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Summary. Genetic anticipation, described by earlier age of onset (AOO) and more aggressive symptoms in successive gener-
ations, is a phenomenon noted in certain hereditary diseases. Its extent may vary between families and/or between mutation
subtypes known to be associated with the disease phenotype. In this article, we posit a Bayesian approach to infer genetic
anticipation under flexible random effects models for censored data that capture the effect of successive generations on AOO.
Primary interest lies in the random effects. Misspecifying the distribution of random effects may result in incorrect inferential
conclusions. We compare the fit of four-candidate random effects distributions via Bayesian model fit diagnostics. A related
statistical issue here is isolating the confounding effect of changes in secular trends, screening, and medical practices that
may affect time to disease detection across birth cohorts. Using historic cancer registry data, we borrow from relative survival
analysis methods to adjust for changes in age-specific incidence across birth cohorts. Our motivating case study comes from
a Danish cancer register of 124 families with mutations in mismatch repair (MMR) genes known to cause hereditary non-
polyposis colorectal cancer, also called Lynch syndrome (LS). We find evidence for a decrease in AOO between generations
in this article. Our model predicts family-level anticipation effects that are potentially useful in genetic counseling clinics for
high-risk families.

Key words: Birth-death process; Brier score; Conditional predictive ordinate; Deviance information criterion; Dirichlet
process; Hereditary nonpolyposis colorectal cancer; Prediction of random effects; Relative survival analysis.

1. Introduction
Genetic anticipation is a phenomenon noted in certain hered-
itary diseases where succeeding generations have decreased
age of onset (AOO). It is hypothesized for some familial dis-
eases in which high-penetrance mutations have been identified
(Tabori et al., 2007; Nilbert et al., 2009). Data to test for an-
ticipation can be retrospective in nature, where paired data
on AOOs for affected parents are compared to their affected
children. Appropriate statistical techniques have been devel-
oped to adjust for truncation bias, as younger subjects have
not experienced their entire “at-risk” period when the data
are ascertained (Huang and Vieland, 1997; Rabinowitz and
Yang, 1999). See Boonstra et al. (2010) for a review of testing
for anticipation with parent–child pair data.

Alternatively, all identified and obligate mutation carri-
ers in high-risk families may be prospectively followed un-
til disease diagnosis or censoring. Standard regression mod-
els for censored data allow for estimation of a generational
effect on AOO (Hsu et al., 2000). Using data on affected
and unaffected family members is a more powerful approach
than the naive analysis of parent–child pairs. Robust variance

estimates (Daugherty et al., 2005) or random intercepts
(Larsen et al., 2009) can account for within-family correla-
tion. If heterogeneity in anticipation exists across carrier fam-
ilies, use of a random slope corresponding to generation may
be more appropriate. In this article, we evaluate this ran-
dom intercept and slope model in the presence of observed
and unmeasured familial heterogeneity under a prospective
design.

Normality of the random effects is often assumed for conve-
nience. However, there may be heterogeneity in anticipation
across mutation subtypes; it is natural to explore models that
are able to capture this variation. A latent mixture model
can also be envisioned in which the random effects distribu-
tion adapts to latent heterogeneity not directly attributable
to measured mutation subtypes. Estimates of fixed effects
are relatively robust to misspecification of the random effects
distribution (Butler and Louis, 1992; Verbeke and Lesaffre,
1997; Neuhaus, McCulloch, and Boylan, 2010), but estimates
of the random effects themselves are sensitive to model choice
(Verbeke and Molenberghs, 2000). When the inferential focus
is on the latter, correct specification and appropriate model
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diagnostic tools become critical. Although individual predic-
tions of the random effects can vary with the assumed distri-
bution, McCulloch and Neuhaus (2011) recently showed that
an aggregate measure of predictive accuracy is minimally af-
fected by distributional misspecifications. Our interest is in
both the individual and aggregate level, so proper elucida-
tion of the random effects distribution remains an important
statistical and biological issue.

There has been substantial work on robust modeling of
the random effects. Magder and Zeger (1996) use a smoothed
version of the nonparametric mixing distribution proposed by
Laird (1978). Verbeke and Lesaffre (1996) employ a mixture of
normals, using latent class membership and the expectation-
maximization (EM) algorithm to maximize the likelihood.
Kleinman and Ibrahim (1998) utilize a Dirichlet process (DP)
prior. Zhang and Davidian (2001) assume the random ef-
fects have a smooth density determined by a user-specified
tuning parameter. We first consider a three-component mix-
ture of normals where class membership is attributed to the
three observed mutation subtypes. We then use a mixture
of normals with latent classes, both finite mixture and in-
finite. The latter is generated by a DP mixture (DPM) of
normals (Escobar and West, 1995). These models are com-
pared to the normal random effects model. The Bayesian
paradigm enables us to specify the hierarchical structure on
parameters through prior specification and facilitates com-
putation through Markov chain Monte Carlo (MCMC) tech-
niques (Neal, 2000; Stephens, 2000). We modify existing ideas
from the Bayesian model diagnostics literature, using the de-
viance information criterion (DIC; Spiegelhalter et al., 2002;
Celeux et al., 2006), posterior conditional predictive ordinates
(CPOs; Geisser, 1980), and a Bayesian analog of a scoring
method proposed by Brier (1950).

Additionally, because we have posterior draws of all model
parameters and random effects, these models can easily pro-
vide clinical quantities of interest, such as the probability that
a specific family’s level of anticipation exceeds a certain num-
ber of years. These tools can be employed in counseling fam-
ilies at high-risk familial cancer genetics clinics.

