 (µK)2.

biased upwards, and vice versa. For example, the ILC a22 values are
large and negative, which leads to the reconstruction being skewed
to agree better at large, negative values than at large positive values.
This trend continues for the other a2m and clearly shows that the
smoothing has mixed information from the masked region.

We can also recognize other details in the quality of the recon-
struction that are specifically due to the orientation of the KQ75y7
mask in Galactic coordinates. For example, we see that the vari-
ance in the reconstructed real part of a22 is larger than that for the
imaginary part of a22; the reason is that the real part of Y22 has an
extremum in the centre of the Milky Way where the mask ‘bulges’,
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while the imaginary part has a node at this location. Therefore,
more information relevant to the real part of a22 is missing than for
the imaginary part, and the former has a larger reconstruction error.
Moreover, it is also the case that the Y20 and Y22 have extrema in the
Galactic plane, whereas Y21 has nodes. Due to this, the variances
of a20 and a22 are expected to be larger than that of a21, as our
reconstruction plots show.

Note also that the reconstruction bias we find is not an artefact of
the sharp transition introduced in the process of filling the masked
regions of simulated maps with the ILC contents. The smoothing
procedure, for one, completely removes the sharp feature in the
map. Moreover, we have explicitly checked that the reconstructed
a�m are not biased when the cut is filled with contents of another
statistically isotropic map. Therefore, the reconstruction bias seen
in our plots is real, and is caused to the specific structure of the ILC
map behind the Galactic plane which ‘leaks’ into the unmasked
region.

The question, then, is how to fill the masked region before
smoothing. In principle, anything could be used to fill the Galactic
region, but then the information about this fill would leak outside
the mask due to the smoothing. If the map were masked prior to
smoothing, then ‘zero’ would be leaked and bias the reconstruction.
Alternatively, if the Galactic region were filled with Gaussian noise
with rms value consistent with the region outside the Galaxy, then
the estimator would be unbiased similar to the results in Fig. 1,
but this would rely on the assumption that the true CMB inside the
mask has precisely the same statistical properties as the CMB in
the region outside. Filling with the ILC values would make sense
if we could be completely confident that the ILC reconstruction
of the region inside the mask is accurate. However, in the ILC the
region inside the Galactic mask has different statistical properties
than the region outside, particularly for the large-angle behaviour.
This alone raises concerns that the ILC reconstruction is not entirely
accurate. Further, if we knew how to properly treat the region inside
the mask, either by accepting the ILC values or filling it with appro-
priate statistical values, there would be no need for a reconstruction
as we would have a full-sky map to analyse!

The challenge is that there is no, or at least no unique, compelling
choice of how to fill the masked region before smoothing. In the face
of this, the approach we take below is to study how the admixture of
the large-angle behaviour of the Galactic region from the ILC map
affects the reconstruction of the low-� CMB, particularly when the
region outside the Galaxy has low quadrupole power and lack of
large-angle correlations. We show how this particular choice biases
the reconstruction.

3.4 Reconstructing the C�

Since we are interested in reconstructing C(θ ), we next need to
reconstruct the C�. From the a�m, we first proceed using the naive
estimator (16), denoted Ce

� (as used to generate fig. 5 of Efstathiou
et al. 2010).

The results for this estimator are shown in Fig. 7. For these
realizations, the maps were not smoothed. The reconstruction is
shown as the dashed, red lines representing the 5th, 50th and 95th
percentile values as a function of the true C2 used to generate
the maps. The solid, blue lines are the equivalent values from the
reconstruction based on the pixel estimator from SPICE. Again the
solid, black line is the reconstructed true relation plotted to guide
the eye. At large C2, we see the desired behaviour: the reconstructed
values from both estimators are centred around the true value, and
Ce

2 does have a smaller variance, as an optimal estimator should

Figure 7. The 95th, 50th and 5th percentile lines of the reconstructed C2

(top to bottom, respectively) from our realizations. The maps have not been
smoothed prior to reconstruction. The pixel based (blue, solid line) comes
from SPICE, whereas the reconstructed (red, dashed line) is the estimator
Ce

�. We see that this estimator is clearly biased towards larger reconstructed
values for small, true C2, such as the values extracted from WMAP using
either the PCL or MLE procedures. For a value of C2 near the �CDM value,
the reconstruction method is a good estimator. The pixel-based method
produces values of C2 with a median much closer to the true values, though
with larger error bars.

