The Evolution of Information Technology # The Themes of Our Times - An Age of Knowledge, in which educated people and their ideas have become the strategic commodities determining prosperity, security, and social well-being. - The global nature of our society. - Rapidly evolving information technology that reshapes, strengthens, and accelerates the activities of knowledge driven organizations. - Networking, the degree to which cooperation and collaboration among individuals and institutions are replacing more formal social structures such as governments and states. # A Detour: The Evolution of Computers ``` Mainframes (Big Iron) ...IBM, CDC, Amdahl ...Proprietary software ...FORTRAN, COBOL Minicomputers ...Batch, time-sharing ...DEC, Data Gen, HP ...PDP, Vax Microcomputers ...C, Unix ...Hand calculators ...TRS, Apple, IBM ... Hobby kits -> PCs Supercomputers ...Vector processors ...Cray, IBM, Fujitsu ...Parallel processors ... Massively parallel Networking ...LANs, Ethernet ...Client-server systems ...Arpanet, NSFnet, Internet ``` Batch → Time-sharing → Personal → Collaborative # From Eniac # To ASCI "Q" ... and beyond PathForward Applications PSE VIEWS DisCom Platforms ASCI Gallery Privacy & Legal Notice Platforms Help Using ASCI White Using ASCI Blue-Pacific Using ASCI Q Using ASCI Red Using ASCI Blue Mountain **Using ASCI Cplant** Using NPACI Blue Horizon (available for special ASCI unclassified use) Using ASCI Whitecap Platforms Contacts Mark Seager seager@llnl.gov James Tomkins iltomki@sandia.gov ASCI Q **ASCI Cplant** **ASCI Blue-Pacific** **ASCI Red** #### ASCI Home Red's Home Users' Home Policies Getting Started Getting Help System Status Hardware Environment Software Environment Frequently Asked Questions Running Jobs Bonus Links #### No-Frames version For technical information, contact: janus-help@sandia.gov Privacy and Security ### ASCI Red Users' Guide The hardware for ASCI Red, the world's fastest computer, is now complete, as the picture above shows. ASCI Red is a first-of-a-kind computer, and the operating software is under development, as are these web pages. **ASCI White Home** **Policies** **Getting Started** **Getting Help** System Status Hardware Software Code Development **Running Jobs** Search Privacy & Legal Notice UCRL-MI-138471 Rev. 1 #### Using ASCI White #### About ASCI White... ASCI White is the third step in the DOE's five stage Accelerated Strategic Computing Initiative (ASCI) plan to achieve a 100 TeraOP/s supercomputer system by 2004. It is part of the DOE's science-based Stockpile Stewardship Program to maintain the safety and reliability of the US nuclear stockpile without underground testing. See <u>ASCI White news</u> for details. ASCI White is actually comprised of three separate systems based upon IBM's POWER3 SP technology. The largest system is a 512 node SMP (16 CPUs/node) system that is currently ranked as the world's fastest computer, with a peak speed slightly greater than 12 TeraOP/s. The table below sumarizes the systems that comprise ASCI White. For more detailed configuration and architecture information, please see the Hardware section. Privacy & Legal Notice LANL Consulting Help consult@lanl.gov ASCI@LANL Web Site http://www.lanl.gov/ asci/ ASC Quick Facts http://public.lanl.gov/ consult/qsc/ ### Using ASCI Q ASCI Q is the fourth step in the DOE's five-stage Advanced Simulation and Computing (ASCI) plan to achieve a 100 TeraOP/s supercomputer system by 2004. It is part of the DOE's science-based Stockpile Stewardship Program to maintain the safety and reliability of the U.S. nuclear stockpile without underground testing. ASCI Q, located at Los Alamos National Laboratory, comprises multiple systems based on HP/Compaq's latest technology. The first 1024-node unit of ASCI Q, FS-QA, was installed and certified July 1, 2002. Consult Using LANL's Parallel Q Machines (QA, QB, QSC) [PDF] for information on accessing and using ASCI Q. For technical information, contact the Livermore Computing Hotline, Ic-hotline@Ilnl.gov, #### Eyes open - cut costs avoid development failures ADVERTISEMENT HOME ABOUT CURRENT LIST ARCHIVE DATABASE IN FOCUS NEWS SITEMAP CONTACT PRESENTED BY UNIV. OF MANNHEIM UNIV. OF TENNESSEE NERSC/LBNL #### TOP500 List for November 2002 R_{max} and R_{peak} values are in GFlops. For