We also address another major statistical issue in the antic-
ipation literature for which no proper solution has been thus
far proposed. Later generations typically have access to bet-
ter medical care, more sensitive diagnostic techniques, and are
perhaps more knowledgeable on lifestyle changes, which de-
crease risk of disease. Without independently estimating and
adjusting for this cohort effect, generational changes in AOO
will be the aggregate effect of anticipation, if it exists, plus
these secular changes. Using birth cohort in the model may
lead to instability in parameter estimates due to its strong
correlation with generation, the primary variable of interest.
Daugherty et al. (2005) include a time-varying indicator term
reflecting a change in hazard before and after a specific year.
In their case study, upon the addition of this indicator term
to the model, the effect of anticipation lost statistical sig-
nificance. Nilbert et al. (2009) alternatively conduct analysis
stratified by birth cohort. Neither of the above two approaches
is efficient as a general modeling strategy. Our solution to this
problem borrows from the concept of relative survival analysis
(Ederer, Axtell, and Cutler, 1961). We use external registry
data to estimate this secular change in AOO; the residual ef-

Table 1
Descriptive summary of the Danish HNPCC data, containing

43 hMLH1 families, 59 hMSH2 families, and 22 hMSH6
families. The first column denotes total numbers of

individuals, the second column gives numbers of individuals
who have been diagnosed with a Lynch syndrome (LS) cancer,

and the third and fourth columns give summary statistics
corresponding to the ages of onset (AOO) of affected

individuals.

No. of No. of LS Mean SD
subjects cancers (AOO) (AOO)

Males 392 263 47.0 13.0
Females 424 305 46.6 11.7
gen = 1 196 190 53.0 11.9
gen = 2 345 274 45.2 11.0
gen = 3 234 100 40.0 11.0
gen = 4 41 4 25.0 13.6
hMLH1 279 194 45.4 12.8
hMSH2 402 289 46.3 11.5
hMSH6 135 85 51.6 13.1

fect beyond this estimated trend effect can then be attributed
to anticipation.

1.1 A Case Study of Genetic Anticipation in Lynch Syndrome
A disease in which the presence of anticipation is disputed is
Lynch syndrome (LS) (Tsai et al., 1997; Larsen et al., 2009).
First described as a cancer family syndrome by Warthin
(1913) and later called hereditary nonpolyposis colon cancer
(HNPCC), LS (Lynch et al., 1966) is characterized by early
onset of gastrointesinal, uterine, and other cancers and has a
genetic basis in germline mutations to various mismatch re-
pair (MMR) genes (hMLH1, hMSH2, hMSH6 being the most
common).

The dataset we use, originally considered in Larsen et al.
(2009), consists of 816 individuals from 124 families (median
family size was 6 with a range of 1–23) ascertained over 1991–
2006 via the population-based HNPCC register in Denmark.
The register contains data on all Danish families identified
with hereditary colorectal cancer. The current cohort was de-
fined as 124 families who went through genetic counseling
and testing and were found to carry HNPCC predisposing
mutations in one of the MMR genes: hMLH1 (43 families),
hMSH2 (59), or hMSH6 (22). Families with at least two Lynch-
related cancers were included. The chosen cohort thus con-
sists of high-risk Lynch families enriched for multiple cancers.
Consequently, all results are subject to this multiplex ascer-
tainment bias. All “at-risk” proven mutation carriers in these
124 families were followed prospectively, with the event of in-
terest being diagnosis of a Lynch-related cancer. Individuals
were censored administratively in December 2007 (202 indi-
viduals), upon detection of adenoma (a benign tumor, 37),
cancer not related to LS (7), or upon death (2). We assume
independent censoring in our formulation of the problem (this
was likely violated for the 37 individuals who had adenoma
detected, a limitation in our approach). Besides AOO and the
censoring indicator, gender, year of birth, mutation, and gen-
eration are available. Descriptive summaries are presented in
Table 1.
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Consistent with the regression approach to testing anticipa-
tion, Larsen et al. (2009) propose a normal random intercept
model with a fixed effect for the difference in mean AOO be-
tween consecutive generations. We consider extensions of this
model. Lynch et al. (2006) provide an overview of various, po-
tentially latent, heterogeneities, which may appear between
Lynch families (apart from known mutational heterogeneity).
Some examples are etiology based in recurrent versus founder
mutations, the geographical location of the affected family,
and access to/compliance with regular colonoscopy. This sug-
gests that the anticipation effect might be more adequately
modeled as a random effect with a flexible distribution. A fur-
ther benefit of this approach is that families can get a “per-
sonalized” estimate of anticipation.

The rest of the article is organized as follows. We introduce
the original model from Larsen et al. (2009) and then present
the Bayesian specification of proposed candidate models in
Section 2. Section 3 discusses model diagnosis strategies using
newly proffered criteria as well as standard posterior predic-
tive checks. Section 4 presents an application of the methods
to the Danish HNPCC data. Finally, we close with a discus-
sion in Section 5.

2. Model Specification
2.1 A Random Intercept Model for Genetic Anticipation
Let i = 1 , . . . , N index families and j = 1 , . . . , ni index indi-
viduals within family i. A linear model with random effects is
given as

Tij = X�
ij β + Z�

ij bi + εij , (1)

where Tij denotes the AOO (in years) of the jth individual
in the ith family (person [i, j]), Xij and Zij are vectors of
covariates, β is a length-p vector of fixed effects, bi a length-q
vector of random effects, and εij the error term.

Tij is right censored for some individuals at Cij , so we ob-
serve {min (tij , cij ), 1[tij ≤ cij ]}. This is equivalent to the fol-
lowing notational convention:

tL
ij = min(tij , cij ), tU

ij =

{
tij tij ≤ cij

∞ cij < tij
.

