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Chapter I

Introduction

The Tibetan Plateau is arguably the most outstanding topographic and geologic feature
on earth (Figure 1.1). With an areal extent of 2.5 million km? this vast landscape
encompasses 82% of the world’s land surface area >4 km above sea level (Fielding et al.,
1994) and is underlain by continental crust twice as thick as average (>70 km; Wittlinger
et al., 2004; Rai et al., 2006). Ongoing India-Eurasia continental convergence since ~55-
45 Ma (Rowley, 1996; 1998 and references therein; Zhu et al., 2005; Henderson et al.,
2010) is the widely accepted cause of Cenozoic deformation within Tibet and the
surrounding region (Powell and Conaghan, 1973; Molnar and Tapponnier, 1975). Due to
the fact that convergence is still in progress, studies of this region yield valuable insights
into continental orogen development not possible in older tectonic systems. Despite
decades of research and discovery, however, no consensus has yet been reached with
regard to the fundamentals of orogenic evolution in response to this convergence. This is
in part due to the complex nature of continental deformation. Unlike dense oceanic
lithosphere, which is generally more rigid, block-like and recyclable through the process
of subduction, continental lithosphere may undergo pervasive internal deformation, often
distributed over broad zones near plate boundaries and, due to its buoyancy, may

withstand multiple generations of deformation.
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Figure 1.1. Shaded relief map of Tibetan Plateau and surrounding region. Solid white box highlights the
location of detailed studies along the northeastern margin of the Tibetan Plateau (chapters 11-1V and the
appendix). Lower panel shows the faults of the northeastern margin of the Tibetan Plateau compled from
published sources (GBGMR Gansu Province, 1989; QBGMR, 1991; Van der Woerd et al., 2002; Jolivet et
al., 2003; Pan et al., 2004; Yin et al., 2002; 2007; 2008; Bovet et al., 2009; Zheng et al., 2010; Huang et al.,
2011) and original field observations. Dulan-Chaka Highland (DCH); Laji Shan (LS), Jishi Shan (JS),
Maxian Shan (MS); Elashan Fault (EF); Riyueshan Fault (RF); Qinghai Nan Shan (QNS); Gonghe Nan
Shan (GNS). Dashed white box highlights the field location of the broader-scale plateau-wide component of
the dissertation (Chapter V).



1.1 Motivation: Prototype of continent-continent collision

The Tibetan orogenic system is a prime example of complex and widespread
deformation of anisotropic continental lithosphere with a long geologic past. Tibet and
the surrounding area comprise terranes accreted successively to the Eurasian craton since
the early Mesozoic (Dewey et al., 1988; Sengdr and Natal’in, 1996). Convergence of
these continents and continental fragments was accompanied by subduction of
intervening Tethys oceans in a complicated process of rifting, back-arc spreading, and
intra-ocean subduction (Sengor, 1984). Remnants of the Mesozoic Tethyan subduction
complex are revealed by tomographic imaging of the mantle under Tibet, India, and the
adjacent Indian Ocean (Van der Voo et al., 1999).

A number of competing mechanisms to explain Cenozoic crustal deformation and
surface uplift due to continental collision with India have been proposed. These can be
classified broadly into four main categories described below: 1) underthrusting, 2) rigid-
block tectonics, 3) continuum models, and 4) crustal flow. It should be noted that
debate regarding model validity often considers each as separate end members. In reality,
these descriptions are not necessarily mutually exclusive of one another, and the
development of the Tibetan-Himalayan orogenic system may have involved aspects of
more than a single mechanism.

Underthrusting

Long before the advent of plate tectonics, Emile Argand proposed that the Tibetan

Plateau resulted from the underthrusting of India (Argand, 1924). Adding to this

landmark proposal, Powell (1986) suggested that wholesale subduction of buoyant Indian



continental crust led to underplating and subsequent rise of the Asian Tibetan continental
crust. A variation by Zhao and Morgan (1987) suggested injection of Indian crust into
weaker Tibetan lower crust was the mechanism for massive crustal thickening. Seismic
experiments lend support to the underthrusting of Indian lithosphere at least in the
southern part of the Plateau (Owens and Zandt, 1997; Tilmann et al., 2003; Hetényi et al.,
2007; Nabelek et al., 2009) but suggest that anomalously hot, low-density upper mantle
characterized by observable mantle anisotropy (Owens and Zandt, 1997) underlies
northern Tibetan crust (north of the Bangong Suture). Recent surface wave tomography
studies have reinvigorated this debate as results imply a high-velocity (i.e. strong and
intact) lithospheric mantle beneath the whole plateau to a depth of 225-250 km (Priestley
et al., 2008).
Rigid Blocks

