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A Mediterranean diet appears to have health benefits in many domains of human
health, mediated perhaps by its anti-inflammatory effects. Metabolism of fatty acids
and subsequent eicosanoid production is a key mechanism by which a
Mediterranean diet can exert anti-inflammatory effects. Both dietary fatty acids and
fatty acid metabolism determine fatty acid availability for cyclooxygenase- and
lipoxygenase-dependent production of eicosanoids, namely prostaglandins and
leukotrienes. In dietary intervention studies and in observational studies of the
Mediterranean diet, blood levels of fatty acids do reflect dietary intakes but are
attenuated. Small differences in fatty acid levels, however, appear to be important,
especially when exposures occur over long periods of time. This review summarizes
how fat intakes from a Greek-style Mediterranean diet can be expected to affect fatty
acid metabolizing proteins, with an emphasis on the metabolic pathways that lead
to the formation of proinflammatory eicosanoids. The proteins involved in these
pathways are ripe for investigation using proteomic approaches and may be targets
for colon cancer prevention.
© 2011 International Life Sciences Institute

INTRODUCTION

There is substantial epidemiological evidence that indi-
cates dietary patterns influence colorectal cancer risk.1–3

One such dietary pattern that holds great promise for
cancer prevention is the Mediterranean dietary pattern,
which is based on the Greek diet consumed in Crete. All
of the major components of the traditional Cretan diet,
namely olive oil, fish, cereals, legumes, fruits, and veg-
etables, have been associated with decreased colorectal
cancer risk.4–10 Relative to the American diet, this diet
results in lower intake of n-6 versus n-3 and n-9 fatty
acids, lower intake of polyunsaturated fatty acids
(PUFAs), lower intake of red meat, and much higher
intake of plant-based foods and monounsaturated fatty
acids (MUFAs).11–14

In intervention studies and in observational studies
of the Mediterranean diet, blood levels of fatty acids do

reflect dietary intakes, but the differences in blood levels
among populations are much smaller than the differ-
ences in dietary intakes (Table 1). It is, therefore, very
important to consider the absorption, distribution,
and metabolism of fatty acids since these factors will
limit changes in blood and tissues when the diet is
changed. Small differences in fatty acids may, nonethe-
less, be important, especially when exposures occur over
longer periods of time, and may be responsible for the
preventive effects of a Mediterranean diet against colon
cancer. This review evaluates the potential impact of this
type of eating pattern on fatty acid metabolic pathways.
Fatty acid metabolism regulates the amount of arachi-
donic acid that is available in cell membranes for sub-
sequent formation of proinflammatory eicosanoids.
Eicosanoids, particularly prostaglandin E2 (PGE2),
have been shown to be key mediators of colonic car-
cinogenesis.15
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MEDITERRANEAN DIET AND COLON CANCER RISK

Every person in the industrialized world has, on average, a
1 in 20 chance of developing colorectal cancer in his or her
lifetime, and rates in the United States are the highest (55
cases/100,000 population in 2000).1,16,17 Dietary practices
have been implicated in the risk of colorectal cancer,
although dietary effects per se may be difficult to disen-
tangle from obesity effects. Risk is typically lower in popu-
lation groups that do not follow the typical American diet,
and risk has been shown to increase in migrants who move
to the United States.17 In Greece, rates of colorectal cancer
are very low, but they are elevated in Greeks who have

moved to Australia.18–20 Rates of colorectal cancer mortal-
ity in Greece in 1955 were 5–8/100,000 population and
have increased to about 10/100,000 in 2000, perhaps as
diets have drifted away from the traditional patterns.21

Case-control studies of colorectal cancer risk and
diet have fairly consistently found that intakes of fruit,
vegetables, fish, and whole grains are protective, while red
meat and refined carbohydrates are associated with
increased risk.4,5 In the Breast Cancer Demonstration
Project, increased compliance with a Recommended
Food Score was associated with a 51% reduction in col-
orectal cancer risk.22 However, increased fruit and veg-
etable consumption alone, from a pooled analysis of 14

Table 1 Dietary intakes and changes in levels of fatty acids in blood in select Mediterranean dietary
interventions that successfully increased monounsaturated fatty acid (MUFA) intakes and reported levels of
fatty acids in blood. The “Change” columns show either the change from baseline or differences versus a control
group, depending on how it was reported in each publication. The dietary fat intakes used for the calculation
were expressed as percentage of energy intake.
Study Intervention Change in diet Change in blood

fatty acids
de Lorgeril et al. (1998)* Lyon Diet

Heart Study169
Provided counseling and a

high-MUFA spread
SFA: 37%↓ SFA: 2%↓
18:1, n-9: 16%↑ 18:1, n-9: 12%↑
PUFA, n-6: 23%↓ PUFA, n-6: 8%↓
– PUFA, n-3: 12%↑

Djuric et al.173,174 (2009)†

Mediterranean Eating Study173,174
Provided exchange-list counseling SFA: 21%↓ SFA: 5%↓