Let genij denote the generation of that individual relative to
the oldest member in the pedigree. That is, the oldest per-
son in a pedigree is assigned gen = 1, along with his broth-
ers, sisters, and cousins. All members of the next generation
are assigned gen = 2, and so forth. The other two covariates
used are 1[maleij ] indicating gender and 1[muti = hMLH1],
1[muti = hMSH2], and 1[muti = hMSH6] indicating mutation
type. Beginning from (1), the random intercept model pro-
posed by Larsen et al. (2009) uses X�

ij β ≡ (genij , 1[maleij ],
1[muti = hMLH1], 1[muti = hMSH2]) × (β1, β2, β3, β4)� and
Z�

ij bi ≡ 1 × bi , with bi
iid∼N (μb , σ

2
b ) and εij

iid∼N (0, σ2). Larsen
et al. (2009) estimate parameters by maximizing the marginal
likelihood

N∏
i=1

∫ ∞

−∞

{
n i∏
j=1

∫ tU
i j

tL
i j

φ
(
t, X�

ij β + Z�
ij bi , σ

2
)

dt

}
×φ

(
bi , μb , σ

2
b

)
dbi ,

where φ( ·, m, s2) denotes the density of a normal random vari-
able with mean m and variance s2. We use the convention that

∫ a

a
f (x)dx = f (a). The parameter of interest is β1, which can

be interpreted as the difference in mean AOO between con-
secutive generations of the same family. In the original paper,
the authors find a highly significant effect from anticipation,
with β̂1 = −2.95 (p < 0.001) corresponding to the fixed effect
of generation.

2.2 Birth Cohort Adjustment
We first describe the adjustment strategy we adopted to cre-
ate the pseudo-AOO data upon which the final models were
built. As mentioned in Section 1, without adjusting for secu-
lar changes in diagnostic techniques and lifestyle, the change
in AOO between consecutive generations is the cumulative
effect of these changes and any anticipatory effect, which
may be present. Including a “year of birth” effect in order
to capture these secular changes does not solve the problem,
as corresponding parameters are only weakly identifiable due
to ill conditioning of the design matrix. A stratified-by-birth-
cohort analysis lacks statistical power. As an alternative, this
cohort effect may be estimated from external historic data.
The Nordic Cancer Registries (NORDCAN; Engholm et al.,
2010) provide incidence, mortality, and prevalence data on
41 major cancers in the Nordic countries. We estimated the
change in AOO between 5-year birth cohorts via a two-step
process.

First, we accumulated cohort-specific incidence rates of col-
orectal cancer (and, for women, endometrial cancer, the other
major Lynch-related cancer) over 5-year periods beginning in
1943, the earliest data available, and ending in 2008. Thus,
for a single 5-year birth cohort, its estimated hazard function
for cancer diagnosis was piecewise linear, changing at 5-year
knots. Web Figure 1 gives a sample plot of the incidence rates
by birth cohort for males. We assumed that there was no haz-
ard for cancer diagnosis before age 10 and that it remained
constant after age 85. There was also some missing informa-
tion; for example, when the Registries began in 1943, there
was no information on previous incidence rates for the “1869–
1873” birth cohort (70–74 years old at that time). We filled in
these missing values with the mean of the age-specific hazards
for the next five birth cohorts, “1874–1878,” . . . , “1894–1898,”
when they were 70–74 years old.

Second, we simulated each Danish birth cohort and exposed
it to its cohort-specific hazard. An estimate of each cohort
size was obtained from NORDCAN. We then fitted a single
survival model with these simulated times-to-event data (Sl ,
say, for the lth individual) with the corresponding birth cohort
as an ordinal covariate. Namely, Sl = γθ + γ cohortl + εl ,
εl

iid∼ N (0, σ2
e ). The cohort variable is defined as cohortl = 0,

if the lth subject is born in the reference cohort 1959–1963,
cohortl = 1, if the lth subject is born in 1964–1968, cohortl =
−1, if the lth subject is born in 1954–1958, and so on for each
5-year cohort. We fitted this trend model stratified by gender:
γ̂ was −0.215 years for males and −0.176 years for females.
Of the two primary sources of variability in these estimates
(due to simulation variability and the comprehensiveness of
the registry), only the former was quantifiable: 50 simulations
saw standard deviations of about 0.008 in these estimates.
Given the scale of the variables, this uncertainty was ignored
in all subsequent analyses.

Returning to the primary dataset under consideration, to
adjust for these estimated secular trends, we transformed
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Figure 1. The top panel presents posterior predictive density of a new pedigree, not present in our dataset, under models
M1–M4. The bottom panel presents kernel estimates of the posterior density of the three largest families present in our
dataset, one from each mutation subtype, under models M1–M4. (a) Posterior predictive density of b1i for a newly introduced
pedigree. (b) Kernel estimates of the posterior density of the random slope corresponding to generation from three selected
families in our dataset.

the data corresponding to the jth member of the ith fam-
ily as tL ∗

ij ≡ tL
ij + 0.215 × (cohort)ij and tU ∗

ij ≡ tU
ij + 0.215 ×

(cohort)ij (under the convention that ∞ remains unchanged)
for males, and similarly for females. For an observed (cen-
sored) event time, we can interpret tL ∗

ij as the AOO (time of
censoring) if that person had experienced the medical tech-
nology and lifestyle of someone born in the reference cohort.

We now present four alternative models using the adjusted
AOO data (tL ∗

ij , tU ∗
ij ) as our response.

