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1. Introduction

I wish to congratulate the authors on their comparison of the newly proposed generalized multinomial logit (GMNL)
of Fiebig et al. [1], henceforth ‘FKLW, with the widely-used, latent class or finite mixture model of Kamakura and
Russell [2]. Both models use the same logistic regression likelihood for product choice but differ in their distributions for
individual parameter heterogeneity. I am agnostic about the ‘best’ model for parameter heterogeneity. Ultimately, it is an
empirical issue. When models are nested, the smaller model may be preferred because of its simplicity. Conversely, even
when the smaller model has better AIC or BIC, a practitioner may choose the larger model if it provides useful information
for marketing strategy. When models are not nested, as in this paper, comparisons beyond fit are more nuanced because
the models have different foundations and implications. Academics who propose new models tend to be more focused
on improved fit, while practitioners tend to look for new models that extend the set of functional problems that can
be addressed.

Aitchison and Bennet [3] introduced the probit model for product choice based on maximizing random ‘enjoyment,’
which has normal distributions. Partly because of limitations in computing power at the time and partly because of lack of
visibility among economist, this work was superseded by the logistic random utility model of McFadden [4]. The random
utility for subject i, product j, and choice occasion ¢ is

Uiji=0ixiji+0; ‘€iju. (1)

where 6; is subject i’s ‘taste’ or ‘preference’ parameters; o; is subject i ’s scale parameter, and {¢;_; ;} have independent and
identically distributed (i.i.d.) Type I extreme value distributions. Subjects pick the product that maximizes their random
utility. McFadden’s derivation of the logistic model for discrete choice data remains a major contribution to econometrics.
The scale and preference parameters are confounded in the likelihood function based on observed choices. A common
identifying constraint sets the scale parameter to one.

FKLW’s main motivation is to separate the estimation of scale heterogeneity from preference heterogeneity. Multiplying
the random utilities in Equation (1) by o; does not alter their ordering within subject 7, and results in

Ui jio = BiXiji + &ije 2

where 8; = 0;6;. FKLW extends this parameterization of j;

Bi =0if +yni + (1 —y)oin;
‘[2 ’ (3)
o; = exp(—; + 1€0,i)

where {7; } have i.i.d. multivariate normal distributions with zero mean, and {&¢; } have i.i.d. standard normal distributions.
B is the population mean for {#;}, and 0 < y < 1. The scale parameter o; has a log-normal distribution with mean 1,
which helps with model identification. Lenk ef al. [5] also allows for scale and taste heterogeneity in the context of metric
(ratings) conjoint and detected considerable amounts of both.

FKLW nests several model specifications. When 7 =0 and y = 1, preference heterogeneity is multivariate normal,
Bi = B + n;, the workhorse for hierarchical Bayes, discrete choice models. A more interesting case obtains when y = 0
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and f; = o; (,5 + 1;), which is the main motivation for FKLW. This model for heterogeneity is similar to the multivariate
t-distribution: 8; = B + &;n; where &; has an inverse gamma distribution. Multivariate #-distributions are popular candi-
dates for heterogeneity distributions [6] and are easily implemented in WINBUGS (MRC Biostatistics Unit, Cambridge,
UK) or SAS’s MCMC procedure (SAS Institute, Cary, NC). We shall see that multiplying the population mean by the
scale parameter has a huge impact on the heterogeneity distribution.

If the variances of 7); are close to zero, then the heterogeneity in {f; } is mostly due to heterogeneity in the scale parame-
ter and not tastes. That is, idiosyncratic factors during the purchase occasion (e.g., the shopper is rushed and does not have
time to compare prices) or response tendencies (e.g., pick the product at eye-level) or store environment (e.g., the favorite
brand is out of stock) not captured in x; ;, drive the apparent heterogeneity in preferences.