MUFA: 59%↑ MUFA: 25%↑
PUFA: 21↓ PUFA: 1%↓

Paniagua et al. (2007)‡,167 Provided all food SFA: 61%↓ SFA: 8%↓
MUFA: 156%↑ 18:1, n-9: 22%↑
PUFA: 0↓ 18:2, n-6: 4%↓

Urquiaga et al. (2004)§,200 Provided all food SFA: 37%↓ SFA: 4%↓
MUFA: 7%↑ MUFA: 11%↑
PUFA: 2↓ PUFA: 7↓

Vessby et al. (2001)¶ KANWU study168 Provided fats as well as counseling
about high-MUFA diet

SFA: 28%↓ SFA: 2%↓
MUFA: 62%↑ 18:1, n-9: 10%↑
PUFA: 2↓ 18:2, n-6: 9%↓

Vincent-Baudry et al. (2005)**
Medi-RIVAGE Study175

Provided counseling SFA: 31%↓ 16:0: 6%↓
MUFA: 9%↑ 18:1, n-9: 3%↑
PUFA: 7↑ 18:2, n-6: 1%↓

Zazpe et al. (2008)†† PREDIMED
Study201

Provided counseling SFA: 5%↓ –
MUFA: 11%↑ 18:1, n-9: 2%↑
PUFA: 3↑ –

* For the study of de Lorgeril et al., data from individuals without cancer was used, and the difference between the intervention group
and the control group is shown. Dietary intakes of n-3 PUFA were not given. Fatty acids were measured in plasma 2 months after
randomization.
† Data are for the decrease over 6 months in the intervention arm (percent change from baseline). Fatty acid levels were those
measured in total fasting plasma phospholipids.
‡ Differences between a high-MUFA diet and an SFA diet are shown after 28 days. Fatty acid levels were those measured in plasma
phospholipids.
§ Differences are shown between a Mediterranean diet (27% of energy from fat) and an Occidental diet (40% of energy from fat) after
30 days of feeding. Fatty acids were measured in total plasma.
¶ Change is from baseline to mean over 90 days of treatment. Fatty acid analysis was of serum phospholipids.
** Data are for change from baseline to 3 months in the Mediterranean intervention group. Fatty acids were those measured in fasting
plasma.
†† Data are for change from baseline over 12 months in the Mediterranean plus olive oil group. Fatty acids were those measured in
fasting plasma.
Only oleic acid and linolenic acid levels were reported in blood.
Abbreviations: MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids.
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studies, reduced only distal colon cancer risk.23 Eating
patterns may, therefore, play a more important role in
colon cancer risk reduction than consumption of any
specific food or nutrient, and this may be the ideal
approach for prevention.24–27

A complex mixture of protective compounds can
only be obtained from a dietary pattern-based approach,
and methods have been developed to score adherence to
a Mediterranean-style diet. In persons who followed a
Mediterranean eating pattern, recurrence of adenoma-
tous polyps was decreased, with an odds ratio of 0.3 for
the third versus the first tertile.8 In one large Greek study,
a Mediterranean diet score was constructed to reflect
the traditional Mediterranean diet. Higher scores were
significantly associated with decreased mortality from all
cancers (24% reduction in mortality for every 2-point
increase in the score), but generally, intakes of specific
foods were either not associated with mortality or the
association was much weaker.28 Note that in studies done
in the United States, the extent of Mediterranean-style
eating, as defined by being above/below median values,
will differ from that in European studies due to differ-
ences in the median intakes of foods. In two recent US
studies, a Mediterranean dietary pattern had a significant
protective effect against colon cancer in men only.29,30 In
the American Association of Retired Persons cohort,
however, total cancer mortality in both men and women
decreased significantly along with increased adherence to
a Mediterranean dietary score.31

MECHANISMS BY WHICH FATTY ACIDS CAN AFFECT
COLON CANCER RISK

A unique aspect of the Mediterranean diet is the different
type of fat that is ingested. Increasing fiber alone does not
appear to be sufficient to significantly impact the risk of
colon cancer, and increased intakes of fruit and veg-
etables has been shown to have modest effects.23,32–34 Fatty
acids are substrates for eicosanoid production, and
eicosanoids can activate proinflammatory pathways that
promote colon carcinogenesis. PGE2, formed from
arachidonic acid by constitutive cyclooxygenase 1
(COX-1) and inducible cyclooxygenase 2 (COX-2) in the
colonic mucosa, plays an important role in the expansion
of cell populations in the colonic crypt and subsequent
formation of adenoma.35–39 Cyclooxygenase (COX)
inhibitors conversely block proliferation, induce apopto-
sis, and inhibit angiogenesis in the colon.40 Inhibition of
both COX-1 and COX-2 appears to be effective for pre-
venting polyp formation and greatly reduces colon cancer
risk.41,42 It appears that reducing the level of PGE2 levels
in normal tissue could lead to a reduced risk of polyp
formation, and PGE2 has been identified as an appropri-
ate prevention endpoint.43–45