2.3 Alternative Models and Likelihood
Recalling the general structure of (1), the common elements of
each model are given as follows. Z�

ij bi ≡ (1, genij ) × (b0i , b1i )�,
so that the parameter of interest becomes b1i , the random
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slope associated with genij . We interpret b1i as the change
in AOO (in years) between consecutive generations of the ith
family after adjusting for cohort effects and other covariates.
We use a mixture model for the random effects, namely,

bi | {π	 , μ	 , Σ	}	
iid∼

k∑
	=1

π	MVN (μ	 , Σ	 ). (2)

Let di denote cluster membership, so that, for di ∈ {1 , . . . , k},
bi | di , μdi

, Σd i
∼ MVN (μdi

, Σd i
). The error distribution is as-

sumed to be εij
iid∼t5(σ2); heavy tails account for outliers we

found in preliminary analyses. In all analyses, Tij is the out-
come, as in (1). This choice of untransformed outcome and
t-residuals provides significantly improved fit over a model
with log-transformed AOO and normal residuals. Moreover,
the estimated parameters can be directly interpreted in terms
of the number of years increase/decrease in AOO. The unique
specifications corresponding to each of the four random effects
models are as follows.

Model 1 (M1): Single-component multivariate normal.
The fixed effects are given by: X�

ij β ≡ (1[maleij ], 1[muti =
hMLH1], 1[muti = hMSH2]) × (β1, β2, β3)�. In (2), k = 1, so

bi
iid∼MVN (μ1, Σ1). Relative to Larsen et al. (2009), this model

relaxes the constraint of a common anticipation effect across
families.

Model 2 (M2): Three distinct multivariate normals as-
signed by measured mutation subtype. The fixed effects, X�

ij β ≡
1[maleij ] × β1. Additionally, di = 1[muti = hMLH1] + 2 ×
1[muti = hMSH2] + 3 × 1[muti = hMSH6], which implies that
cluster membership is known, based on the MMR mutation
subtype of each family. Thus, rather than just shifting the
mean AOO, as in M1, the mutation subtypes also differ
(potentially) in the slope corresponding to genij .

Model 3 (M3): A finite mixture of multivariate normals.
As in M1, the fixed effects are X�

ij β ≡ (1[maleij ], 1[muti =
hMLH1], 1[muti = hMSH2]) × (β1, β2, β3)�. For the mixture
components, both k and {di} are unknown parameters. This
is a more flexible version of M1; mutation subtypes play the
same role of shifting the mean AOO, but the distribution of
the random effects is not forced to normality.

Model 4 (M4): An infinite mixture of multivariate normals.
The fixed effects are as in M1 and M3, but bi is given a DPM
of normals prior, described by the following hierarchy:

bi | di , μdi
, Σd i

∼ MVN (μdi
, Σd i

);

μdi
, Σ−1

d i
|G ∼ G; G|α, G0 ∼ DP(α, G0(μ, Σ)).

α is a precision parameter and G0(μ, Σ) is the normal-Wishart
base distribution (Escobar and West, 1995). Prior specifica-
tion on α and G0 is described in the next section. M3 and
M4 are similar, the primary difference in interpretation being
that the latter allows for the existence of clusters in the popu-
lation not found in the study sample, admitting an additional
level of uncertainty. Note the increasing order of flexibility as
we go from M1 to M4.

We consider the joint likelihood of the data and the random
effects as the basis of our inference. The contribution of the
ith family to this joint likelihood is given by

Li =

{
n i∏
j=1

∫ tU ∗
i j

tL ∗
i j

τ
(
t, X�

ij β + Z�
ij bi , σ

2, 5
)

dt

}
×φ2 (bi , μdi

, Σd i
) .

(3)

τ (·, m, s2, ν) gives the density of a t-distributed scalar with
location m, scale s and ν degrees of freedom (df), φ2(·, M, S)
denotes the density of a bivariate normal (BVN) vector with
mean vector M and variance matrix S, and

∫ a

a
f (x)dx = f (a).

Quadrature or Monte Carlo methods could be used to inte-
grate the random effects in (3) so as to maximize the marginal
likelihood, but a hierarchical Bayesian approach is conceptu-
ally and computationally much simpler for the proposed la-
tent mixture models.

2.4 Priors
We next specify the prior distributions on model parameters.
In all cases, β is given a uniform prior on R and σ2 is Gamma
with shape 1 and rate 0.01.

For M1–M3, μ	 | ξ, κ is BVN with mean ξ and precision
matrix κ. The hyperprior on ξ is uniform on R × R, and κ is
assumed Wishart with 2 df and scale matrix (2I2×2)−1. Finally,
Σ	

−1 |Ψ is Wishart with 8 df and scale matrix (2Ψ)−1, and the
hyperprior on Ψ is Wishart with df 2g and scale matrix (2h)−1.
We vary g, h to assess prior sensitivity.

M3 requires two additional priors. The number of mix-
ing components k is assumed a priori Poisson with mean 3,
truncated at 20, and the mixing probabilities {π1 , . . . , πk} | k
are assigned a noninformative discrete Dirichlet (1, 1 , . . . , 1)
prior. Inference on k is sensitive to the prior on κ (Richard-
son and Green, 1997), but, since we are primarily interested
in exploring heterogeneity rather than identifying distinct fa-
milial clusters, fitting more components than necessary is not
a concern in the current application.

For M1–M3, it remains to select g and h. This far down the
hierarchy, they cannot be intuited or made sufficiently vague.
Moreover, it seems plausible that inference on the random ef-
fects could be sensitive to g and h; thus we consider several
prior structures. For M3, larger values on the diagonals of h
favor many small variance components, yielding undesirable
spikes in the density of the random effects. Keeping this in
mind, we set g1 = 2 and h1 = diag(0.06, 0.12); sampling val-
ues of Σ	 from this prior shows that the middle 99% of the
density is approximately (0.63, 74.62) and (0.36, 37.94) for
the diagonal components, wide intervals that avoid zero. As a
sensitivity analysis, we also looked at two other priors: g2 = 1
and h2 = diag(0.03, 0.06), which flattens the prior density on
Σ	 , and g3 = 2 and h3 = diag(0.1, 0.3), which puts more mass
closer to zero-values.