more details about other fields, please click on the button "Explanation of the Fields" 1280 IBM 10 3164.00 NCAR (National Center for ## EARTH SIMULATOR Tetsuya Sato Director - General of ESC What's new Outline of The Earth Simulator -New Link 02/11/21 The Earth Simulator Center handout for SC2002 Reference Access map The page only for users (Required password) Updating history Registration 02/11/21 Regarding International Cooperation of the Earth Simulator Center # ASCI Purple RFP **Privacy & Legal Notice** The Purple RFP was issued on February 22, 2002 RFP RESPONSES ARE DUE 4:00 P.M. PDT APRIL 29, 2002 ASCI Purple (2004): 100 TeraFlops IBM Blue Gene L (2004): 360 TeraFlops IBM Blue Gene P (2006): "Several" PetaFlops # The Evolution of Computing # Some Extrapolation of the PC | | <u>2000</u> | <u>2010</u> | <u>2020</u> | |----------|-------------|-------------|-------------| | Speed | 10^{9} | 10^{12} | 10^{15} | | RAM | 10^{8} | 10^{11} | 10^{14} | | Disk | 10^{9} | 10^{12} | 10^{15} | | LAN | 10^{8} | 10^{12} | 10^{15} | | Wireless | 10^{6} | 10^{9} | 10^{12} | # Some Examples #### Speed * MHz to GHz to THz to Peta Hz #### Memory * MB (RAM) to GB (CD,DVD) to TB (holographic) #### Bandwidth - * Kb/s (modem) to Mb/s (Ethernet) to Gb/s - * Internet2 (Project Abilene): 10 Gb/s #### Networks - * Copper to fiber to wireless to photonics - * "Fiber to the forehead..." ### Hardware Technology Trends - Processing (Moore's Law) (increasing 40% per year) - * Current speed record: 150 GHz chips - Disk storage (increasing 60% to 100% per year) - * 3.5 disk can hold 320 Gb - * Far cheaper than paper or microfilm - Bandwidth - * Lab demo on single fiber: 11 Tb/s - * Real communication at 40 Gb/s - Mobility - * 802.11 (a, b, g, I) at 55 Mb/s and beyond - Displays - * Full wall projections - Resolution must better than paper ### Software and System Trends - Algorithm improvements - Embodiment of techniques and processes into software - * Formalization and standardization - * People are the exception rather than the main line - Distribution of computing, data, applications, and services - Grid intercollection of resources - Services as unit of IT, rather than bare-bones data and processing ### **Technology Directions** #### Technology: Today -> 2003-2006 -> 2010 - Access Bandwidth: 56 kb/s -> Mb/s -> 100 Mb/s-1 Gb/s - Backbone Bandwidth: 155 Mb/s -> Tb/s -> Pb/s - Intercontinental Bandwidth: 45 Mb/s -> 3 Tb/s -> many Tb/s - Wireless: 32 kB/s -> 55 Mb/s -> Gb/s - Enterprise database: 30 TB -> PB -> 10 PB + - Supercomputing: 40 TFLOPS -> PFLOPS -> 100 PFLOPS - Display: .5 Mpixel, 5. sqft -> 9 Mpixel, 60 sqft > much more ### Computer-Mediated Human Interaction - 1-D (words) - * Text, e-mail, chatrooms, telephony - 2-D (images) - * Graphics, video, WWW, multimedia - 3-D (environments) - Virtual reality, distributed virtual environments - * Immersive simulations, avatars - Virtual communities and organizations - And beyond... (experiences, "sim-stim") - * Telepresence - * Neural implants # Evolution of the Net - Already beyond human comprehension - Incorporates ideas and mediates interactions among millions of people - 200 million today; more than 1 billion in 2005 - Internet II, Project Abilene # Some Other Possibilities #### Ubiquitous computing? - Computers disappear (just as electricity) - * Calm technology, bodynets #### Agents and avatars? - * Fusing together physical space and cyberspace - * Plugging the nervous system into the Net #### Emergent behavior? - * ... Self organization - * ... Learning capacity - * ... Consciousness (HAL 9000) # Cyberinfrastructure ### e-Science - science increasingly done through <u>distributed global</u> <u>collaborations</u> between people, enabled by the internet - using very large data collections, terascale computing resources and high performance visualisation - derived from instruments and facilities controlled and shared via the infrastructure - Scaling X1000 in processing power, data, bandwidth # Four LHC Experiments: The Petabyte to Exabyte Challenge ATLAS, CMS, ALICE, LHCB Higgs + New particles; Quark-Gluon Plasma; CP Violation Data stored CPU 0.1 to (2007) ~40 Petabytes/Year and UP; 0.30 Petaflops and UP 1 Exabyte (1 EB = 10¹⁸ Bytes) (~2012 ?) for the LHC Experiments # TELESCIENCE: REMOTE ACCESS FOR DATA