In another seminal paper for Asian tectonics, Molnar and Tapponnier (1975) first
proposed the “continental extrusion” model whereby large-scale (1000 km) eastward
extrusion of Tibet was achieved by horizontal motions along major intra-continental
strike-slip faults. The premise of this and other similar models (e.g., Tapponnier et al.,
1982; Avouac and Tapponnier, 1993) is that Tibetan crust can be described as rigid or
rigid-plastic microplates or blocks where deformation is localized on major block-
bounding faults (Thatcher, 2007; Meade, 2007). In order to describe the thick crust and
high-surface elevations of Tibet as well as lateral strain, Tapponnier et al. (2001) further
proposed a northeasterly progressive growth of the plateau along discrete discontinuities

in the crust. This description of plateau growth envisions extrusion along the major



strike-slip faults following the old suture zones, accompanied by mantle subduction at
depth and thrusting, uplift, and erosion of crustal wedges.
Continuum models

In contrast to discrete deformation along rigid blocks, continuum models, such as the
thin-viscous sheet model (England and McKenzie, 1982), describe deformation as
distributed through a continuously deforming lithosphere driven by boundary and interior
forces. Faults in the brittle crust are less significant and may simply be shallow crustal
features in a more fluid-like lithosphere. A major assumption in these models is that
variation in the horizontal component of velocity with depth can be ignored. In the case
of Tibet, the lithosphere is predicted to deform as a continuous viscous fluid so that
convergence is accommodated smoothly across the entire lithosphere by distributed
thickening and shortening of Asian lithosphere (e.g., England and McKenzie, 1982;
Dewey et al., 1988; England and Houseman, 1986; 1989), which may have resulted in the
abrupt removal of mantle lithosphere from beneath Tibet during the late Cenozoic
(Molnar et al., 1993). Strain rates and presumably crustal thickening were largest near the
suture zone in southern Tibet at the beginning of continent-continent collision, increasing
northward in time. Thus, like rigid-blocks, the simplest applications of thin-viscous sheet
models predict a northward growth of the Tibetan Plateau (e.g., England and Houseman,
1986; England and Searle, 1986). However, more recent applications of this model
framework show that far-field lithospheric deformation due to the Indian indenter shortly
after collision is permissible given a strong lithosphere north of Tibet and relatively thick

crust in southern Tibet at the onset of plateau building (Dayem et al., 2009).



Crustal flow

Crustal flow models of Tibet similarly predict that the lithosphere deforms as a
continuous viscous fluid but differ in that convergence is accommodated through flow in
the middle or lower crust. The absence of long-wavelength relief across the Tibetan
Plateau inspired the idea that crustal flow occurs by power-law creep under large plateau
regions underlain by thick crust and acts to level the land surface (Bird, 1991). High
temperatures and/or the presence of small amounts of fluid or partial melt greatly reduce
continental crustal strength (Kohlstedt et al., 1995) allowing ductile flow in the middle to
lower crust in response to pressure gradients resulting from topography. Late Miocene
initiation of major river incision within the easternmost margin of Tibet (Clark et al.,
2005; Ouimet et al., 2010; Wilson and Fowler; 2011), a region of high topography and
thickened crust (~60 km) but with no evidence of major Late Cenozoic crustal
shortening, has been proposed to have experienced broad surface uplift due to crustal
thickening via lower crustal flow that initiated in central Tibet and progressed outward
(Clark and Royden, 2000; Kirby et al., 2002; Clark et al., 2006; Royden et al., 1997,

2008; Ouimet et al., 2010).

1.2 Motivation: Climate-tectonics links

In addition to providing important testing grounds for proposed descriptions of the
mechanics of intracontinental deformation and orogenic plateau formation, the Tibetan
Plateau also serves as an ideal setting for studying the coupling between the lithosphere

and atmosphere, as well as the role of each in mountain-range evolution. Despite field



observations and laboratory experiments consistent with the notion that tectonics
significantly impacts climate and vice versa, unequivocal evidence of such links remains
elusive (e.g., Whipple, 2009).

The topographic rise of a landmass as large as the Tibetan Plateau likely affects
regional and possibly global climatic and atmospheric patterns. In fact, many have
postulated that accelerated erosion and weathering of silicate rock as a result of uplift of
the Tibetan-Himalayan system may have led to enhanced extraction of atmospheric CO,
and, ultimately, global atmospheric cooling in Cenozoic time (e.g., Raymo and
Ruddiman, 1992; Ruddiman et al., 1997). Although more recent isotopic studies have
cast some doubt upon these hypotheses (Jacobsen et al., 2002; Bickle et al., 2005), a case
can still be made for a connection between Tibetan-Plateau uplift and Asian monsoonal
processes.