For M4, we assume a Gamma prior on α with shape 2 and
rate 0.5. This induces a prior mode for the number of clusters
k at 10, with about 80% of the prior mass on k < 20. For the
parameters of the normal-Wishart base measure G0(μ, Σ),
Σ−1 |A is Wishart with 5 df and scale matrix A−1 and μ | ξ,
κ0, Σ is normal with mean ξ and scale matrix κ−1

0 Σ. Finally,
ξ is normal with mean (50, 0) and variance diag(30, 10), κ0 is
Gamma with shape 0.05 and rate 0.05, and A |B is Wishart
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with 5 df and scale matrix B−1. While B roughly corresponds
to h above, a direct correspondence cannot be drawn be-
tween the two hyperparameters. We present results under
B = diag(3, 6) and evaluate sensitivity to this prior choice.

2.5 Posterior Sampling
We take a Gibbs sampler/data augmentation approach to
handle the censored data likelihood (Tanner and Wong, 1987).
The algorithm changes between the four models because k and
{di} are known for M1 and M2 but not M3 or M4. This also
implies that the dimension of the parameter space in M3 and
M4 can change across iterations; in the finite mixture case of
M3, we use the MCMC scheme developed by Stephens (2000),
whereas for M4, we use sampling algorithms proposed by Neal
(2000) implemented in the DPpackage in R (Jara, 2007). See
Web Appendix A for details of the sampling strategy and full
conditionals.

For each pairwise combination of {M1, M2, M3} with {{g1,
h1}, {g2, h2}, {g3, h3}} and also M4, we run two independent
chains with dispersed starting values. The first 10,000 itera-
tions are discarded, with every 10th iteration stored thereafter
until 10,000 such iterations per chain are collected. Combining
the two chains gives 20,000 draws from the posterior distribu-
tion. Convergence is assessed via trace plots and monitoring
the value of the potential scale reduction factor (Gelman and
Rubin, 1992).

3. Model Comparison and Assessment
3.1 Model Comparison
Quantitative assessments of model fit and predictive ability
of the candidate models are carried out by considering the
following three criteria.

Deviance information criterion (DIC; Spiegelhalter et al.,
2002; Celeux et al., 2006). The notion of calculating DIC
is not translatable to the case of the DPM model (M4),
which has an infinite-dimensional parameter space with
unbounded model complexity; the following discussion is
relevant to M1–M3. For a generic model, given data y, pa-
rameter vector θ, and probability model f(y | θ), Spiegelhalter
et al. propose DIC = −4Eθ | y ln f (y | θ) + 2 ln f (y | θ̃(y)),
which is the sum of the posterior mean deviance,
−2Eθ | y ln f (y | θ), and the penalty term, −2Eθ | y ln f (y | θ) +
2 ln f (y | θ̃(y)), where θ̃(y) is some posterior estimate of θ,
usually the posterior mean. The penalty term is meant to
approximate the dimensionality of the parameter space. Once
a focus has been identified, the posterior mean deviance can
be estimated by a Monte Carlo average of the log likelihood,
but because of the choice in θ̃(y), there is not a generally
accepted definition of DIC for hierarchical models, especially
in the presence of random effects and missing data.

There are additional considerations to be made in our case
study. Counting k and {di} toward model complexity via the
penalty term is asymmetric, as they are known in M1 and
M2 and would therefore not contribute to the penalty term,
but unknown in M3. M3’s DIC should be penalized for its
number of components by way of estimating multiple mean
vectors and variance matrices; including k and {di} would dou-
bly penalize it. This decision is similar to the EM approach to
mixture problems, in which the number of clusters and clus-

ter membership are treated as missing data in the complete
likelihood.

Consequently, there are missing data on both sides of the
conditioning bar in the likelihood: (3) is really the joint den-
sity of y ≡ {tL ∗

ij , tU ∗
ij } and U1 ≡ {bi} (the latter being unob-

served), and U2 ≡ {k, {di}} is observed in M1 and M2 but
latent in M3.

Let θ denote all other variables in (3), so that the like-
lihood can be written as

∏
iLi = f(y, U1 |U2, θ). Celeux

et al. (2006) provide an excellent treatment of DIC in the
presence of missing data and random effects but only consider
likelihoods with one type of U (either on the left of the condi-
tioning bar [the “complete DIC”] or the right [the “conditional
DIC”] but not both). It is a natural extension to hybridize the
two corresponding DICs from this article (DIC4 and DIC8) to
obtain

DIChybrid = −4Eθ ,U 1,U 2 | y ln f (y, U1 |U2, θ)

+ 2EU 1,U 2 | y ln f (y, U1 |U2, Eθ | y ,U 1,U 2θ),

which we call the hybrid “conditional-complete DIC.” This
definition avoids the unwanted behavior of doubly penaliz-
ing M3 for estimating k and {di}, as the expectation over U2

remains outside of the log in both terms. The only quantity
that is not trivial to estimate via MCMC output is Eθ | y ,U 1,U 2θ,
the conditional expectation of θ for arbitrary values of U1 and
U2. We instead approximate this quantity at each step in the
Gibbs sampler with the mean of the conditional distribution.

Conditional predictive ordinate (CPO). This is a cross-
validation assessment originally proposed by Geisser (1980).
When tL ∗

ij = tU ∗
ij , it is defined for person (i, j) as CPOij ≡

f (tL ∗
ij |data(−[ij])), where data(−[ij]) mean “data for all but

person (i, j).” Similarly, when tL ∗
ij < tU ∗

ij , CPOij ≡ Pr(T ∗
ij >

tL ∗
ij |data(−[ij])). Thus, a large CPO indicates a good fit.

