Table S-2. Roadmapping Neutron Sources | Facility | Isotopes | General Nuclear
Science | Nuclear Power
Technology | Space | Defense | Notes | | | | |---|--|---|---|---|---|---|--|--|--| | | Reactors | | | | | | | | | | Advanced
Test Reactor
(ATR) | > 10 ¹⁵ high flux
products (Ir ¹⁹² ,
Co ⁶⁰ , Gd ¹⁵³ , Ni ⁶³)
Short-lived
products
High energy
products | General material irradiation Transplutonium production Fusion materials research | Fast flux irradiation,
Thermal flux
irradiation (P)- Fuels
and Materials | 2-5kg Pu-238
production
Fuels and
materials
irradiation tests | Cross-sections—gms Cross section measurements Naval fuels (5/9 loops) (P) Pu disposition fuel testing | ATR 3 loops and numerous unused drop-in positions | | | | | Annular Core
Research
Reactor
(ACRR) | Fission Products (Mo ⁹⁹ , I ¹³¹ , Xe ¹³³ , I ¹²⁵) | Fundamental transient effects and high pumped rate physics | Transient and in-core accident tests | Transient tests of fuels and materials | Isotope production
for Radiochemistry,
Cross-sections—gms
Vulnerability testing
Cross section
measurements | ACRR is
dedicated to
medical isotope
production | | | | | High Flux
Isotope
Reactor
(HFIR) | High energy products (P) Short lived products (P) > 10 ¹⁵ high flux products Transuranics (P) | Neutron activation
analysis Over subscribed for
neutron beam research General materials
irradiation Transplutonium
production (P) | Fast flux irradiation,
Thermal flux
irradiation for fuels and
materials | Fuels and materials irradiation Component testing Pu-238 prod < 2 kg | Cross-sections—gms Cross section measurements Naval fuels | * HFIR is almost
fully loaded and
can meet only
part of the 5kg
need for Pu-238 | | | | | ANL-W
NRAD | | | Neutron radiography | | | | | | | | SPR II and III at SN | | Fundamental studies of transient effects and high pumped rate physics | | | Vulnerability testing | | | | | | BMRR | | Boron neutron capture therapy | | | | | | | | Table S-2. Roadmapping Neutron Sources (continued) | Facility | Isotopes | General Nuclear
Science | Nuclear Power
Technology | Space | Defense | Notes | |---|----------------------|--|-------------------------------|--|--|-------| | | | | Reactors | | | | | Tower Reactor
Facility (to be
privatized) | | Boron neutron capture therapy | | | | | | LANL Critical
Facility
(LACEF) | | | Th, Fast critical experiments | | Critical geometry, critical mass | | | NIST | | Over subscribed for neutron beam research | | | | | | Missouri
University
Research
Reactor
(MURR) | Short-lived products | | | | Radiochemistry cross
sections - gms | | | MIT | | Boron neutron capture therapy | | | | | | Most TRIGA reactors | | | Neutron radiography | | Cross section measurements | | | General
University
Reactors | | Neutron activation
analysis
Boron neutron capture
therapy (MIT) | | | | | | Commercial
LWR | | | Thermal Fuels
Irradiation | Pu-238
production Fuels and
materials testing | Tritium–kgs (Preferred Rx Source) Transuranics–kgs Non-Pu material disposition | | Table S-2. Roadmapping Neutron Sources (continued) | Facility | Isotopes | General Nuclear
Science | Nuclear Power
Technology | Space | Defense | Notes | | | | |---|---|--|---|---|---|--|--|--|--| | | Reactors | | | | | | | | | | HFBR (Standby) | Short-lived products (Sm ¹⁵³ , Sc ⁴⁷ , Cu ⁶⁷) | Neutron activation
analysis
General material
irradiation
Over subscribed for
neutron beam research* | Materials irradiation | | | Standby.