There are several examples of eicosanoid modula-
tion by dietary fats. The colon-tumor-promoting effects
of corn oil, which is very high in linoleic acid (18:2, n-6),
have been related to COX-2 induction, while diets rich
in high-fat fish oil have been found to decrease COX-2
protein expression.46 Intervention with a Mediterranean
dietary pattern does not greatly increase n-3 fatty acid
intakes in the manner that fish oil supplementation
would, but n-6 fatty acid intakes are decreased by 30%
or more to help shift the n-3 : n-6 ratio, which greatly
impacts the formation of PGE2 and leukotrienes.47,48 In
rats, the n-3 : n-6 dietary ratio was found to be more
important than the total amount of n-3 fatty acid intake
in inhibiting 12-hydroxyeicosatetraenoic acid (12-
HETE), 6-keto-prostaglandin F2a, and thromboxane
B2.49 The role of n-9 fatty acids, such as oleic acid (18:1)
found in olive oil, has not been studied as extensively,
but Bartoli et al.50 observed inhibition of aberrant crypt
foci and adenocarcinomas, decreased mucosal arachido-
nate (20:4), and decreased PGE2 in rats fed either n-9
or n-3 diets relative to rats fed diets high in n-6 fatty
acids.

COLONIC PROTEOME AS A MEDIATOR OF DIETARY
EFFECTS ON MUCOSAL FATTY ACIDS

AND EICOSANOIDS

Dietary fatty acids can impact both the types and the
levels of eicosanoids produced in the colonic mucosa. The
proteins of interest that can mediate the effects of dietary
fatty acids on colonic fatty acid and eicosanoid levels are
depicted in Figure 1. These have been selected for this
review based on their possible contribution to altering
fatty acid ratios in cells, and many have been shown to be
relevant to changes during colon carcinogenesis as well.
The link between diet and eicosanoid production has
barely been studied, yet the impact of metabolism on
limiting changes in membrane fatty acids and, subse-
quently, eicosanoids is important for determining colon
cancer risk.

Fatty acid-binding proteins

Role in fatty acid metabolism. There are a number of
proteins involved in binding fatty acids for the purpose of
transport between and within cells.Among them, perhaps
the best-described are the fatty-acid-binding proteins
(FABPs). These proteins are abundant in the cytosol of
cells, can bind many hydrophobic ligands, and are
induced by increased levels of fatty acids. FABPs bind
fatty acids and fatty acyl coenzyme A (CoA) with high
affinity in the cytoplasm and then translocate to the
nucleus. The nuclear receptors for liver FABPs appear to
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be peroxisome proliferator-activated receptors (PPARs)
alpha and gamma, which in turn regulate production of
FABPs and other genes needed for nutrient metabolism.51

FABPs from the same tissues across species have
similarities in fatty acid binding affinity, while there is
wide variation in the affinity of FABPs from different
tissues.52 Two forms of FABPs have commonly been iden-
tified in the human colon, namely liver FABP (L-FABP)
and intestinal FABP (I-FABP), with levels of L-FABP
being higher.53–55 In a proteomic study, I-FABP was a
major protein identified in human intestinal scrapings
from both the small and large intestine using two-
dimensional gel electrophoresis, although the I-FABP
level was twofold higher in the small versus the large
intestine.56

I-FABP appears to be involved in absorption of fatty
acids from the intestinal lumen and synthesis of triglyc-
erides, while the role of L-FABP may be related more to
the uptake of fatty acids from the plasma for energy pro-
duction and phospholipid synthesis.57 The mechanism of
fatty acid movement has been investigated with a model
fatty acid, and it was shown that transfer of fatty acids to
L-FABP and I-FABP occurs via different mechanisms,
with I-FABP having a bigger role in the transfer of fatty
acids between membranes and sites of metabolism and
L-FABP having the ability to buffer high levels of fatty
acids in enterocytes.58 The I-FABP in humans has a higher
affinity for PUFAs than for oleic acid or saturated fatty
acids.52

Role in colon cancer risk. Both I-FABPs and L-FABPs
have been shown to be decreased in colon carcinoma.59

Conversely, increased expression of L-FABP in colorectal
cancer and metastatic foci was associated with increased
survival, pointing to the protective role of L-FABP.60

L-FABP contains a PPAR response element and can bind
two ligands simultaneously, unlike other FABPs, and acti-
vation of PPAR gamma can protect the colon against
colitis.61,62

In addition to binding fatty acids, FABPs appear to
mediate the signaling associated with fatty-acid-induced

inflammation in cells.53 Several FABPs have been shown
to stabilize leukotriene A4 in cells, which could then have
an impact on inflammatory states and hence colon cancer
risk.63 Work in transgenic mice indicated that deletion of
adipocyte FABP did not alter phenotype greatly, but the
response to inflammatory stimuli was hampered.64 Inter-
estingly, levels of epidermal FABP in skin were 50% lower
in transgenic mice that overexpress COX-2, an enzyme
known to increase during colonic inflammation and
tumorigenesis.65

Effect of diet

The effect of a high-fiber wheat-bran diet that
decreased colonic tumors in rats resulted in increased
L-FABP and I-FABP in exfoliated colon cells, which
would be consistent with a protective effect of FABPs.66

Soy or whey protein diets, however, decreased colonic
I-FABP in carcinogen-treated rats.67 Oleic acid, a main
component of olive oil, which is one of the staples of
Mediterranean diets, increased L-FABP and I-FABP in
the small intestine, but linoleic acid was even more
stimulatory in rodent models.68–70 The effects of a Medi-
terranean diet on FABPs are therefore difficult to
predict.