(however, this does not mean it is optimal). At low C2, in particular
near the WMAP PCL and MLE values, the pixel-based estimator
is still centred around the true value, though with large variance;
however, the Ce

2 is now biased towards larger values.
The results in Fig. 7 were for unsmoothed maps. The usual ap-

proach is to smooth the maps, which suppresses power on small
scales (high �). Fig. 8 shows the results when the maps are smoothed
prior to reconstruction; they are encouraging. Both estimators now
track the true values much more closely. Even the median of Ce

2 re-
mains close to the true value for values near the WMAP PCL value.
This shows that with smoothing the correlations are reduced due
to the lack of high-frequency noise. It suggests that smoothing the
map, reconstructing the a�m and employing Ce

� as our estimator are
sufficient and nearly optimal.

Figure 8. The same as Fig. 7, now with the realizations smoothed to 10◦
prior to reconstruction. It appears that the estimator (16) does a better job
of reproducing C2 for a �CDM model, though see Fig. 9.
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Figure 9. The same as Fig. 8, now with the region inside the masked
replaced by the ILC prior to smoothing to 10◦ and reconstructing. Clearly,
the ILC information from inside the masked region has leaked out, biasing
the reconstruction. Not surprisingly, the reconstruction now is only accurate
near the WMAP MLE value, the value consistent with this region of the ILC.
At lower C2 values, the reconstruction plateaus to this value as it is the main
contribution to quadrupole power. At higher values of C2, the quadrupole
power is suppressed by the leakage.

Unfortunately this is not the case. As noted above, smoothing
makes assumptions about the validity of the region inside the mask.
We saw that even for the a�m this leads to a bias (see Fig. 5). When
the corresponding ILC portion is placed into the masked region
prior to smoothing, the Ce

2 is also biased as shown in Fig. 9. We
see that the masked region drives Ce

2 to be near the value inside
the mask (approximately the WMAP MLE value). The Ce

2 results
are biased upwards for very small C2 and downwards for large C2.
Thus, even though smoothing helps in removing the correlation
bias in the Ce

� estimator, it introduces its own bias. How the masked
region is filled determines how the distribution of Ce

2–C2
true will

be skewed. Roughly speaking, the values inside the mask will be
favoured, raising the reconstructed values that are lower than the
masked region values, and lowering values that are higher than those
from the masked region.

We have seen that the naive estimator, Ce
�, provides an unbiased

estimate of C2 when the true value is near the expected, �CDM
value. However, when the true value is low, this estimator tends
to overestimate C2. Further, when smoothing is applied, the recon-
struction skews the values towards those consistent with the region
inside the mask. This is to be expected. In fact, if the region inside
the mask were believed, then there would be no need to reconstruct
at all; a full-sky map would already exist and it could be used for
analysis without this extra effort.

3.5 Optimal, unbiased C� estimator

The general behaviour found for the naive estimator, Ce
�, carries

over to the optimal, unbiased estimator, Ĉ�, based on the weighted
harmonic coefficients (12), as we now see. Calculating Ĉ� for the
realizations considered above, we find the results in Fig. 10 for
Gaussian-smoothed maps. This figure should be compared to Fig. 8.
We see that Ĉ2 is nearly unbiased over the full range of true C2 as
expected.

The effect of smoothing when the ILC is inserted into the masked
region is shown in Fig. 11. Again we see the bias introduced by
smoothing when the two regions do not contain the same structure.

Figure 10. Similar to Fig. 8, now comparing Ce
2, the harmonic coefficient

estimator (16) again as the dashed, red lines to Ĉ2, the weighted harmonic
coefficient estimator (12) as the green, solid lines. We see that the weighted
harmonic coefficient estimator is unbiased over the full true C2 range.

Figure 11. The same as Fig. 10, now for the Galactic region filled with the
ILC values. We see that both estimators are now biased to agree best near
the WMAP MLE value as we saw in Fig. 9.

These results are qualitatively similar to those found in Fig. 9 and
the same discussion applies.