ACQUISITION, GRID - BASED COMPUTING, DISTRIBUTED DATA STORAGE #### **Project leaders:** Mark Ellisman, UCSD; Carl Kesselman, USC; Fran Berman, UCSD; Rich Wolski, UCSB; #### **Project Manager:** Steve Peltier, UCSD #### **Senior Participants:** Gwen Jacobs, Montana State U. Reagan Moore, SDSC/UCSD Maryann Martone, UCSD/NCMIR Amarnath Gupta, SDSC/UCSD Bertram Ludaescher, SDSC/UCSD Chandrijt Bajaj, U.Texas Steve Lamont, UCSD Shinji Shimojo, Osaka Univ. PROCESSING, ANALYSIS ADVANCED VISUALIZATION NETWORK COMPUTATIONAL RESOURCES LARGE-SCALE DATABASES NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE ## (Cyber) infrastructure - The term *infrastructure* has been used since the 1920's to refer collectively to the roads, bridges, rail lines, and similar public works that are required for an industrial economy to function. - The recent term *cyberinfrastructure* refers to an infrastructure based upon computer, information and communication technology (increasingly) required for discovery, dissemination, and preservation of knowledge. - Traditional infrastructure is required for an industrial economy. Cyberinfrastructure is required for an information economy. ## Cyberinfrastructure: the Middle Layer Applications in science and engineering research and education Cyberinfrastructure: hardware, software, personnel, services, institutions Base-technology: computation, storage, communication # Components of CI-enabled science & engineering A broad, systemic, strategic conceptualization # Cyberinfrastructure Enabled Science **NVO and ALMA** NEESgrid **LIGO** The number of nation-scale projects is growing rapidly! More Diversity, New Devices, New Applications Knowledge from Data # Cyberinfrastructure is a First-Class Tool for Science # **Futures: The Computing Continuum** #### Two leading U.S. initiatives - Next Generation Abilene - Advanced Internet backbone - connects entire campus networks of the research universities - 10 Gbps nationally - TeraGrid - Virtual machine room for distributed computing (Grid) - Connecting 4 HPC centers initially - Illinois: NCSA, Argonne - California: SDSC, Caltech - 4x10 Gbps: Chicago → Los Angeles - Ongoing collaboration between both projects About Internet2 | News | Members | Activities | Contact Applications | Middleware | Networks | Engineering | Partnerships #### About Internet2® Internet2 is a consortium being led by over 200 universities working in partnership with industry and government to develop and deploy advanced network applications and technologies, accelerating the creation of tomorrow's Internet. Internet2 is recreating the partnership among academia, industry and government that fostered today's Internet in its infancy. The primary goals of Internet2 are to: - Create a leading edge network capability for the national research community - Enable revolutionary Internet applications - Ensure the rapid transfer of new network services and applications to the broader Internet community. Through Internet2 Working Groups and initiatives, Internet2 members are collaborating on: - Advanced Applications - Middleware - New Networking Capabilities - Advanced Network Infrastructure - Partnerships and alliances - Initiatives #### ABILENE NETWORK 10-Gbps OPTICAL UPGRADE - 2002-2003 # The Grid Ian Foster and Carl Kesselman, editors, "The Grid: Blueprint for a New Computing Infrastructure," Morgan Kaufmann, 1999, http://www.mkp.com/grids ## Why Grids? - A biochemist exploits 10,000 computers to screen 100,000 compounds in an hour - 1,000 physicists worldwide pool resources for petaop analyses of petabytes of data - Civil engineers collaborate to design, execute, & analyze shake table experiments - Climate scientists visualize, annotate, & analyze terabyte simulation datasets - An emergency response team couples real time data, weather model, population data ## Why Grids? (contd) - A multidisciplinary analysis in aerospace couples code and data in four companies - A home user invokes architectural design functions at an application service provider - An application service provider purchases cycles from compute cycle providers - Scientists at a multinational company collaborate on the design of a new product - A community group pools members' PCs to perform environmental impact study #### The Grid from a Services