The effects of diet on FABPs may also be affected by
genotype. In humans, a fairly prevalent polymorphism
in I-FABP (Ala54Thr) was shown to be important in
mediating the effects of diet on insulin resistance. Car-
riers of the Thr54 allele had higher glucose levels than
individuals with the Ala54/Ala54 homozygote, but only
the Thr54 carriers displayed decreases in glucose levels
with a low-fat or Mediterranean diet.71 Thr54 carriers
also maintained better insulin sensitivity when consum-
ing olive oil diets versus sunflower oil diets, while the
type of fat intake did not affect those with the Ala54a/
Ala54 homozygote.72 In obese children who were carri-
ers of the Thr54 allele, activation of delta-6 fatty acid
desaturase was impaired in response to low levels of
arachidonic acids, indicating the inter-relationships of
these pathways.73

Dietary  
Fatty Acids 

Signaling LOX COX 

Phospholipid 
Membranes 

Phospholipase A2 
(PLA2) 

Fatty Acid Binding 
Protein (FABP)

Fatty Acid 
Synthase 
(FASN) 

Leukotrienes 

Elongases 
Desaturases 

Un-esterified 
Fatty Acids

Prostaglandins 

Figure 1 Metabolism of dietary fatty acids to eicosanoids. Metabolic processes modulate the effect of dietary changes on
fatty acid levels in membranes and on the eicosanoids that are formed.
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Fatty acid synthase

Role in fatty acid metabolism. De novo synthesis of non-
essential fatty acids can markedly contribute to tissue
levels. Fatty acid synthase (FASN) is a 250-kDa protein
responsible for the de novo synthesis of long-chain fatty
acids, which are stored as triglycerides and used as a
source of energy when needed.74

Role in colon cancer risk. FASN is expressed in normal
human colon at the base of the crypts and is greatly over-
expressed in colon tumors.75,76 Overexpression of FASN
was associated with worse colon cancer survival rates in
overweight and obese (but not normal-weight) individu-
als.77 In fact, inhibition of FASN has been suggested to be
a viable therapeutic option for diabetes and cancer.78

Inhibition of FASN has been suggested to be a target for
cancer prevention.79 Several dietary chemopreventives
(soy, epigallocatechin gallate, and acer) have been shown
to inhibit FASN.80–82

Effect of diet. Of importance to Mediterranean diets, oleic
acid downregulates FASN protein expression in cultured
tumor cells, which, in turn, downregulates expression of
human epidermal growth factor receptor 2 (HER-2).83 In
human colonic carcinoma cell line 2 (CaCo-2) cells,
eicosapentaenoic acid (EPA, also known as 20:5, n-3)
inhibited FASN much more strongly than did linoleic
acid (18:2, n-6).84 In breast cancer cells that overexpress
FASN, n-3 fatty acids and gamma-linolenic acid, but not
other n-6 fatty acids, inhibited FASN activity and, possi-
bly, expression.85 In glioma cells, oleic acid inhibited fatty
acid synthesis.83,86 In vivo, a high-fat diet induced FASN,
and FASN was overexpressed in a high proportion of
aberrant crypt foci in human colon.87,88

Highly unsaturated fatty acids of 20-carbon length
and greater are much more efficient than 18-carbon fatty
acids in inhibiting FASN, but a caveat is that most studies
have been done in experimental models using very high
levels of fatty acids that do not mimic human exposures
well.89 Experimental models, however, do suggest that
increased intakes of olive oil might decrease protein
levels of FASN.78 Both olive oil and fish oils, therefore,
would be expected to decrease FASN expression.

Desaturases and elongases

Role in fatty acid metabolism. Stearoyl CoA desaturase
(SCD-1) catalyzes the conversion of palmitate and stear-
ate to their respective saturated fatty acids palmitoleate
(16:1) and oleate (18:1), making it highly relevant to
dietary interventions that are high in MUFAs. The other
major desaturases are delta-5-desaturase (FADS1) and
delta-6-desaturase (FADS2). FADS1 is involved in syn-

thesis of 20:5, and FADS2 is the rate-limiting step in syn-
thesis of both arachidonic acid (also known as 20:4, n-6)
and EPA (20:5, n-3) from linoleic acid (18:2, n-6) and
linolenic acid (18:3, n-3), respectively. Dietary intakes of
arachidonic acid in humans are very low, about 110–
180 mg/day for adults (of the 67–90 g/day total fat
intake), yet this fatty acid compromises 5–10% of the
phospholipid-derived fatty acids.90 This indicates that
substantial conversion of linoleic acid (18:2, n-6) takes
place to form arachidonic acid. Analogous pathways exist
for the conversion of linolenic acid (18:3, n-3) to EPA
(20:5, n-3), but the efficiency of this process is about 10%
and it is inhibited by high intake of n-6 fatty acids.91,92