3.6 Reconstructing without smoothing

The reconstruction of the a2m without smoothing showed that for
Nside = 128 the reconstruction was unbiased (Fig. 1) but for Nside =
16 there was a resolution-dependent bias (Fig. 2). Calculating the
weighted harmonic coefficient estimator (12) from these realiza-
tions produces the results in Fig. 12. At first glance, these results
are surprising and encouraging. The green, solid lines for Nside =
128 and red, dashed lines for Nside = 16 nearly overlap and the
central value very closely follows the true value. This is surprising
since the a2m at Nside = 16 are biased and have smaller variance than
the corresponding Nside = 128 (see Figs 1 and 2). Even so, when
combined to determine C2, these differences average out and lead
to nearly identical predictions.

Based on Fig. 12, we may think we have solved the reconstruc-
tion problem; just reconstruct using the optimal, unbiased C� esti-
mator (12) without smoothing! Unfortunately, we cannot draw this
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Figure 12. The same as Fig. 10, now comparing the weighted harmonic
coefficient estimator (12) for Nside = 128 as the green, solid lines and Nside =
16 as the red, dashed lines without smoothing the map prior to reconstruction.
Since there is no smoothing, the results do not depend on the contents of the
masked galactic region. We see that the reconstruction without smoothing is
unbiased for most of the C2 range, however see Section 3.6 for a discussion
of its inapplicability to real data.

conclusion from the results presented here. Recall that the recon-
structions have been performed on noise-free, pure CMB maps.
Real maps contain noise and potentially residual, unmasked fore-
grounds. In particular, uncorrected, diffuse foregrounds are known
to contaminate the low-� reconstruction (Naselsky et al. 2008). A
careful study of the issues faced when applying the reconstruction
to real data is beyond the scope of this work and will be reserved
for future study. However, naive application of this method to real
data yields highly biased reconstructions.

3.7 S1/2 estimator

The study of the S1/2 statistic is a large project in its own right and
will not be pursued in detail here. Our Universe as encoded in the
ILC map contains a somewhat small full-sky S1/2 and an extremely
small cut sky S1/2. If we are to perform such a statistical study
of S1/2, we could enforce this structure, that is only choose skies
that have somewhat low full sky and very low cut-sky S1/2 values.
Alternatively, we could choose from an ensemble based on the best-
fitting �CDM model. In the latter case, it has already been shown
that the ILC map is a rare realization, unlikely at the 99.975 per cent
level (Copi et al. 2009). The assumptions made in any study will
determine the statistical questions that can be asked. Conversely, the
statistical questions asked will implicitly contain the assumptions
imposed.

In Table 1, we show the S1/2 for the ILC map calculated from
(22) under various assumptions. Note that these values all contain
the bias discussed in Section 2.5 as is standard in the literature.
Shown in the table are the values calculated for the full sky and for
the partial sky where the KQ75y7 mask is employed to cut out the
Galactic region. The cut-sky results are calculated using the pixel-
based estimator of SPICE and the optimal, unbiased C� estimator (12)
from reconstructed maps at Nside = 128 and 16. Further, the results
are shown for different map processing, including no processing (the
unsmoothed entry where the map has only been degraded as required
for the reconstruction), employing a 10◦ Gaussian smoothing, and
filling the Galactic region with a realization that has the same power

Table 1. S1/2 values for the ILC map calculated for 2 ≤ � ≤ 10. The map
is unprocessed, Gaussian-smoothed with a 10◦ beam, or had the Galactic
region filled with a Gaussian random, statistically isotropic sky realization
with the same power spectrum as the region outside this region prior to
smoothing. The values are calculated for the full sky and for the KQ75y7
masked sky at Nside = 128 using a pixel-based estimator or the optimal,
unbiased C� estimator (12) from maps at Nside = 128 and 16. The last row
refers to the map whose mask area has been filled with Gaussian random
field whose power is consistent with power measured outside the mask.

S1/2 (µK)4

ILC map Full sky Cut sky Reconstructed sky
processing pixel- Nside Nside

based =128 =16

Unsmoothed 8835 1275 5390 2300
10◦ smoothing 8835 1270 2230 1670

Filled with consistent 1020 1290 1020 950
power and smoothed

in each �-mode as the region outside the mask but with the phases
randomized.