The log of the pseudo-marginal likelihood (LPML) is given
by

∑
ij

log CPOij and is a summary of the overall model fit.
Alternatively, inspecting the log of the ratio of CPOs from
two competing models shows the preferred model for each in-
dividual. Let η represent all variables in the likelihood. For
the observed survival times, Gelfand and Dey (1994) propose
the approximation CPOij ≈ {Eη |dataf

−1(tL ∗
ij | η)}−1, using the

Monte Carlo sample to estimate the expectation. A similar
technique can be employed for the censored survival times,
replacing densities with probabilities, as introduced in Han-
son (2006).

Brier score. This measure can be used both for model
comparison and verification. It is defined as the average
squared difference between the current survival probabilities
at time t and the current status; thus a higher score is worse.
Graf et al. (1999) redefine it in the presence of right censoring,
the contribution of person (i, j) at time t being

BSij (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
1 − Ŝij

(
tL ∗
ij

)}2

Ĝ(t)
, t < tL ∗

ij{
0 − Ŝij

(
tL ∗
ij

)}2

Ĝ
(
tL ∗
ij

) , tL ∗
ij = tU ∗

ij ≤ t

0, tL ∗
ij ≤ t < tU ∗

ij ,
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where Ŝij is the estimated survivor function of person (i, j)
(averaged over all Monte Carlo simulations), and Ĝ is the
Kaplan–Meier estimated distribution of censoring times. The
integrated Brier score is given by averaging BSij (t) over i and
j and integrating over all event and censoring times. We di-
vide each model’s integrated Brier score by a reference score
(that from plugging in Ŝij (·) = 0.5), so that any model that
improves upon equivocality is in [0, 1]. We call this a scaled
integrated Brier score (SIBS).

4. Results Applied to Danish HNPCC Data
4.1 Posterior Inference

Features of densities associated with random anticipation
effects. We present results under the prior specification
{g, h} = {g1, h1} and B = diag(3, 6) (placed on the variance
components). The top panel of Figure 1 provides the poste-
rior predictive density of the anticipation random effect its
interpretation being the predicted density of b1i for a newly
introduced pedigree. For M2, each mutation group is separate
as cluster membership is prespecified. For M3, we marginal-
ize over the mixture components. The density associated with
M4 is a kernel density estimate using new draws of b1i from
each converged iteration of the chain. Details are provided in
Web Appendix A.

While M3 shows evidence of multiple clusters (58% of the
MCMC iterations estimated k > 1), the impact is only to fat-

ten the tails of M1. M4 has even heavier tails (k exceeded
one 83% of the time); the mean anticipation effect in M4 is
slightly smaller than M1 and M3. If there are multiple modes
to the mixture density, there is not enough information to
differentiate between them. With assigned cluster member-
ship, M2 differentiates hMSH6 from the other two mutations.
The mean anticipation effect is just greater than 1 year for
hMSH6, compared to about 2.5 years for the other mutations,
and the distribution has wider spread. Note also that, if no
random slope was needed, all these densities would be peaked
and concentrated and show no variation, thus there is evi-
dence supporting a random (and not fixed) slope model for
generation.

The bottom panel of Figure 1 gives kernel estimates of the
posterior density of the random slope corresponding to gen-
eration for the largest family from each mutation subtype in
our article. For the hMSH2 family, the mean anticipation ef-
fect is similar between M1 and M4, and only slight differences
arise in the hMLH1 family. However, there are differences be-
tween the models for the hMSH6 family; the estimated mean
effect of anticipation is smaller in M2 and M4 as compared to
M1 or M3. M4 again shows the largest variability in all cases.
Posterior density estimates for all families are given in Web
Figure 2.

Figure 2 presents estimated posterior distribution functions
corresponding to b1i , i = 1 , . . . , 124, in terms of P (b1i < c) for

c
0.0

hMLH1 hMSH2 hMSH6

M1 M2

M3

hMLH1 hMSH2 hMSH6

0.0
M4

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2. Estimated posterior distribution functions of b1i , namely P̂r(b1i < c) for i = 1 , . . . , 124, all families in our dataset.
The y-axis gives the threshold in years, and the grayscale reflects the corresponding probability. Families (along the x-axis)
are ordered first by mutation status (43 hMLH1, 59 hMSH2, and 22 hMSH6 families are represented) and then by the
posterior median of b1i as predicted by M1 within each mutation subtype. c signifies the reduction in number of years in AOO
for successive generations. Thus, a substantial probability of falling below a negative threshold value indicates evidence of
anticipation for that family.
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Table 2
Numerical summaries of densities associated with random slopes and intercept estimates. The median (p50) and middle 95%
quantiles (p2.5, p97.5) based on the generated draws from the corresponding distribution are presented. All results correspond to

prior {g, h} = {g1, h1} as described in the text. The b0i and b1i columns correspond to the posterior predictive distributions for a
new random slope and intercept, respectively. The Mean, Var, and Cov columns are derived from the (marginalized over cluster
configurations, for M3 and M4) posterior density estimates of the hyperprior parameters corresponding to the random effects.

p50(p2.5, p97.5)

Fixed effect β1 β2 β3 σ
parameters Gender hMLH1 hMSH2 Error Scale

M1 1.5 (−0.3, 3.2) −6.8 (−9.7, −3.9) −6.4 (−9.2, −3.7) 9.8 (9.1, 10.5)
M2 1.5 (−0.3, 3.2) 9.8 (9.1, 10.5)
M3 1.5 (−0.3, 3.3) −6.6 (−9.6, −3.7) −6.3 (−9.1, −3.5) 9.8 (9.1, 10.5)
M4 1.5 (−0.3, 3.3) −6.3 (−9.8, −2.6) −6.1 (−9.4, −2.6) 9.6 (8.9, 10.4)