Desaturases and elongases (denoted Elovl for “elon-
gation of very-long-chain fatty acids”) are regulated in
coordination with each other in the synthesis of long-
chain fatty acids.93 There are seven elongases that have
been identified, none of which are specific to the colon,
but Elovl 1, 5, and 6 are expressed in many tissues. Elovl5
is relevant to eicosanoid synthesis because it is involved in
the conversion of 18:2 (n-6) to 20:4 (n-6) and 18:3 (n-3)
to 20:5 (n-3).94 In diabetes, increased retinal inflamma-
tion has been linked with decreased levels of n-3 fatty
acids due to a decrease in expression of elongases.95

Role in colon cancer risk. Inhibition of FADS2 impeded
intestinal tumorigenesis in Min mice.96 Fatty acid synthe-
sis and lipid droplets, which store triglycerides, are
increased in human colon cancer, implicating the impor-
tance of fatty acids in carcinogenesis.97

Effect of diet. A high-PUFA diet suppresses SCD-1, while
a high-carbohydrate diet increases SCD-1.98 The n-3 fatty
acids are the preferred substrates for elongation and
desaturation relative to n-6 fatty acids, but high n-6 : n-3
ratios inhibit n-3 incorporation into membranes.99,100

With a Mediterranean diet, which is high in MUFAs,
SCD-1 would likely be decreased when MUFAs are plen-
tiful, while FADS2 may be increased to maintain arachi-
donate levels. With a low-PUFA diet, FADS2 expression
was increased.101

Exercise and energy restriction have both been
shown to enhance elongation of n-3 fatty acids, resulting
in increased levels of 20:5 (n-3) and 22:6 (n-3) in rodent
skin without increased dietary intakes.102 When dietary
n-3 fatty acids are increased using a fish-oil diet, expres-
sion of Elovl5 and desaturases is induced in rat liver rela-
tive to olive-oil diets.103 The changes observed with a
Mediterranean diet will then depend on the levels of n-3
fatty acid intake. Elovl6, which is involved in the endog-
enous synthesis of MUFAs,93 will likely be decreased.
Interestingly, Elovl6 knockout protected animals from
insulin resistance induced by a high-PUFA diet.104
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Phospholipase A2

Role in fatty acid metabolism. Levels of free fatty acids are
very low in cells, and most fatty acids are stored in phos-
pholipids or triglycerides. Phospholipids in membranes
appear to provide arachidonic acid173,174 (20:4, n-6) for
eicosanoid production, with triglycerides replenishing
the phospholipid stores.97,105 Fatty acids are released from
phospholipids by phospholipase A2 (PLA2) when needed
for production of energy or to mount an inflammatory
response. Upon stimulation of leukocytes, the enzymes
involved in eicosanoid synthesis, including PLA2 and
cyclooxygenases, act together in concert.106,107 Three PLA2

forms are thought to be primarily involved in arachido-
nate release upon stimulation: type IV cytoplasmic
(c)PLA2a and type IIA and type V secreted (s)PLA2

enzymes.108

Role in colon cancer risk. In human colon cancer, cPLA
and sPLA type IIA are the most studied, but sPLA type X
may also be important.109 Cytosolic PLA2 is generally
regarded as the rate-limiting step in the release of fatty
acids for eicosanoid production, and there are three iso-
forms, with cPLA2a being prototypic.110,111 It is not known
whether cPLA2a could provide the bulk of arachidonate
used in early or late prostaglandin synthesis or whether
cPLA2 could simply act as a catalyst to stimulate secretion
(or synthesis) of sPLA2s necessary for early or late pros-
tanoid synthesis.108 sPLA2 may also function as a cytokine
to help initiate and potentiate inflammation.112 In the
colon, sPLA22 type IIA has been identified as a cancer
susceptibility gene.113 However, it does appear that the
secretory and cytoplasmic PLA2 forms interact with each
other to release arachidonic acid,making them all relevant
in an examination of factors that can modulate inflamma-
tion.113 Data on the expression of PLA2 enzymes during
carcinogenesis differs between mouse models and
humans.In humans,both protein and mRNA of sPLA2 was
elevated in five of six colorectal adenomas from persons
with familial adenomatous polyposis, and this was associ-
ated with increased levels of arachidonic acid and COX-2
in the adenomas.114 Another group examined human col-
orectal carcinomas and found that a major percentage of
samples strongly expressed sPLA2, but staining for
cPLA2was weaker.115 A similar scenario was found in Bar-
rett’s esophagus.116 A third study found no change in the
expression of sPLA2 type IIA but increased expression of
cPLA2 and COX-2 in tumors.117 Consistent with this, a
pro-apoptotic role has been proposed for cPLA2,118 but not
all studies have found lower cPLA2 in colon tumors versus
normal tissue.109 Increased sPLA2 type II activity in
inflamed mucosa of patients with Crohn’s disease and
ulcerative colitis was attributed to increased protein levels,
about threefold above that of healthy, control mucosa.119

In the rat model, PLA2 expression was higher in tumors
than in normal colonic mucosa.120,121

Total PLA2 expression in human colon tissue was
twofold higher in tumor tissue versus normal mucosa,122

and another study identified high levels of sPLA2 type IIA
in human colon cancer, especially in the periphery of the
lesion.123 Thus, it appears that overexpression of sPLA2

plays a bigger role in colon tumors than cPLA2. In normal
human mucosa, there is large variability in the expression
of sPLA2 type IIA.124 One could speculate that variations
in PLA2 levels in normal mucosa, with decreases in
cPLA2a and increases in sPLA2, could be related to
increased cancer risk.