Figure 1 plots the marginal distribution of a univariate 8; = o; (,3 + n;) when ,3 = 0 and var(n;). Figure 1 shows two
cases: 0; = l(or T = 0), so the marginal distribution is a standard normal; and o; ~ log normal with r = 1. The second
case results in a long-tailed distribution that is symmetric about the mean of 8 = 0. Figure 1 compares these distribu-
tions to a ¢-distribution with 2 DOFs. The marginal distribution for the log-normal scale is more peaked at O than the
t-distribution and has shorter tails. Log-normal distributions, hence the marginal distribution of §;, have finite moments
of all orders, while the #-distribution only has moments of order less than the DOFs.

When S is not zero, the marginal distributions are not symmetric about the mean f, as illustrated in Figure 2. The dis-
tribution is right skewed if B is positive and left skewed if it is negative. 8; = 0; (8 + ;) is the convolution of a symmetric
random variable o;7; with a skewed random variables o; 8, thus resulting in a left or right skewed distribution depending
on the sign of 8. FKLW comments on the long-tailed property as a way of capturing extreme preferences, which is similar
to multivariate ¢-distributions, but does not comment on its skewness related to 8. For some attributes, such as price, it
may be reasonable to assume negative skewness; it is less clear for other attributes that the mean and skewness should
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Figure 1. Marginal distribution of f; = 0;(8 + 1;) for 6; = 1 and 0; ~ log normal with ¢ = 1; 8 = 0, and var(y;) = 1. A
t-distribution (dashed line) with 2 DOFs is included as a reference.

0.25

0.20 -

0.15

Density

Figure 2. Marginal distribution of 8; = o; (5 + n;) with negative (solid) and positive (dashed) means for o; ~ log normal with
parameter 7, and var(n;) = 1.
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be related. One could imagine the situation where the heterogeneity for the price coefficient is skewed, but the brand
preferences are symmetric, which is the case for the empirical examples in FKLW and the current paper.

The constraint £(o;) = 1 identifies the population parameters of the FKLW model, but may not identify or only weakly
identifies subject-level parameters. For example, one could swap scale parameters for pairs of subjects and adjust the
taste parameters, thus preserving the scale heterogeneity distribution, without changing the likelihood function. Similarly,
multiplying and dividing o; and 6; by v;, which has a log normal distribution with mean 1 and small variance, does not
change the individual-level likelihood function, and o; 7 also has a log-normal distribution with mean one. It will change
the distribution of heterogeneity for 6; /v;, but the extent of deformation may not be sufficient to force identification. The
paper uses simulated maximum likelihood (SML), which maximizes the marginal likelihood function after integrating
over heterogeneity distributions to estimate the population level parameters. SML does not require identification at the
individual level. Also, FKLW pursue two remedies. On p. 399 in their paper, they set the average draw to one, not just the
expectations, and in Equation (11) they do not apply the scale parameter to the intercepts (Equation (15) of the paper). This
identifies the model, but loses the motivating interpretation of scale heterogeneity: o; no longer is the scale parameter for
the error terms and merely becomes a mathematical device for creating interesting distributions. In the empirical example,
there is a skewed distribution for price, and normal distributions for intercepts. A simpler model that is consistent with
economic theory by forcing the price coefficient to be negative is

Ui, jk = Bi(p)Xi,jt,(p) — €XP(Bi,p)Xi jit.p + €iljits )

where X; j(p) is the design vector without prices; X; ;) is price; and B; = (B; . Bi,p)" has a multivariate
normal distribution.
The paper compares FKLW to latent class or finite mixtures distributions [2] where the heterogeneity distribution is

P(Bi = Br) = A fork =1,..., K. )

The coefficients for each subject are equal to one of K support points S. The paper assumes that the prior probabili-
ties {1y} of class membership are equal. One of the strong points of latent class heterogeneity is that it can approximate
any distribution if the number of support points is sufficiently large. However, the number of population parameters
{B¥, Ax} grows linearly with K. If the true heterogeneity distribution is continuous, one needs a large number of subjects
to accurately approximate it with finite mixtures using large K. Conversely, if the true distribution is discrete with small
or moderate K, then continuous distributions, such as FKLW, will never provide a good description. Finite mixtures of
normal distributions include latent class models as a limiting case [7] if the interclass variances shrink to zero, but it is
much easier to fit latent classes model with the EM (Expectation-Maximization) algorithm than finite mixtures of normal
distributions with MCMC because of label switching. Gilbride and Lenk [8] noted that solutions for mixtures of normal
distributions depend on the prior distribution of the interclass covariance: tight priors result in more mixture components,
while less informative ones produce fewer components.