Once even moderately high topography (~3000 m) is achieved, the Himalaya and
Tibetan plateau are thought to profoundly influence Asian monsoon processes (e.g., Prell
and Kutzbach, 1992; Molnar et al., 1993; Zhisheng et al., 2001; Molnar, 2005). High
topography in and surrounding Tibet acts as a barrier to the circulation of cool, dry air
from the north in the case of the South Asian monsoon (Boos and Kuang, 2010) and as a
deflector of the jet stream in the case of the East Asian monsoon (Molnar et al., 2010). In
return, Asian monsoons may significantly affect regional deformation patterns. Intense
monsoonal precipitation focused on the high Himalaya, the southern boundary of the
Tibetan Plateau, is thought to trigger increased erosion rates (Burbank et al., 2003),
which in turn facilitate ductile extrusion of hot, weak rocks from beneath the central

Tibetan Plateau in a widely cited model known as the “channel flow” hypothesis



(Beaumont et al., 2001; Hodges et al., 2001). Ultimately, understanding the true nature of
such proposed monsoon-tectonics interactions requires robust measures of rates and

timing of deformation and erosion events within the Tibetan Plateau orogenic system.

1.3 Thesis outline

In this dissertation, I utilize a variety of techniques including low-temperature
thermochronometry, geochronology, geodesy, and analysis of geologic and geomorphic
patterns from both field-based and remotely-sensed data in order to better characterize the
structural and topographic evolution of the Tibetan Plateau since the time of Indo-Asia
collision (~ 50 Ma). This work was undertaken at two spatial scales (Figure 1.1): detailed
study along the northern plateau margin (Chapters II-IV) and a broad-scope study across
the width of the east-central Tibetan Plateau (Chapter V).

Much of the interior Tibetan Plateau is a remote, arid region with relatively low relief,
thus geologic studies focused on plateau margins, where accessibility and rock exposure
are generally superior, offer valuable insights into plateau development. In addition,
many viable descriptions of Tibetan Plateau formation, regardless of specific styles of
deformation evoked, view mountain growth as a northward progression away from the
collision boundary with time. As the most distal plateau margin, northeastern Tibet
therefore represents a key area for detailed study. In this region, I first consider the
modern deformation field using geodesy and then investigate the longer term geologic
evolution using low-temperature thermochronometry and geologic and geomorphic
observations. The second component of my dissertation work (Chapter V) evaluates

spatial and temporal patterns in Tibetan Plateau evolution through a plateau-wide study



of fluvial erosion using detrital sediment from rivers crossing the entire width of the
externally-drained portion of the east-central Tibetan Plateau (Figure 1.1). Detrital studies
are best-suited for work of this scope because a single sample contains rock materials
integrated from a large spatial area, thereby overcoming issues of poor accessibility and
sparse bedrock outcrops. Two of these chapters are published (Chapter ILIII), one is in
review (Chapter V), and one is in preparation for submission (Chapter IV). The format and
content of the published manuscripts match that presented in this dissertation.
Chapter 11

One of the main outstanding questions in Tibetan Plateau evolution is how much of
India-Eurasia convergence was absorbed by crustal shortening and thickening and how
much was accommodated by lateral extrusion to the east. Central to this issue is whether
fast slip on major strike-slip faults is absorbed by deformation within the plateau or if it
instead extends east of the plateau to adjacent terrain. Geodetic velocities, which record
motion of the present deformation field, offer one means to address these questions.
Chapter II analyzes fault parallel geodetic velocities and Quaternary slip rates along strike
to evaluate termination and slip transfer of the Kunlun Fault, a major left-lateral strike-
slip fault in northeastern Tibet. The distribution of fault-parallel velocities across this
region suggests a decrease in fault slip toward eastern fault tips and progressive
dissipation of slip to the north rather than east of the Tibetan Plateau as previously
suggested (e.g., Tapponnier et al., 1982; 2001). Thus, the notion of eastward extruding
crustal blocks is not supported by geodetic and Quaternary slip rates in northeastern
Tibet. The results of this study are published in the March 2010 issue of Geology: Duvall

and Clark, 2010.