Effect of diet. In the rat model, expression of PLA2 in
colonic mucosa was greater with a high-fat diet than with
a low-fat diet.121 In humans, PLA2 expression has not been
evaluated in the colon relative to dietary change. In
plasma, however, lipoprotein PLA2 levels were decreased
with a low-calorie diet but were unaffected by supple-
mentation with n-3 fatty acids.125,126 In baboons, lipopro-
tein PLA2 activity was increased by a high-fat diet, but
there was a significant interaction by genotype.127

Cyclooxygenases and lipoxygenases

Role in fatty acid metabolism. Many eicosanoids are
formed from the COX-mediated and lipoxygenase
(LOX)-mediated metabolism of the 20-carbon fatty acids
that are released from phospholipids by PLA2.
Eicosanoids, in turn, mediate many important biological
functions. The prostanoids produced from COX tend to
be best known for their involvement in reproduction and
inflammation. Thromboxanes are also derived from COX
and stimulate platelet aggregation, balancing the effects of
prostanoids. Leukotrienes and hydroxyeicosatetraenoic
acids (HETEs) produced from LOX-mediated metabo-
lism of arachidonic acid have important roles in vascular
tone, renal function, and pulmonary function, e.g., aller-
gic reactions.

Role in colon cancer risk. PGE2 is the eicosanoid that has
been the most widely studied with regard to colon cancer
risk. PGE2 is formed by constitutive COX-1 and inducible
COX-2 in the colonic mucosa, and it plays an important
role in the expansion of cell populations in the colonic
crypt and subsequent adenoma formation.35–39 COX
inhibitors conversely block proliferation, induce apopto-
sis, and inhibit angiogenesis in the colon.40 Inhibition of
both COX-1 and COX-2 appears effective for preventing
polyp formation.41 Reducing the level of PGE2 in normal
tissue, therefore, could lead to a reduced risk of polyp
formation, and PGE2 levels have been indicated to be an
appropriate candidate for a prevention endpoint.43 Inter-
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estingly, when EPA (20:5, n-3) is utilized as the substrate
by COX, PGE3 is produced, which has lower proinflam-
matory action.128 Suppression of PPAR delta and PGE2
with elevation of PGE3 has been suggested to be the
mechanism by which fish oil and pectin enhance colono-
cyte apoptosis.129

The literature strongly points towards an important
role of COX and its metabolites in colon cancer, but the
eicosanoid metabolic system is intricately linked and, pre-
sumably, regulated as a whole system. The products of
5-LOX and 12-LOX have been implicated in carcinogen-
esis, while the products of 15-LOX have not. The main
products of 5-LOX and 12-LOX that have been studied
are leukotriene B4 (LTB4) from 5-LOX and 12-HETE
from 12-LOX. Levels of PGE2, LTB4, and 12-HETE were
higher in inflamed versus normal mouse mucosa, while
15-HETE, from 15-LOX, was not increased and inhibited
inflammation.130 The two 15-LOX products, 13-S-HODE
and 15-HETE, induce apoptosis of colon cancer cells in
vitro and can reflect enhanced differentiation of the
cells.131,132 Accordingly, levels of 15-HETE in serum were
lower in colon cancer patients versus controls, and
aspirin increased 15-HETE formation.131,133 In rats,
12-HETE appears to be involved in stimulating the pro-
liferation of colonic epithelial cells.134 In Min mice, data
indicates a shift from COX-mediated to 12-LOX-
mediated metabolism of arachidonic acid in polyps.135

LTB4 stimulated the proliferation of HT-29 and HCT-15
colon cancer cells in vitro, but leukotriene B5 (LTB5), an
isomer of LTB4 derived from metabolism of EPA by
5-LOX, did not.136 The available data thus identify the
COX and LOX enzymes that can be targeted as pro- or
anti-carcinogenic.

