Energy Discovery-Innovation Institutes: A Step Toward America’s Energy Sustainability

James J. Duderstadt, University of Michigan
The U.S. must address the two main shortcomings of energy innovation policies

The federal government should increase energy R&D investment by an order of magnitude

The federal government should complement its scale increase with an investment in new research paradigms
America’s challenge
America faces an interrelated set of three broad energy challenges

Supply, security, and environmental challenges plague the world’s energy production and delivery system

Transformative innovation is required to commercialize and deploy energy breakthroughs

Multiple market and government failures hinder energy innovation investments and problem-solving
The supply challenge

Rapidly increasing global energy demand exacerbates already serious supply challenges

Projected energy consumption, quadrillion BTUs
(Source: Energy Information Administration)
The security challenge

America’s dependence on oil from politically volatile regions makes it vulnerable to supply shocks and military interventions.

Percent of U.S. oil supply from imports, 1949-2007 (Source: Energy Information Administration)
The environmental challenge

Global average temperatures may rise by 6 degrees Celsius or more over pre-industrial levels—with devastating consequences—if carbon emissions continue to grow at current rates.

Temperature projections under different emissions trajectories

- Slow technological change (+2–5.4°C)
- Moderate tech change (+1.7–4.4°C)
- More rapid tech change (+1.1–2.9°C)
- Constant year 2000 CO₂ (+0.3–0.9°C)

Source: Intergovernmental Panel on Climate Change
The technology challenge

Current energy technologies have not yet achieved both the scale and cost structures necessary for commercialization.
The market failure challenge

Two enormous, un-corrected market failures exist:

1. Energy prices do not internalize all costs
2. Firms under-invest in R&D
The large scale deployment of sustainable energy technologies will involve not only advanced scientific research and the development of new technologies...

...but also careful attention to complex social, economic, legal, political, behavioral, consumer, and market issues...

...all characterized by complex regional, national, and international relationships.
Limitations of existing federal policy
Existing federal energy innovation policies are hampered by problems of scale and structure

The magnitude of U.S. energy research is inadequate

The character and format of U.S. energy research remain inadequate
The magnitude of U.S. energy research is inadequate

Federal energy R&D spending, in dollars and as a share of GDP (Source: National Science Foundation)
The character and format of U.S. energy research remain inadequate

There is a need to augment existing federal and industry research programs with organizations able to address broader issues such as economics, public policy, social behavior, and human capital development.

Other sectors of the nation’s R&D capabilities with complementary assets must be full participants, including research universities.
A new federal approach
The U.S. must address the two main shortcomings of energy innovation policies

The federal government should increase energy R&D investment by an order of magnitude

The federal government should complement its scale increase with an investment in new research paradigms
Federal investment in energy R&D should grow to between $20 and $30 billion annually

- This would address the ‘scale’ component of the energy challenge
- The increase would bring energy R&D investments closer to levels in other national priorities, such as health, defense, and space
- The increase would bring total funding up to a level consistent with the size of the industry
The federal government should direct a portion of the increased energy R&D funding toward a new research paradigm: Energy discovery-innovation institutes (e-DIIIs)
The DII concept—developed by the National Academy of Engineering—aims to link scientific discoveries with technological innovation to create products, processes, and services needed by society.
The DII concept is a contemporary adaptation of a successful research paradigm created over a century ago through the Morrill Land-Grant Act.
Energy DIIs would combine the best qualities of current R&D institutions

Like agricultural experiment stations, they would be responsive to societal priorities

Like academic medical centers, they would link research, education, and practice

Like corporate research and development labs, they would link discoveries with the applied research necessary to produce innovative products, but would also educate the next generation of hi-tech workers
The energy DIIIs should be distributed competitively among the nation’s universities and federal laboratories.

Several types of institutes would anchor the national network:

- University-based e-DIIIs
- Federal lab-based e-DIIIs
- Satellite energy research centers
- Federal lab–university partnerships
Core federal support would range from $10s of millions per year for small institutes to $200 million per year for larger university or laboratory consortia and partnerships.

Total federal commitments would approach $6 billion per year—about 25 percent of the total recommended energy R&D funding goal of $20 to $30 billion annually.
Energy DIIIs will be created through a competitive process

Award process:
- Proposals evaluated by an interagency panel
- Peer review
- Led by NSF

Award criteria:
- Scientific merit and capability
- Strength of management plan
- Commercialization strategies
- Integration into the regional economy
- Plans for the hub-and-spoke network capable of linking to the national energy research network (NERN) and campus- or industry-based scientists

Phase in: The e-DII network should be phased in over time to allow for ongoing evaluation and management
The E-Dlls’ organizational structures will be tiered, with strong network characteristics

Tiered organization:
- Independent institutional and management structure
- Strong external advisory board
- Commitment to encouraging competition

Linked external relationships:
- Network should be undergirded by powerful information and communications technology
- Overlaid by a network of virtual organizations
Several e-DII administration and funding options exist

Administration:
- Established, managed, and funded as an interagency effort
- DOE would likely play a lead role

Funding:
- Diversion of existing energy-related subsidies?
- General revenue?
- Carbon tax or cap-and-trade scheme?
Policy briefs and full reports are available on the Brookings website

Energy Discovery-Innovation Institutes: A Step Toward America’s Energy Sustainability

www.blueprintprosperity.org