View # Global Data Grid Challenge "Global scientific communities, served by networks with bandwidths varying by orders of magnitude, need to perform computationally demanding analyses of geographically distributed datasets that will grow by at least 3 orders of magnitude over the next decade, from the 100 Terabyte to the 100 Petabyte scale [from 2000 to 2007]" #### TeraGrid Architecture – 13.6 TF #### Some Other Possibilities #### Ubiquitous computing? - Computers disappear (just as electricity) - Calm technology, bodynets #### Agents and avatars? - Fusing together physical space and cyberspace - Plugging the nervous system into the Net #### • Emergent behavior? - ... Self organization - ... Learning capacity - ... Consciousness (HAL 9000) # The Plug and Play Generation - Raised in a media-rich environment - * Sesame Street, Nintendo, MTV, - Home computers, WWW, MOOs, virtual reality - Learn through participation and experimentation - Learn through collaboration and interaction - Nonlinear thinking, parallel processing # Campcaen Campcaen The computer exploration camp from The University of Michigan. Summer 2000 # IT Forum - Carnegie Mellon - Today's students are "electrified"; they are a transformative force. - Example: instant messaging, WiKi's, Blog's, always on - Peer-to-peer learning - Faculty has concluded that best approach is to turn the kids loose, letting them define their own learning environments. # The New Literacy - Not just from verbal to multimedia, but from "read only, listening, viewing" to composition in all media - From analysis to synthesis: creativity!!! - Dewey to Piaget to Papert: constructionist learning - "I hear and I forget; I see and I remember; I do and I understand; I teach and I master!!!" # Perhaps it is time... - To integrate the educational missions of the university with its research and service roles ... - To rip instruction out of the classroom (or at least the lecture hall) and place it instead in the discovery environment of the laboratory or studio or the experiential environment of professional practice. # WWW and "infocern", the 1st web address ~1990 html (xml) open standards - •A great achievement and a fantastic idea, at the right time, making the internet available to everybody - •It proves something about the benefits of assembling together urgent needs, infrastructure and smart people, and letting them interact.. - •And why it is exciting to work at CERN, and in computing - •And why we should not always listen to wise people who tell us that industry will always do better than we will.... Tim Berners-Lee ## To Infinity and Beyond! "A small group of thoughtful people could change the world. Indeed, it's the only thing that ever has." Margaret Mead ## Some Further Speculation The Age of Spiritual Machines: When Computers Exceed Human Intelligence -Ray Kurzweil - A \$1,000 PC delivers Terahertz speeds - PCs with high resolution visual displays come in a range of sizes, from those small enough to be embedded in clothing and jewelry up to the size of a thin book. - Cables are disappearing. Communication between components uses wireless technology, as does access to the Web. - The majority of text is crated using continuous speech recognition. Also ubiquitous are language user interfaces. - Most routine business transactions (purchases, travel, etc.) take place between a human and a virtual personality. Often the virtual personality includes an animated visual presence that looks like a human face. - Although traditional classroom organization is still common, intelligent courseware has emerged as a common means of learning. - Translating telephones (speech-to-speech language translation) are commonly used. - Accelerating returns from the advance of computer technology have resulted in a continued economic expansion. - The neo-Luddite movement is growing. - A \$1,000 PC is now approximately equal to the computational ability of the human brain. - Computers are now largely invisible and are embedded everywhere—in walls, tables, chairs, desks, clothing, jewelry, and bodies. - 3-D virtual reality displays, embedded in glasses and contact lenses, as well as auditory "lenses", are used routinely as primary interfaces for communication with other persons, computers, the Web, and virtual reality. - Most