Effect of diet. Many studies have examined the impact
of dietary changes on eicosanoid production. Dietary
corn oil and other n-6 fatty acids increased PGE2 levels
and colon tumorigenesis, while n-3 and n-9 fatty acids

(from fish and olive oil, respectively) have the opposite
effect.46–48,50 Most studies found that increased intake of
n-3 fatty acids resulted in decreased formation of LTB4,
including that in rat colonic mucosa, and increased
synthesis of 5-series leukotrienes, as shown in
Figure 2.47,137–141 Similarly, dietary eicosatrienoic acid
(20:3, n-9) decreased LTB4 synthesis in rat peritoneal
cells, and this effect was maximal when n-6 fatty acid
intake was low.142

Other aspects of the Mediterranean diet, namely the
increased consumption of fruit, vegetables, and olive oil,
could affect eicosanoid pathways as well. Phytochemicals,
which have antioxidant properties, are plentiful in plant
foods and would be expected to affect eicosanoids, since
oxidative stress induces expression of COX-2.143 Olive oil
contains many phenolic compounds with antioxidant
and anti-inflammatory properties as well as oleic acid
(18:1, n-9), which suppresses COX-2 via its effects on
HER-2/neu receptors.144–152 Phenolic compounds in olive
oil also were shown to inhibit leukocyte 5-LOX expres-
sion,153 and hydroxytyrosol, also found in olive oil, inhib-
ited formation of LTB4.154 Plasma levels of LTB4 were
decreased in humans consuming extra-virgin olive oil.155

Olive oil decreased COX-2 protein levels in colon tissue
of mice with colitis.156 Oleocanthal from olive oil was
shown to inhibit the expression of both COX-1 and
COX-2.157 Thus, a Mediterranean diet would be expected
to decrease COX-1, 5-LOX, and 12-LOX expression and
to increase 15-LOX expression in normal mucosa.

Prostaglandin E synthase

Role in colon cancer risk. Although prostaglandin E syn-
thase (PGES) does not metabolize fatty acids directly, it is
important to examine it in the context of colon carcino-
genesis because of its role in the synthesis of PGE2 from
the PGH2 produced by COX.158,159 Cytosolic PGES
(cPGES) is constitutively expressed and complexes with

Linoleic acid 
18:2 (n-6) 

Linolenic acid 
18:3 (n-3) 

cyclooxygenases PGE2 
PGE3 

13-S-HODE 12-S-HETE 15-S-HETE LTB4 
LTB5 

12-lipoxygenase 5-lipoxygenase 

Arachidonic acid 
20:4 (n-6) 

Eicosapentanoic 
acid20:5 (n-3) 

15-lipoxygenase 

5-S-HETE 

PGE-
synthases 

Figure 2 Formation of eicosanoids: select products. The other products shown are from n-6 fatty acids except for PGE3 and
LTB5, which are formed from n-3 fatty acids. Eicosapentaenoic acid inhibits oxygenation of arachidonic acid by cyclooxygenase
1 (COX-1), but this inhibition is modest with COX-2.197 The n-9 fatty acid oleic acid (18:1, n-9) forms 20:3 (n-9), which has not
been studied as extensively (not shown), but it has been reported to form the unstable LTA3 via 5-lipoxygenase that, in turn,
inhibits formation of LTB4.198,199
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COX-1. There are two other forms of PGES: microsomal
PGES-1 (mPGES), which is induced by proinflammatory
stimuli, and membrane-associated PGES-2, which is con-
stitutively expressed and co-localizes with both COX-2
and COX-1.158,160 Deletion of mPGES-1 suppressed intes-
tinal carcinogenesis greatly in one Min mouse model but
not in another.161,162 mPGES-1 was shown to be induced
in human inflammatory bowel disease and was overex-
pressed in 15 of 18 human colorectal cancer samples.163,164

Effect of diet. There are no studies yet available on the
effects of dietary fatty acids on PGES levels or activity in
the colon. Resveratrol, a compound found in red grapes,
attenuated chemically induced colonic inflammation in
mice and decreased levels of both PGES-1 and COX-2
proteins.165 In humans, a polymorphism in PGES was
important for modulating the effects of fish intake on the
risk of colorectal adenoma.166

EFFECTS OF HIGH-MUFA DIETS ON LEVELS OF FATTY
ACIDS IN BLOOD

A number of studies have examined the effects of a diet
high in MUFAs on levels of fatty acids in blood (Table 1).
These studies have indicated that changes in the levels of
fatty acids in blood, especially in the levels of PUFAs, are
considerably smaller than the changes in dietary fatty
acids. Significant beneficial health effects on insulin sen-
sitivity can nevertheless be achieved, especially if satu-
rated fat or total fat is not too high.71,167,168 Cardiovascular
health was the focus of the Lyon Heart Study, and in that
study a modified Mediterranean diet supplemented with
a high-MUFA spread resulted in changes in fatty acids
that were typically in the range of 10–15% (percent dif-
ference intervention versus control). This dietary change
was sufficient to result in a relative risk of 0.28 for cardiac
deaths and a relative risk of 0.39 for cancer deaths relative
to the group receiving the American Heart Association
Step I diet.169 Several other interventions with the Medi-
terranean diet have also resulted in significant benefits
with regard to markers of cardiovascular risks, insulin
resistance, and incidence of type II diabetes.170–172 In fact,
many domains of human health have been shown to be
affected by Mediterranean diets.3 This indicates that
metabolic pathways limit the impact of diet on fatty acids
in blood but that small changes in the levels of fatty acids
in blood may be important for health outcomes.