Chapter 111

Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault
clays and low-temperature thermochronometry (Chapter III) addresses the longer-term
deformation of northeastern Tibet. In this study, timing of fault motion was determined
using *Ar/*’Ar dating of illite in fault gouge of a major reverse fault combined with the
erosional history of hanging-wall rocks from thermal data. Results from this work offer
definitive evidence of Eocene-age reverse faulting within the northeastern Tibetan
Plateau and suggests that compressive deformation across a significant portion of the
northern margin of the plateau initiates within 10 myr of the initial collision between
India and Eurasia. This work also highlights the utility of combining results from fault
gouge dating with thermochronometry at the same location. Results of this study are
published in the April 2011 issue of Earth and Planetary Science Letters: Duvall et al.,
2011.
Chapter IV

Chapter IV provides minimum bounds on the onset age of the Kunlun Fault as well as
the Haiyuan Fault, which is also a major left-lateral structure within the northeastern
margin of the Tibetan Plateau. New low-temperature thermochronometry ages and
geologic observations are used to constrain periods of exhumation associated with
transpressional deformation linked to strike-slip faulting. Results suggest that Kunlun
faulting initiated first during the early Miocene along the central fault segment followed
by expansion along strike to the east and west. Between 15-6 Ma, structures between the
Kunlun and Haiyuan Faults became active, from which I infer simultaneous Kunlun and

Haiyuan faulting bounding the ~250-km-wide zone of associated transpressional shear
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documented in the modern deformation field (Chapter II). Thus, left-lateral strain appears
to dominate the structural landscape of the interior northeastern plateau margin beginning

at ~ 15 Ma and continuing through the present.

Chapter V

Building on Part I of the dissertation, Chapter V expands upon the detailed work in
northern Tibet and considers the broader, plateau-wide geologic history. This study
determines patterns in erosion rates and timing of erosion-rate change across the entire
width of the east-central Tibetan Plateau interior by measurements of low-temperature
thermochronometry in detrital apatites collected from modern river sands. If Tibet grows
by appending material to a northward expanding deformation front, then such a process
will likely be recorded by a similarly migrating front of high erosion rates. Thus, the
record of erosion patterns across the plateau serves as a proxy for elevation history during
plateau expansion and can be used to further distinguish between models of plateau
formation. Results from this study reveal that rates similarly increase by at least an order
of magnitude between 11-4 Ma following a period of slow erosion across all of the
studied catchments. Similar timing of accelerated erosion throughout the expanse of the
Tibetan Plateau rather than a spatial or temporal progression challenges plateau evolution
via a steep, northward-propagating topographic front. Although 1 cannot definitively
distinguish between tectonic and climatic influences on the erosion record from these
data alone, results are consistent with broad surface uplift, possibly due to lower-crustal
flow, as the main driver of late Cenozoic erosion rate increase. This work is currently in

review for publication in Tectonics.
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The final chapter of this dissertation (Chapter VI) summarizes the main conclusions
from each chapter and offers a synthesis of Cenozoic deformation along the northern
plateau margin as well as implications for Tibetan Plateau development as a whole.
Additional method details (Chapter II) and complete data tables (Chapters IV and V) are
provided at the end of the respective chapters. The dissertation appendix includes an
original geologic map and three generalized stratigraphic columns for the Maxian Shan

region of northeastern Tibet (Figure 1.1).
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Chapter 11

Dissipation of fast strike-slip faulting within and beyond northeastern

Tibet'

Abstract

Structural patterns, GPS velocities, and Quaternary fault slip rates in northeastern
Tibet indicate a transfer of left-lateral slip from the Kunlun Fault northeast to the Haiyuan
Fault and minor crustal shortening and rotation within a 200 km wide step-over zone.
Related deformation also continues at least a few hundred kilometers north of the
Haiyuan Fault into a region of diffuse extensional(?) shear or rotation underlain by
average thickness crust. Fast, localized slip along the central Kunlun Fault transforms
into distributed deformation across a 500 km wide zone where the lower crust is weak.
The distribution of fault-parallel GPS velocities across this region suggests a decrease in
fault slip toward eastern fault tips and progressive dissipation of slip to the north rather

than east of the Tibetan Plateau as previously suggested.

! Citation: Duvall, A. R. and Clark, M. K., 2010, Dissipation of fast strike-slip faulting within and beyond
northeastern Tibet: Geology, v. 38, p. 223-226.
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2.1 Introduction

Lateral motion and rotation of continental fragments by strike-slip faulting is a
ubiquitous process in continental collisions (e.g., Tapponnier et al., 1982; Ratsbacher et
al. 1991; Sengor et al., 1985). The role these faults play in accommodating plate
convergence however is contentious. The Tibetan orogen, where major strike-slip faults
have long been recognized as primary surface features (Molnar and Tapponnier, 1975),
lies at the center of this debate. Two important questions concerning the evolution of
these faults are: (1) is localized fast slip on major strike-slip faults absorbed by
deformation within the plateau, or does it extend east of the plateau to adjacent terrain?
and (2) when deformation is localized on one or two faults as in micro-plate or block
boundaries (Thatcher, 2007; Meade, 2007), how is strain distributed from one major fault
to another?