The results in Table 1 are consistent with what we have found
for the C� reconstructions. For the unsmoothed map, the full-sky
and pixel-based estimators calculated at Nside = 128 show the usual
result, the large discrepancy between the full and cut-sky values.
This holds true for the smoothed map also. Further, the reconstructed
values show the large discrepancy between the unsmoothed and
smoothed maps (see, for example, Figs 2 and 4). We also see that
the reconstructed values are systematically larger than the pixel-
based estimator showing that the reconstruction is more sensitive to
leakage for information from inside the masked region. Finally, the
last line of the table shows the expected behaviour for a map where
the full sky has power consistent with that from the cut sky. Note that
the cut-sky pixel-based results are consistent with each other since
information leakage is unimportant. The small difference between
the Nside = 128 and 16 reconstructions shows the residual sensitivity
on resolution.

3.8 Higher multipoles

In this work, we have focused on how data handling affects the
reconstruction of the quadrupole. The quadrupole serves as an ex-
ample of the general behaviour. As shown in Figs 13 and 14, we see
the same results for � = 3 and 4. These figures were generated from
the same realizations employed in making Fig. 5. Again we see that
the reconstruction is biased towards the values from the ILC map.

4 C O N C L U S I O N S

It has been argued that the large-angle CMB can be reliably recon-
structed from partial-sky data and that when this is done the lack of
large-angle correlation is not significantly deviant from the expec-
tation (Efstathiou et al. 2010). At first glance the argument appears
sound. The large-angle modes extend over large fractions of the
sky; thus, knowing their values on one region of the sky allows us
to extrapolate them into the masked regions. However, in practice
and under close scrutiny, this argument fails. Implicit assumptions
built in to the reconstruction process enforce agreement between
the reconstruction and the previously constructed full sky (the ILC
map in this case) through mixing of information from inside the
masked region to that outside. Due to this, the reconstruction has no
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Figure 13. The 95th and 5th percentile lines for the a3m reconstructed from
the pixels outside the KQ75y7 mask at Nside = 128 (and thus �max = 514) of
�CDM realizations with C2 = 100 (µK)2 and the masked region filled in
with the ILC map prior to smoothing and rescaling, as discussed in the text.
The red, solid lines are for the real part of the a3m and the blue, dashed lines
are for the imaginary part. The black, solid line shows the expected result for
a perfect reconstruction. We clearly see that the reconstructed a3m are not
unbiased. Now the bias is most prominent for a33, the octopole mode with
all its extrema within the Galactic plane. This figure should be compared to
Fig. 5.

Figure 14. The same as Fig. 13, now for � = 4.

value independent of the original full-sky map. It neither confirms
nor denies the validity of that map.

To study the large-angle CMB, a choice must be made on what
data to take as a fair representation of the CMB sky. One choice is
to accept a cleaned, full-sky map, such as the ILC map produced by
WMAP, to accurately represent the primordial CMB sky. In this case,
the full-sky map may be analysed with no reconstruction required.

In Copi et al. (2009) and in this work, however, we have taken
the region outside the Galaxy as defined by the WMAP KQ75y7
mask to be a fair representation. We have shown that the large-
angle CMB can be reconstructed using unbiased estimators for the
a�m and C�; however, the standard approach requires processing
the original map by degrading and smoothing it. Unfortunately, it
is precisely the smoothing process that mixes the region we have
taken as a fair representation of the CMB with the region we are
trying to exclude. When the excluded region has the same statistical
properties as the region we are including, no biases are introduced.
On the other hand, when, as is the case with the ILC map, the
properties are significantly different, the reconstruction is biased to
agree with the full map. This is not surprising. Through this process
one is trusting the full-sky map, mixing information from it into the
rest of the sky, then reconstructing it. This is a circular process and
is unnecessary. If the full-sky map is already trusted, then there is
no point in performing a reconstruction to produce a poorer version
of the original map.