interaction with computing is through gestures and two-way natural-language spoken communication. - Nanoengineered machines are beginning to be applied to manufacturing and process control. - High-resolution, 3-D visual and auditory virtual reality and realistic all-encompassing tactile environments enable people to do virtually anything with anybody, regardless of physical proximity. - Paper books or documents are rarely used and most learning is conducted through intelligent, simulated software-based teachers. - The vast majority of transactions include a simulated person. - Automated driving systems are now installed in most roads. - People are beginning to have relationships with automated personalities and use them as companions, teachers, caretakers, and lovers. - There are widespread reports of computers passing the Turing Test, although these tests do not meet the criteria established by knowledgeable observers. - A \$1,000 unit of computation now has the computation capacity of roughly 1,000 human brains. - Permanent removable implants for the eyes and ears are now used to provide input and output between the human user and the worldwide computing network. - Direct neural pathways have been perfected for highbandwidth connection to the human brain. A range of neural implants is becoming available to enhance visual and auditory perception and interpretation, memory, and reasoning. - Automated agents are now learning on their own, and significant knowledge is being crated by machines with little or no human intervention. - Computers have read all available human- and machine-generated literature and multimedia material. - There is widespread use of all-encompassing visual, auditory, and tactile communication using direct neural connections, allowing virtual reality to take place ("sim-stim") - The majority of communication does not involve a human; rather it is between a human and a machine. - There is almost no human employment in production, agriculture, or transportation. Basic life needs are available for the vast majority of the human race. - There is a growing discussion about the legal rights of computers and what constitutes being "human". Although computers routinely pass apparently valid forms of the Turing Test, controversy persists about whether or not machine intelligence equals human intelligence in all of its diversity. - Machines claim to be conscious. These claims are largely accepted. - The common use of nanoproduced food, which has the correct nutritional composition and the same taset and texture of organically produced food, means that the availability of food is no longer affected by limited resources, bad weather, or spoilage. - Nanobot swarm projections are used to create visual-auditory-tactile projections of people and objects in real reality. - Picoengineering begins to become practical. # By 2099 - There is a strong trend toward a merger of human thinking with the world of machine intelligence that the human species initially created. - There is no longer any clear distinction between humans and computers. - Most conscious entities do not have a permanent physical presence. - Machine-based intelligences derived from extended models of human intelligence claim to be human, although their brains are not based on carbon-based cellular process, but rather electronic and photonic equivalents. Most of these intelligences are not tied to a specific computational process unit. The number of software-based humans vastly exceeds those still using native neuron-cell-based computation. ## $By\ 2099\ (\text{continued})$ - Even among those human intelligences still using carbon-based neutrons, there is ubiquitous use of neural-implant technology, which provides enormous augmentation of human perceptual and cognitive abilities. Humans who do not utilize such implants are unable to meaningfully participate in dialogues with those who do. - Because most information is published using standard assimilated knowledge protocols, information can be instantly understood. The goal of education, and of intelligent beings, is discovering new knowledge to learn. - Life expectancy is no longer a viable term in relation to intelligence beings. ## Many Milleniums Hence ... Intelligent beings consider the fate of the Universe ...