Proposed fast slip rates (>10 mm/yr) along the Kunlun, and Haiyuan left-lateral faults
in northeastern Tibet are interpreted by some to continue eastward beyond the plateau
margin due to the extrusion of continental fragments toward the Pacific/Philippine
subduction zones (Gaudemer et al., 1995; Lasserre et al., 2002; Tapponnier et al., 1982;
2001). Alternatively, others have proposed that lateral motion terminates before reaching
the eastern plateau edge (England and Molnar, 1990; Burchfiel et al., 1991; Kirby et al.,
2007). This debate continues in part because we lack understanding of how fast slip is

transferred from one structure to another within or beyond the plateau.
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It is a challenge to document slip transfer, especially if it is distributed among many
faults, because small offsets are difficult to measure in the geologic record. Geodetic
measurements, which are sensitive to millimeter-scale velocities, are well suited to
address this issue. In previous studies, tectonic blocks within the Tibetan orogen have
been defined by the GPS velocity field (Thatcher, 2007; Meade, 2007). But such block-
based approaches fail to resolve fault termination and by design, neglect smaller, minor
structures that participate in slip transfer between major structures. We use fault parallel
GPS velocities and Quaternary slip rates along fault strike to evaluate fault termination
and slip transfer in northeastern Tibet. We also examine how minor structures participate

in slip dissipation from the Kunlun Fault to the surrounding foreland.

2.2 Geologic Background and Quaternary Slip Rates

The left-lateral Kunlun Fault strikes E-W and extends ~1500 km across northeastern
Tibet (Figure 2.1). The left-lateral Haiyuan Fault parallels the Kunlun Fault a few
hundred kilometers to the northeast (Figure 2.1). Studies of the central and western
segments of the Kunlun Fault yield measured late Pleistocene to Holocene slip rates of
~11 +/- 2 mm/yr (Van der Woerd et al., 1998; 2000; 2002) with possible reinterpreted
rates as low as 6.5 — 8.7 +/- 1.8 mm/yr (Cowgill, 2007) (Figure 2.1 and 2.2). Quaternary
and geodetic rates along the eastern fault segment are 2 to 6 times lower suggesting that
the fault terminates within the eastern margin of the Tibetan Plateau (Kirby et al, 2007).
High Quaternary slip rates (19 +/- 5 mm/yr and 11 +/- 4 mm/yr) are reported for the
central segment of the Haiyuan Fault (Gaudemer et al., 1995; Lasserre et al., 1999, 2002)

that decrease toward the eastern fault tip (4 — 6 mm/yr)(Li et al., 2009; Zhang et al.,
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20 mm/yr———> |

Figure 2.1. GPS velocities relative to stable Eurasia (Gan et al., 2007). Blue
(northern), white (central), red (southern) represent regions with distinct N110E veloc-
ity trends. Black star shows start location for the 110° projected line. Inset map shows
location of eastern China sites included in Figure 2.3.
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1991). However, InSAR data suggest lower rates for the central fault segment of 4.2 — 8
mm/yr (Cavali¢ et al., 2008).

The intervening region between the prominent, fast-slipping Kunlun and Haiyuan
Faults is a complex suite of minor faults of various types and orientations that
accommodate both left and right lateral fault motion and thrusting. Faults in this region
are generally smaller in length and total offset then the major bounding strike-slip faults,
and how these minor faults may transfer slip from the Kunlun to the Haiyuan Fault has
not been previously considered. Wang and Burchfiel (2004) interpret the right-lateral
Elashan Fault (or Wenquan Fault), as a conjugate to the left-lateral Altyn Tagh Fault
whereby both structures accommodate the northward indentation of the Qaidam Basin
into the Qilian Shan belt. Other studies interpret the region of northeastern Tibet more

simply as a wide zone of transpression (Meyer et al., 1998).