Awaiting
Secretarial
decision on restart | | | | | FFTF (Standby) | > 10 ¹⁵ high flux
products
Ir ¹⁹² , W ¹⁸⁸ , Sn ^{177m}
Transuranics,
Short lived
products | General materials irradiation Transplutonium production Fusion materials irradiation (P) | Fuels and Materials Fast flux irradiation (P) ATW testing General fuels and materials | 2-5 kg Pu238
production
Fuels, materials,
and component
testing | Naval fuels Non-Pu material disposition Cross-section—gms Cross section measurements Tritium Production | | | | | | TREAT (standby) | | | Transient (P) and incore accident tests Neutron radiography | Transient testing of fuels and materials | Vulnerability testing | | | | | | ZPPR (standby, non-operational) | | | Th, Fast critical experiments | | Cross section
measurements
Critical mass | | | | | | PBF (shutdown, non-operational) | | | Transient and in-core accident tests | Transient testing of fuels and materials | Vulnerability testing | | | | | | New reactor,
similar to
HFIR @ year
2020 | >10 ¹⁵ high flux
products
Ir ¹⁹² , W ¹⁸⁸ , Sn ^{177m} | | | | | | | | | | New Annular reactors | | | | | Critical mass | | | | | Table S-2. Roadmapping Neutron Sources | Facility | Isotopes | General Nuclear
Science | Nuclear Power
Technology | Space | Defense | Notes | | | |--|---|--|-----------------------------|--|---|-------|--|--| | Accelerators | | | | | | | | | | LANSCE | Spallation products A1-26 50-100MeV proton products | Neutron beam research
Ultra cold neutrons | Nuclear cross sections | <800 Mev
radiation effects
on materials &
tissue | Nuclear cross
sections
dynamic radiography | | | | | IPNS | | Neutron beam research
(low flux) and
materials testing | | | Materials, Pu
properties, static
radiography,
dynamic
radiography, isotope
production, nuclear
cross sections,
detector research | | | | | BLIP | 50-100 proton
products | | | | | | | | | CEBAF,
BATES | | Nuclear science | | | | | | | | HRIBF-
ORNL,
ATLAS-ANL,
LBNL-Heavy
ion | | Nuclear science | | Radiation effects
on materials and
tissues | | | | | | ORNL
LINAC
(ORELA) | | Nuclear science | Neutron cross section data | | Nuclear cross
sections, detector
research | | | | | AGS-Heavy ion | | Nuclear science | | >800 Mev,
radiation effects
on materials &
tissue | Dynamic radiography | | | | Table S-2. Roadmapping Neutron Sources (continued) | Facility | Isotopes | General Nuclear
Science | Nuclear Power
Technology | Space | Defense | Notes | | | | | |---|------------------------------|--|-----------------------------|---|---|-------|--|--|--|--| | | Accelerators | | | | | | | | | | | BAF @ BNL
Booster
assisted
facility-Heavy
ion | | | | Radiation effects
on materials &
tissue | | | | | | | | FXR (LLNL) | | | | | Dynamic radiography | | | | | | | LLNL LINAC | | | Neutron cross section data | | | | | | | | | RPI LINAC | | | Neutron cross section data | | | | | | | | | DUKE
University | | Nuclear science | | | | | | | | | | BNL
Cyclotron
(shutdown) | 10-30 MeV proton | | | | | | | | | | | ORNL
Cyclotron
(shutdown) | 10-30 MeV proton | | | | | | | | | | | DARHT
(LANL)
(under
construction) | | | | | Dynamic radiography | | | | | | | SNS
(In design) | Spallation products
A1-26 | Fundamental studies of radiation SNS (12 years out) Neutron beam research and material testing and neutron activation analysis | | | Materials, Pu
properties, static
radiography, nuclear
cross sections,
detector research | | | | | | Table S-2. Roadmapping Neutron Sources (continued) | Facility | Isotopes | General Nuclear
Science | Nuclear Power
Technology | Space | Defense | Notes | | | |---|------------------------------|--|-----------------------------|-------|---|-------|--|--| | | Accelerators | | | | | | | | | APT/ATW
(In design) | Numerous | | none | | Tritium production. Transmutation, MD, isotope production | | | | | Radioactive
Ion Beam
(RIB) (In
design) | | nuclear science | | | Nuclear cross
sections detector
research | | | | | LPSS
(Proposed
upgrade to
LANSCE) | Spallation products
A1-26 | Neutron beam research
Materials testing | | | Materials, Pu
properties, static
radiography, isotope
production | | | | | (IFMIF) New proposed fusion materials testing accelerator | | 14 MeV neutrons for fusion materials testing | | | | | | | | High energy
P-Rad facility
(proposed) | | | | | Dynamic radiography | | | | Table S-2. Roadmapping Neutron Sources (continued) | Facility | Isotope | General Nuclear | Nuclear Power | Space | Defense | Notes | |----------|---------|-----------------|----------------------|-------|---------|-------| |----------|---------|-----------------|----------------------|-------|---------|-------| | | | Science | Technology | | | |---|--|--|--|----------------------------------|--| | | | | Hot Cells | | | | ANL-E
Irradiated
Materials
Facility (IMF)
AGHCF
Bldg 205 | | | AGHCF for partial length and metal fuel cells, dry glove box for reactor process development. Bldg 205 for fuels analysis. | IMF for materials GHCF for fuels | | | ANL-W
HFEF
Analytical lab | | HFEF for general materials irradiation | HFEF for shielded fab facility for metal fuels development, PIE for full and partial length and metal fuel cells, neutron radiography support (NRAD). Analytical lab for fuels analysis. FCF, Analytical lab for aqueous glove box for reactor process development. | HFEF for fuels | | | BNL
TPL
MEL
HIRDL | BLIP - 10.