Random effect
parameters b0i b1i Mean(b0i ) Mean(b1i )

M1 57.3 (50.9, 63.9) −2.3 (−5.7, 1.0) 57.4 (54.0, 60.7) −2.3 (−3.5, −1.1)
M2 hMLH1 51.5 (44.9, 58.3) −2.8 (−6.2, 0.7) 51.5 (48.4, 54.7) −2.8 (−4.3, −1.2)
M2 hMSH2 51.3 (44.9, 57.8) −2.4 (−6.1, 1.1) 51.4 (48.3, 54.2) −2.5 (−3.8, −1.0)
M2 hMSH6 54.0 (46.5, 62.2) −1.1 (−5.3, 3.0) 53.9 (49.9, 59.1) −1.0 (−3.3, 1.1)
M3 57.2 (50.4, 64.2) −2.3 (−6.0, 1.2) 57.2 (53.8, 60.6) −2.3 (−3.5, −1.1)
M4 57.2 (44.8, 69.7) −2.5 (−10.2, 5.2) 57.3 (51.5, 62.9) −2.5 (−5.6, 0.6)

Random effect
Variance parameters Var(b0i ) Cov(b0i , b1i ) Var(b1i )

M1 5.6 (0.8, 26.1) −2.2 (−12.0, 0.4) 1.9 (0.3, 7.2)
M2 hMLH1 6.0 (0.7, 31.0) −2.2 (−12.0, 0.5) 1.8 (0.3, 7.0)
M2 hMSH2 6.0 (0.7, 27.4) −2.5 (−13.4, 0.3) 2.1 (0.3, 8.5)
M2 hMSH6 6.4 (0.7, 39.6) −2.5 (−18.6, 0.5) 2.1 (0.3, 11.7)
M3 6.0 (0.7, 25.7) −2.4 (−11.9, 0.3) 2.0 (0.3, 7.2)
M4 19.0 (2.5, 100.9) −6.7 (−41.4, 11.9) 7.0 (1.0, 72.6)

differing values of c. The value c signifies the decrease in num-
ber of years in AOO for successive generations. A significant
probability of the random slope being less than −2.0 years say,
indicates earlier AOO in successive generations in that family.
We note substantial heterogeneity in these values across fam-
ilies within each mutation subtype. There is more uncertainty
in ordering of the families under M4, which is to be expected
from the DPM specification. This plot again reiterates the
need for a family-specific estimate of anticipation even within
a given mutation type.

Parameters of the distributions associated with the random
effects. Table 2 presents numerical summaries of the poste-
rior predictive density and moments of the posterior density
of the hyperprior parameters corresponding to the random
intercept and slope, (b0i , b1i ). The results are summarized in
terms of the median (p50) and equitailed 95% credible inter-
vals (p2.5, p97.5) based on the draws from the corresponding
distributions. Note that mutation subtype is excluded from
the fixed covariates in M2, so b0i and Mean(b0i ) under M2 are
not directly comparable to the other models. The estimate
of anticipation, as measured by the posterior distribution of
the hypermean of the random effects, is identical under M1
and M3 (−2.3 years with CI [−3.5,−1.1] years) whereas M4
provides a similar estimate with wider CI (−2.5 years with CI
[−5.6,0.6] years). The estimates obtained from M2 illustrates
a stronger anticipation effect in hMLH1 and hMSH2 fami-

lies (−2.8 years, CI [−4.3,−1.2] years for hMLH1 and −2.5
years, CI [−3.8,−1.0] years for hMSH2) when compared to
hMSH6 (−1.0 years, CI [−3.3,1.1] years). Similar estimates
are obtained from the posterior predictive distribution, but
with larger uncertainty owing to individual observations be-
ing more variable than the mean estimate. Estimates of the
random effects’ variance–covariance hyperparameters in Ta-
ble 2 (last block) are sensitive to prior choices on Σ under the
DPM in M4 and produce different results than M1–M3.

Fixed effects estimates. The top panel in Table 2 presents
fixed effects estimate corresponding to gender and mutation
status (except M2). There is evidence of a later AOO for
males whereas mutation subtype is also a significant factor
with hMLH1 and hMSH2 showing earlier mean AOO than
hMSH6. However, the effect of mutation status and familial
random effects have to be examined and interpreted jointly
for each family.

Prior sensitivity. For M1–M3, results from all three prior
specifications were quite similar (results not tabulated). For
M1 and M3, the difference between any two priors in the
p50 estimate of a newly observed b1i was never more than
0.07, a small number given the scale. This was also observed
in the hMLH1 and hMSH2 subtypes under M2; for hMSH6,
the p50 estimates were −1.04, −0.86, and −0.96 for the three
prior specifications. Credible intervals for M1, M2, and M3
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Table 3
Assessment of M1–M3 under three priors placed on the

variance of the mixture components of the random effects
distribution: {g1, h1} avoids values close to 0, {g2, h2} is

weaker and “flattens” the prior density relative to {g1, h1},
and {g3, h3} pushes the density closer to 0. DIC is “deviance
information criterion,” pD is the penalty term (an estimate of

model complexity), LPML is the logarithm of the
pseudo-marginal likelihood, and SIBS is the scaled integrated

Brier score. The results for M4 correspond to the prior
specification described in the text. In each column, smaller is

better.