In the empirical application, the authors find that FKLW fits better than the latent class model. One interpretation of this
result is that the heterogeneity is continuous and there is not enough information to fit enough support points to accurately
approximate continuous heterogeneity with latent classes. Despite similar findings in other studies, practitioners find latent
class models to be very useful for their purposes for a very good reason: they provide a ready-made segmentation scheme.
In a perfect world, marketing researchers would combine parameter heterogeneity with profitability functions to identify
segments. In the real world, this analysis is challenging because profitability functions are not well specified or only par-
tially known, especially for competitors. Lacking profitability functions, the support points from finite mixture models
are frequently interpreted as market segments. Kamakura and Russell [2] identified segments of brand loyal and brand
switching customers. Segmentation is less straightforward with continuous heterogeneity. An easy approach is to classify
customers who are in the lower or upper percentiles for particular attributes; however, this approach may miss segments
that are defined in multiple dimensions.

The paper uses SML to estimate the population parameters then applies importance sampling (Equations (13) to (18)
of the paper) to estimate subject level parameters. Bayesian statisticians used similar procedures in pre-MCMC days, but
with prior distributions. The heterogeneity distribution may not be a particularly good importance sampling distribution
for many subjects. It is not unusual for most of the importance sampling weights wfi (Equation (17)) to be near zero, which

provides a diagnostic for the performance of the importance sampler. In higher dimensions, the draws of { ,BAQ} may be in
the tails of the posterior distribution of f;, in which case many of the sampling weights may be non-negligible, but the
importance sampling estimator ,3,- of Equation (18) is inaccurate. It seems that MCMC methods would be a more accu-
rate method to estimate both individual and population parameters, if the researchers are willing to use prior distributions
for the hyper parameters. Of course, supporters of SML will throw stones at MCMC'’s glass house. However, MCMC
methods have been well studied for hierarchical Bayes logistic regression, and commercial software, such as SAWTOOTH
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Software (Sawtooth Software, Orem, UT) and SAS, has made the glass house bullet proof. That being said, the paper’s
main contribution is not the estimation method. However, I am left wondering, “Why not MCMC?’

The paper extends FKLW by incorporating state dependence (previous brand purchased) as a covariate in the utility
function. In a repeat purchase setting, adding state dependence frequently improves model fit. I believe that I am not
taking a big risk by saying that consumers do not literally follow the random utility model in Equation (1). Adding state
dependence allows for dynamic utilities. Including previous purchases introduce long-term effects for marketing activities.
Today’s promotion not only effects today’s purchase, but also temporarily shifts customers’ utility functions, thus effect-
ing future purchases. Estimating the long-term consequences requires simulating future buying behavior, which increases
uncertainty, when using lagged purchases. Allenby and Lenk [9] pursue a different approach through autocorrelated error
terms. If post hoc utility exceeds ex ante expectations, then the residual positively impacts future purchases of the brand,
and the effect attenuates at a known rate on the logit scale.

The paper ends by incorporating purchase history as a covariate in the heterogeneity distribution of the scale parameter.
The finding that purchase history decreases the scaling parameter in the FKLW model may be consistent with the story
that more frequent purchasers become more knowledgeable about the product category. When a new shopper to a category
(or an experienced shopper in a new store) is faced with a long grocery aisle of offerings (or zillions of web pages), his or
her choices may be driven more by the random component of the utility model, while a seasoned shopper quickly zeros-in
on the utility maximizing choice and may have a smaller random component.

New models of heterogeneity need to be compared and contrasted with existing models across a number of data sets.
Their foundations and implications need careful consideration to guide practitioners in their use. The paper is a needed
step in the critical comparison of FKLW to a popular and successful latent class model.
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