2.3 Geodetic Deformation Rates

We derive a continuous function of fault slip rate along strike of the Kunlun and
Haiyuan Faults in order to evaluate the termination of these faults and the possible slip
transfer between them and the surrounding foreland. Analogous to the approach of elastic
dislocation models, we project strike-parallel velocities (average fault trend of N110E)
from published GPS data (Gan et al., 2007) onto a line trending 110° and difference
velocities across the fault to determine slip rate. Velocity in the N110E direction
dominates the geodetic field in northeastern Tibet, with exception of the far western

extent of our study area that overlaps with compressional deformation of the Qilian Shan
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Figure 2.2. Detailed fault map of northeast Tibet (same map extent as Figure 2.1).
Elashan Fault (E), Riyueshan Fault (R), Dulan-Chaka Highland (DCH), Gonghe Nan
Shan (GNS), Qinghai Nan Shan (QNS), (LS) Laji Shan, (JS) Jishi Shan, and the Maxian
Shan (MS) (Qinghai BGMR, 1991). Heavy lines and dark shading represent structures
within the proposed Kunlun/Haiyuan stepover region with Quaternary slip rates in

mm/yr.
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(Figure 2.4). Block rotation between the Kunlun and Haiyuan Faults is also negligible
(Thatcher, 2007).

Three distinct trends in velocity versus distance emerge: velocities south of the
Kunlun Fault decrease linearly from 20 to ~6 mm/yr; between the Kunlun and Haiyuan
Faults velocities initially increase and then decrease from values ranging from ~5 to 8
mm/yr; and north of the Haiyuan Fault velocities linearly increase from ~2 to 6 mm/yr
(Figure 2.3). Distinct velocity trends on either side of the Kunlun and Haiyuan Faults
suggest concentrated slip on these faults and scatter within each trend could result from
deformation along smaller structures or may be unrelated to tectonism (e.g., movement of
groundwater). Stations within 50 km (~ three locking depths based on the depths of large
earthquakes in Tibet) of either fault were excluded to avoid complications related to
elastic behavior within the vicinity of locked structures (Savage and Burford, 1973). We
derive average velocity trends for each sub-group by fitting a line to the northern and
southern data, and a parabola to the central data. These trends are equal to the average
far-field velocity on either side of the Kunlun and Haiyuan Faults and the difference in
velocity is equal to the slip rate (Figure 2.3; Chapter II appendix).

Kunlun geodetic and Quaternary slip rates decrease from 12 mm/yr to zero from west
to east before reaching the eastern plateau margin (Kirby et al., 2007; Figure 2.3 inset).
Along the same distance, Haiyuan geodetic slip rates increase from 2 mm/yr to a
maximum of 4.5 mm/yr before decreasing back to zero (Figure 2.3 inset). Geodetic rates
are within error of lower Quaternary and InSAR rates (<6 mm/yr) along several locations
spanning 500 km along the Haiyuan Fault. High slip rates reported for the central

segment of the Haiyuan Fault (Gaudemer et al., 1995; Lasserre et al., 1999; 2002) are
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Figure 2.3. Strike-parallel velocity (N110E) versus distance. Sites
south of the Kunlun fault (red), central sites between the Kunlun and
Haiyuan faults (white), sites north of the Haiyuan fault (blue) and
eastern China sites (black, locations Figure 2.1 inset). Inset shows
geodetically determined slip rate versus projected distance for the
Kunlun fault (red), calculated by subtracting trends in N110E velocities
of the central data from velocities of the southern data, and Haiyuan
fault (white), calculated by subtracting northern station velocities from
central station velocities.
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outliers to a more consistent pattern of modest slip defined by Quaternary, InSAR and
geodetic rates that decrease toward the fault tips (Figure 2.3 inset).

GPS stations east and north of the plateau move eastward relative to stable Eurasia at
rates of 6-10 mm/yr (Chen et al., 2000). However, velocities in the N110E direction for
sites north of the Haiyuan Fault increase linearly from 2 — 6 mm/yr from west to east
(Figure 2.3), which has not been recognized previously. This trend could be explained by
rotation or displacement between the northern foreland and stable Eurasia. Convergence
in N110E velocity at ~ 6 mm/yr occurs at roughly the eastern margin of the plateau
(profile distance 1000-12000 km), which is equal to the average N110E velocities across
eastern China (Figure 2.1 and 2.3). The lack of significant relative displacement in the
N110E direction between the southern, central, and northern stations suggests the

termination of strike-slip faulting within the eastern plateau foreland.