Table 1 shows changes in the levels of fatty acids in
blood in several studies that successfully increased MUFA
intakes. In a fairly comprehensive exchange-list Mediter-
ranean intervention performed in healthy women,
changes in the levels of fatty acids in blood are among the
higher increases reported in the literature for self-selected

diets (Table 1).173,174 In that study, the correlation between
the change in dietary MUFA intake and MUFA levels in
plasma (from baseline to 6 months) was modest but sig-
nificant (r = 0.42, P = 0.001, Spearman). Correlations of
changes in dietary saturated fatty acids and PUFAs, with
their respective blood measures, were much lower, with
r < 0.1 in each case. In the study of Paniagua et al., 167

in which all food was provided to study participants,
changes in the levels of fatty acids in blood were similarly
large. Despite the smaller changes observed in the
KANWU, Medi-RIVAGE, and PREDIMED studies, sig-
nificant health benefits were found for diabetes and
markers of cardiovascular disease risk and insulin
sensitivity.168,172,175

EFFECTS OF HIGH-MUFA DIETS ON LEVELS OF FATTY
ACIDS LEVELS IN THE COLON

The relationship between dietary fatty acids and fatty
acids in plasma and tissues is fairly well established, with
changes in plasma occurring more rapidly than in tis-
sues.176 The increase in 18:1 in adipose biopsies with a
high-MUFA weight-loss diet was 4% over 6 months,
which was significant but very small in magnitude.177

There are, however, examples of large changes in tissues.
For example, 6 weeks of a high-PUFA diet resulted in a
36% increase in the level of linoleic acid in cheek cells.178

Changes in fatty acids in breast adipose tissue biopsies
were much greater than in gluteal adipose tissues of
women supplemented with 10 g of fish oil per day for 3
months.179

Much less data is available on fatty acids in the colon.
In persons with ulcerative colitis, 18 g/day olive oil
supplementation over 12 weeks significantly decreased
18:0 and 22:6 (30–40%) and significantly increased 18:1
(n-9) by 38% in mucosa. Arachidonic acid (20:4, n-6) was
decreased by 40%, but this was not statistically signifi-
cant.180 Arachidonic acid has been shown to be increased
in inflammatory conditions of the colon.181,182 Arachi-
donic acid was also increased in mucosa from persons
with inflammatory bowel disease, while the ratio of oleic
acid to saturated fatty acids was increased in comparison
with normal controls.183

Other studies in colonic mucosa have investigated
changes with disease progression from normal mucosa to
adenoma and cancer. These studies showed that, gener-
ally, arachidonic acid increased (but 18:2 decreased,
perhaps due to increased metabolism to arachidonic
acid), n-3 fatty acids decreased, n-6 : n-3 ratios increased,
and MUFAs decreased in cancer and adenoma tissue
versus normal tissue.181,182,184–186 This indicates the rel-
evance of these fatty acid COX substrates to colon cancer
risk.184–186 Fatty acid levels in the normal colonic mucosa,
which served as the “control” for the aforementioned
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studies, are useful in estimating the expected variability in
fatty acids between individuals. Typically, the coeffi-
cient of variation for arachidonic acid was about
15–20%.182,184,185 One study published an observed range
of fatty acid values, which was quite large in normal
mucosa from eight healthy individuals (Table 2). The
relationships between colonic fatty acid levels and colonic
inflammation, however, remain to be determined.

EFFECTS OF DIET ON THE COLONIC PROTEOME

There is precedent for proteomic changes in the colon
caused by diet or dietary compounds, and some of those
same proteins are those involved in the carcinogenic phe-
notype.187,188 Diet has also been shown to affect proteins
involved in inflammation. A soy intervention in women
increased proteins with anti-inflammatory functions.189 A
high-fat diet increased COX-2 protein by 45% in the rat
colon.190 Even body weight can affect COX-2, and COX-2
mRNA in healthy colorectal mucosa was almost 2.6-fold
higher in overweight and obese persons than in normal-
weight persons.191 Importantly, changes in proteins may
be more valuable than changes in eicosanoids, which can
be transiently formed in cells,192 indicating a need for
future investigations of proteins affected by a Mediterra-
nean diet. Proteomic studies are already under way in
investigations of colon carcinogenesis.193–196 Targeted
proteomics of the proteins expected to be affected by a
Mediterranean diet should now be undertaken to develop
a better understanding of the mechanisms that tie this
diet to colon cancer risk.

CONCLUSION

In summary, the levels of proteins involved in uptake,
trafficking, and metabolism of fatty acids can be expected
to be altered by the Mediterranean diet. These proteins
can contribute to interindividual variability in the levels
of fatty acids and eicosanoids. A proteomic analysis of

colonic mucosa would allow for a pathway-based
approach of fatty acid metabolism. The relative levels of
proteins may not be strictly predictive of enzymatic activ-
ity, but determining such levels would be an important
step towards understanding how a Mediterranean diet
can influence the risk of colon cancer. The identified pro-
teins may then be good candidates for further study with
regard to regulatory factors such as genetic polymor-
phisms and their subsequent impact on carcinogenesis.
These kinds of approaches all have great potential for
increasing understanding of how interindividual variabil-
ity in colonic fatty acids affects inflammation and the risk
of colon cancer.
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