+ 2 if HFBR
restarted | MEL for nuclear science | MEL for PIE of partial length fuel cells Hot cell near BNL Booster. | MEL for materials. | | Table S-2. Roadmapping Neutron Sources (continued) | Facility | Isotope | General Nuclear
Science | Nuclear Power
Technology | Space | Defense | Notes | |----------|---------|----------------------------|-----------------------------|-------|---------|-------| |----------|---------|----------------------------|-----------------------------|-------|---------|-------| | | | | Hot Cells | | | |--|-------------------------------|---|---|---|--| | Hanford/PNNL FMEF HLRF SAL Mini-hot cell SNMF PITL 222 West | 12 cells - if FFTF restarted. | IEM, FMEF, HLRF
for general
materials
irradiation and
trans-Pu
production. | FMEF for shielded lab facility for fuels development and PIE of metal fuels. IEM. PITL for PIE of full length and metal fuel cells. HLRF for partial length fuel cells, fuels analysis, reactor process development. SAL, 222 West for fuels analysis. | FMEF for Pu-238. HLRF for materials and fuels examinations. | | | INEEL TAN FPF Remote Analytical lab (RAL). Intl Isotopes Inc (III) | 5 - III | | FPF, FCF, TAN for shielded fab facility for fuels development. TAN for PIE of full length fuel cells for reactor process development. RAL for fuels analysis. FPF for aqueous reactor process development. | TAN for space reactor fuels and materials examinations | | Table S-2. Roadmapping Neutron Sources (continued) | Facility | Isotope | General Nuclear
Science | Nuclear Power
Technology | Space | Defense | Notes | |------------|------------|----------------------------|-----------------------------|-------------------|-------------------|-------| | | | | Hot Cells | | | | | Los Alamos | 8 - LANSCE | CMR to LANSCE | CMR for PIE of full | CMR for materials | CMR for materials | | | CMR
TA-48 | | neutron beam
research | and partial length and metal fuel cells, and fuels analysis. TA - 48 for fuels analysis. Hot cell near critical facility, near LANSCE for ATW. | and fuels | and isotope research TA-48 for analysis, training, vulnerability testing | |---|-----------------|--|--|--|--| | Oak Ridge
REDC
RMAL
Bldg 4501
IMET
RDL
IFEL | 7 - HFIR | IMET for general materials irradiation and nuclear science. REDC for trans-Pu production (P) | REDC for shielded lab facility for fuels dev'mt. IFEL for PIE of particle fuel. RMAL for fuels analysis. Hot cell near SNS Bldg 7920 for wet and 4501 for dry reactor process development. HFIR pool facility for gamma irradiation facility. | REDC for Pu 238 IMET for materials IFEL for fuel PIE | Materials recovery | | Sandia
HCF
LICA | 4 - HCF (Mo99). | HCF (mission conflict with Mo99) | PIE of partial length
fuel cells.
Gamma irradiation
facility. | | | ## Table S-2. Roadmapping Neutron Sources (continued) | Facility | Isotope | General Nuclear
Science | Nuclear Power
Technology | Space | Defense | Notes | | | | | |-------------------------|-------------------|----------------------------|--|-----------------------|---------|--------------------------------|--|--|--|--| | Hot Cells | | | | | | | | | | | | Savannah River
Site: | 12 - if APT built | | DWPF high level cells for fuels analysis | HLC/ILC for materials | | Many hot cells at SRS are used | | | | | | DWPF High level cells Int. level cells Cf shipping/ receiving Cf processing facility | | F or H canyons and
CPF for aqueous
reactor process
development | SRTC for fuels H
canyon/HB for Pu238
(note: this facility is
not being considered
in the PU-238 EIS due
to high operating
costs) | | to support EM | |--|--|---|--|----------------------------|---------------| | B&W
Lynchburg
Technology
Center | | PIE of full and partial length fuel rods | Material and fuels research | | | | GE Vallecitos | | PIE of full and partial length fuel rods | Materials and fuels research | | | | Westinghouse
RMF | | Cladding and materials research | Materials research | | | | KAPL | | | | Naval Reactors
research | |