2.4 Discussion
Kunlun Fault to Haiyuan Fault

Between the Kunlun and Haiyuan Faults, deformation is accommodated by numerous
smaller strike-slip and thrust structures that are 50 — 100 km in length (Figure 2.2). In the
western part of the step-over zone, we propose that the Elashan (Wenquan) and
Riyueshan Faults form antithetic right-lateral structures that accommodate shear through
counterclockwise block rotation in a bookshelf or domino style (Mandl, 1987), rather
than acting as a conjugate to the left-lateral Altyn Tagh Fault (Wang and Burchfiel,
2004). Rotation of smaller “blocks™ of crust (50 km x 50 km) separated by right-lateral

faults produces transpression and crustal thickening along ENE striking thrust and
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reverse fault bounded mountain ranges, including the Qinghai Nan Shan, Gonghe Nan
Shan, and Dulan-Chaka Highland (Figure 2.2). In the east, N110E directed motion is
accommodated along the N-S oriented Jishi thrust fault, and oblique thrusting on the NE
convergent Maxian and West Qinling Faults (Figure 2.2). The Haiyuan Fault continues
farther east, beyond the tip of the Kunlun Fault, but terminates within the convergent N-S
striking Liupan Shan and Madong Shan thrust and folds (Figure 2.2).

The complex deformation that we describe here is similar to other areas of continental
strike-slip faulting (e.g., the Mojave block of southern California (Dokka and Travis,
1990)) and is consistent with both simple shear experiments (Freund, 1974) and general
predictions of strain fields associated with systems of transcurrent faults (Sylvester,
1988). The decrease in Quaternary and geodetic fault slip rates toward the fault tips is
consistent with a transfer of left-lateral motion northeast from the Kunlun to the Haiyuan
Fault. However, fault slip rates suggest that not all of the Kunlun left-lateral motion is
accommodated by the Haiyuan Fault alone, some of which must be absorbed by the
complex deformation in the intervening region between the two faults.

North of Haiyuan Fault

GPS data from the northern plateau foreland show an unexpected linear west-to-east
increase in N110E velocities with respect to Eurasia. No continuous E-W oriented fault
exists north of the foreland stations; therefore we cannot simply interpret motion of the
foreland stations as strike-slip faulting. Such increase in N110E velocities could represent
rotation of a rigid block, such as the proposed Alashan block or Amuria microplate,
although their boundaries are poorly constrained at present (Apel et al., 2006). Either

distributed conjugate strike-slip faulting or east-west extension on numerous small faults
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could also explain the velocity pattern. North and south-vergent transpression on WNW
trending faults affects stations within the Qilian Shan/Hexi corridor (Meyer et al., 1998)
(2.1 and 2.2) but cannot explain the increase in N110E velocity farther to the east. North-
south trending faults of the Yinchuan Graben and Shanxi rift accommodate east-west
extension within the northern foreland along the eastern extent of the profile (Zhang et
al., 1991). Yet, to explain the observed velocity trend several other minor extensional
structures that accommodate diffuse extensional shear must be present. Such a pattern of
faulting is not yet recognized in the field but would be consistent with the geodetic data.
GPS velocities at ~6 mm/yr across eastern China sites suggest movement of this
region with respect to stable Eurasia; yet the fact that rates are uniform across all stations
suggests large scale regional motion of southern Eurasia, rather than extrusion of
individual fault blocks. Lack of strike-slip faulting east of the plateau is noteworthy
because its absence precludes the eastward escape or extrusion of tectonic blocks due to
the advancing Indian plate (Tapponnier et al., 1982; Peltzer and Saucier, 1996).
Deformation by rotation or distributed faulting north of the plateau margin dissipates
N110E motion. As a result, high strike-slip rates on the central Kunlun Fault (12 mm/yr)
are distributed up to 500 km to the north from the high plateau into average thickness
crust in the surrounding foreland. Further, this slip dissipation occurs where the Kunlun
Fault extends from a region of high crustal strength (Qaidam Basin) into a diffuse plateau
margin underlain by a weak lower crust (Clark and Royden, 2000), which is likely to
impact faulting patterns (Roy and Royden, 2000). Models that involve an elastic upper
crust underlain by low-viscosity lower crust result in broad zones of interacting faults

whereas crust modeled as entirely elastic results in narrow zones of deformation focused
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on single faults. Thus, weaker crust underlying the northeastern margin of Tibet may
prohibit continued localized deformation along the Kunlun Fault and result in the much

wider and complicated set of structures extant across this region.

2.5 Conclusions

Whereas the importance of strike-slip faulting in accommodating India-Eurasia
motion is undeniable, the notion of eastward extruding crustal blocks toward a lateral
“free” boundary (Tapponnier et al., 1982) is not supported by geodetic and Quaternary
slip rates. Rather than continuing to the east, we demonstrate that fast slip on the left-
lateral Kunlun Fault (>10 mm/yr) is transferred northward, in the direction of plate
convergence. Deformation is partly accommodated by the Haiyuan Fault and intervening
faults in a regional step-over, and partly by distributed extensional faults or block rotation
within the northern plateau foreland. This interpretation explains both the distribution and
sense of motion on faults that lie between the Kunlun and Haiyuan Faults as well as
extensional faulting in the northern plateau foreland. The transfer of Kunlun Fault motion
northward over 500 km suggests that a wide deforming zone develops in a region of

weak lower crust.
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Appendix: Chapter I1