Prior
Model {g1, h1} {g2, h2} {g3, h3}

DIC (pD )
M1 2911 (5.9) 2664 (6.2) 2818 (6.2)
M2 2917 (12.3) 2653 (12.6) 2822 (12.6)
M3 2902 (9.0) 2660 (9.7) 2806 (9.4)

−LPML
M1 1041.2 1038.1 1039.8
M2 1042.7 1038.2 1041.0
M3 1042.2 1039.9 1040.9
M4 1064.6

SIBS
M1 0.2627 0.2651 0.2641
M2 0.2625 0.2653 0.2641
M3 0.2618 0.2638 0.2632
M4 0.2510

were similar between the first two priors and narrower under
{g3, h3}. The DPM in M4 required a more informative prior
on the variance components in Σ; vague priors yielded larger
credible intervals. In general, M4 exhibits more variability in
estimating the hyperparameters on the random effects. The
results were robust to prior choice on α.

Clinical application. Affected families will likely be inter-
ested in the family-specific extent of anticipation. Consider
the hMSH2 family in the bottom panel of Figure 1, say
i = i′. Pr(b1i ′ < 0) = 0.86 and Pr(b1i ′ < −2) = 0.39 for M1
under {g1, h1} (M2 and M3 make statements within 0.03
of this probability). This means that the probability that
there is some anticipation effect is 0.86 and the probability
that the effect from anticipation is at least 2 years is about
0.39. On the other hand, for the hMSH6 family in the figure
(i = i′ ′), Pr(b1i ′′ < 0) = 0.89 for M1 but is 0.63 for M2, and
Pr(b1i ′′ < −2) = 0.42 for M1 but is only 0.16 for M2. Thus,
at the level of individual families, the extent of anticipation
does depend on the assumed model. Robust choices evoke
more confidence in obtained results. However, how strong an
anticipation effect is necessary to change prophylactic care for
a given family needs to be clinically determined.

4.2 Model Comparison and Assessment
Table 3 provides results from the quantitative comparison
techniques discussed in Section 3 under the three prior speci-
fications. Using DIC, there is no consistently preferred model.
Estimates of deviance fluctuate markedly between priors. On
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Figure 3. The logarithm of the ratio of CPOs for M1
(CPOM1) to M2 (CPOM2) by most recent age. Individuals are
grouped by family mutation and stratified by the censoring
indicator. Values greater than 0 favor M1.

the other hand, the penalty components are relatively stable,
even under M3, with a latent “true” number of parameters.

For LPML, differences between M1 and M3 are small, but
M1 is actually preferred for all three priors; variation of LPML
between and within priors was less than that of DIC. Fo-
cusing on individuals, Figure 3 gives the log of the ratio of
CPOs comparing M1 to M2 under {g1, h1} for each individ-
ual. This model-to-model comparison is particularly interest-
ing because the general trend is that hMSH6 individuals with
late AOOs are fit relatively better by M1 (the log of the ratio
being greater than 0) but that M2 offers an improvement in
fit for the less extreme event times. We saw similar results
when comparing M2 to M3. For hMLH1 and hMSH2 families,
results across models are very similar. In terms of LPML, M4
is least favored across the models.

Relative to LPML, the order of preferred models is reversed
under SIBS. The scale of the between-model differences and
between-prior variability is about the same as LPML. In con-
trast to LPML, M4 slightly improves upon the other models.

For aggregate measures of prediction, there is little differ-
ence between models, supporting the findings of McCulloch
and Neuhaus (2011). As for individual predictions, there is
sensitivity to model choice (Figure 3), and no model is uni-
formly preferred.

5. Discussion
In this article, we develop the first Bayesian approach to assess
genetic anticipation, a problem for which interest lies primar-
ily in prediction of random effects governed by a biologically
plausible nonnormal distribution (Lynch et al., 2006). We see
additional evidence of its necessity through our work, for ex-
ample, Figure 2 indicates substantial familial heterogeneity.
We evaluate candidate models that cover a wide range of dis-
tributions for the random effects.

The relative survival-type adjustments using historic data
provide a systematic approach to adjust for secular trends
in AOO, an issue many papers on genetic anticipation have
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grappled with. While we have tried to mitigate these effects
by using external data on all incident cases of colorectal and
endometrial cancer, increased awareness of LS may still mean
some of the anticipation is diagnostic in nature and not only
genetic.

After adjusting for secular trends, there remains evidence of
anticipation at both the population and the familial level. The
population-level effect size is about 2.5 years across models,
0.5 years less than the original paper (Larsen et al., 2009). The
model that constrains cluster membership (M2) identifies one
mutation subtype, hMSH6, to be considerably different from
the other two. The hMSH6 mutation had the fewest families
(22), yielding less precision compared to the other subtypes.
It would be worthwhile to posit mechanistic reasons for het-
erogeneities within hMSH6 families.

The Bayesian simulation methods we use provide direct
posterior draws of all parameters, allowing for model assess-
ment and posterior predictions for clinical quantities of inter-
est. As we saw, successfully answering the question, “What
is the extent of anticipation in a particular family?” depends
crucially upon properly modeling the anticipation coefficient
as well as deciding upon a clinically relevant definition of
anticipation.

As a statistical point of interest, this article provides a good
forum for the evaluation of Bayesian model comparison tech-
niques. We have a likelihood in which calculation of DIC is
not straightforward with current methods. We define a new
hybrid complete-conditional DIC, appropriating the ideas of
Celeux et al. (2006). It is worthwhile to investigate further
this sensitivity of the hybrid DIC to prior specification. To our
knowledge, the SIBS has not been used previously in Bayesian
analysis of censored data.

The methods and analytic approaches that we develop pro-
vide statistical insight into genetic anticipation and also facil-
itate application in clinical situations. These results are only
readily applicable to high-risk Lynch families and generaliza-
tion to a different population would require further correction
for ascertainment bias.

6. Supplementary Materials
The Web Appendix and Figures referenced in Sections 2.2,
2.5, and 4 are available under the Paper Information link at
the Biometrics website http://www.biometrics.tibs.org.
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