The important point is that even in principle reconstructing fol-
lowing the standard approach leads to biased results unless the
full-sky CMB is already known. We have shown for noise-free,
pure CMB maps that smoothing mixes information and biases the
results. When applied to real data, the problems only get worse. En-
couragingly, we also found that in principle reconstructing without
smoothing leads to unbiased results. Unfortunately, directly apply-
ing this to real data with noise and residual, unmasked foregrounds
yields highly biased reconstructions requiring further care to apply
this method successfully to real-world CMB.

Overall, the question of how to perform an unbiased reconstruc-
tion of the full large-angle CMB sky remains an interesting one.
Previous work (Bielewicz et al. 2004; Naselsky et al. 2008; Liu
& Li 2009; Aurich & Lustig 2011) has shown that contamination
significantly affects the reconstruction of the large-angle multipole
moments. Aurich & Lustig (2011) studied the case most similar
to that considered in this work. They showed that smoothing of
full-sky map leaks information from the pixels not used in the re-
construction (those in a mask) to the pixels that will be used. In this
work, we have extended their result and shown how a reconstruction
such as that performed by Efstathiou et al. (2010) is biased due to
this leakage of information. This shows the fundamental problem
in trying to reconstruct the full sky from a partial sky.

Fortunately, large-angle CMB studies are not dependent on re-
constructed full-sky maps. The partial sky when used consistently
(see Copi et al. 2009, for example) has been shown to be a robust
representation of the large-scale CMB by Aurich & Lustig (2011)
and in this work. Despite the fact that such an approach is sub-
optimal in the sense that the inferred C� do not have the smallest
possible variance, it is far less biased than the ‘optimal’ C� inferred
through the maximum-likelihood reconstruction. More robust state-
ments about the large-angle CMB behaviour may therefore be made
with the partial-sky pixel-based C�.

We conclude that the lack of large-angle correlation, particularly
on the region of the sky outside the Galaxy, remains a matter of
serious concern.
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APPENDI X A : R ECONSTRUCTI NG AT H IG H
RESOLUTI ON

Computationally, the time and memory intensive step in reconstruct-
ing a�m and C� from our estimators (7) and (12) is the inversion of
the covariance matrix, C. Fortunately, this step only needs to be
performed once for each choice of resolution, Nside, and mask.

The covariance matrix is of size Npix × Npix, where the number
of pixels is given by 12(Nside)2 and the size of C scales as (Nside)4.
An increase in resolution by one step, Nside → 2Nside, increases
the size of C by a factor of 16. Working with cut skies does not
appreciably reduce this; even the largest mask, KQ75y7, only cuts
out 25–30 per cent of the pixels. Resolutions of Nside = 32 or perhaps
even Nside = 64 are attainable on a desktop computer. Fortunately,
we never need to store the full C−1 and can calculate the elements
of C as required instead of storing them.

In our estimators, all the matrices that we encounter, except for
C−1, are of size N� × Npix or smaller. Here N� = (�recon + 1)2. Even
for Nside = 512 and �recon = 10 these matrices only require about
3 GB of storage at double precision. Further, we see that only the
matrix

M ≡ C−1Y (A1)

is ever required (see equations 7 and 8).
To compute M we note that it satisfies the set of linear equations

CM = CC−1Y = Y. (A2)

Solving such a set of equations is a standard problem in com-
putational linear algebra. A covariance matrix is symmetric and
positive-definite, so it may be factored with a Cholesky decompo-
sition (Press et al. 1992)

C = LLT, (A3)

where L is a lower triangular matrix. Our problem then becomes
solving

L(LTM) ≡ Lz = Y. (A4)

This can be solved in two steps using backward substitution on
Lz = Y to find z followed by forward substitution on LTM = z to
find M.

At this point we are left with computing L. Approximately half of
this matrix is zero, so only half of it needs to be stored (of course the
same is true of C since it is symmetric). Unfortunately, this cannot be
further reduced and this provides the limiting factor in determining
the resolution at which we can work. For Nside = 128 and �recon = 10,
the matrix L is approximately 70 GB in size. Improving resolution to
Nside = 256 increases the required storage to over 1 TB. This is what
has limited our work to Nside = 128. Straightforward, numerically
stable algorithms exist for calculating L (see Press et al. 1992,
for example). Though this is a time-consuming step, once M is
calculated the rest follows quickly.
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