Method: Analysis of geodetic velocities

The strike-parallel velocity at each station is the component of total GPS velocity
(Gan et al., 2007; Figure 2.4) in the direction N110E, the average strike of the Kunlun
and Haiyuan Faults. We compare strike-parallel velocities by projecting all stations onto
a line trending 110° from a start point between the two structures (black star in Figure
2.4A). We exclude stations within 3 locking depths of faults (50 km based on earthquake
data for Tibet). Stations close to major faults (shown in gray, Figure 2.4) were excluded
in order to avoid complications related to elastic behavior within the vicinity of locked
structures. This analysis is analogous to the commonly applied method of estimating
fault-slip rates where differences in far-field velocities are calculated from GPS data
collected along fault-perpendicular swath profiles using a dislocation model in an elastic
half-space (Savage and Burford, 1973; Figure 2.4B). A key advantage to the approach we
take here is that it is possible to consider a continuum of change in fault slip rate along
strike of parallel structures simultaneously; thereby enabling assessment of potential fault
slip transfer.

The N20E velocity component is perpendicular to fault strike and parallel to the
direction of Indian plate convergence. With exception to the far western extent of the

study area that overlaps the Qilian Shan, the N20E component of velocity is small
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compared to the N110E component (Figure 2.4B). As a result, we focus the detailed
analysis and main points of discussion in this paper on strike-parallel velocities derived
from geodetic stations across the study area.

Figure 2.4C shows plots of strike-parallel velocity versus distance for three swaths
located at western, central, and eastern locations along strike of the Kunlun and Haiyuan
Faults (see Figure 2.4A for locations). Solid gray (Kunlun Fault) and dashed black
(Haiyuan Fault) lines represent velocities predicted from a dislocation model in an elastic
half-space with an assumed locking depth of 15 km (Savage and Burford, 1973).
Differences in far-field velocities across faults represent approximate slip rates permitted
by the data. Within the western swath (swath 1) fault slip rate along the Kunlun Fault is
~10 mm/yr and greater than twice the Haiyuan rate of 4 mm/yr. The central swath
(swath 2) demonstrates a switch to higher rates along the Haiyuan Fault however rates
here are less than half that of the Kunlun Fault in swath 1. Swath three, located farthest
to the east, shows significantly diminished rates for both faults. Results from each of the
three swaths are consistent with fault slip rates calculated from a continuous function
along strike of the fault (Figure 2.3b) and highlight a transition from greater Kunlun slip

rates to greater Haiyuan rates from west to east.
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Figure 2.4. Analysis of geodetic velocities. a) GPS velocities relative to stable Eurasia (Gan et al.,
2007) where blue (northern), white (central), red (southern) represent regions with distinct N110E veloc-
ity trends. Black star shows start location for the 110° projected line. Stations close to major faults, shown
in gray, were excluded in order to avoid complications related to elastic behavior within the vicinity of
locked structures. b and c¢) Plots of strike-parallel and strike-perpendicular velocity versus distance for
three swaths located at western, central, and eastern locations along strike of the Kunlun and Haiyuan
Faults. WQF - West Qinling Fault, QNS - Qinghai Nan Shan, KF-Kunlun Fault, HF-Haiyuan Fault. See
Chapter Il appendix for details.
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Chapter I11

Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-

dating of fault clays and low-temperature thermochronometry'

Abstract

Paired together, fault gouge dating and low-temperature thermochronometry
overcome the limitations and assumptions inherent in each independent technique. Here
we establish timing of brittle faulting along the West Qinling Fault of northeastern Tibet
by dating several size fractions of fault gouge clay that represent variable populations of
illite polytypes. Results show that the authigenic or fault-generated component of illite
formed at 50 + 8 Ma and that the detrital component formed at 236 + 7 Ma indicating a
middle Eocene age of faulting and a middle Triassic age of the wall rocks. Comparing
this dataset with published thermochronology from hanging wall rocks supports the
interpretation that the West Qinling Fault initiated at ~50 Ma and continued until at least
middle Miocene time and that authigenic clay growth occurred at ambient temperatures

of ~110°C. Lack of overprinting of younger clay ages at this site may indicate that rocks

! Citation: Duvall, A.R., Clark, M.K., van der Pluijm, B.A., and Li, C., 2011, Direct dating of Eocene
reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature
thermochronometry: Earth Planet Sci Lett., v. 304, p. 520-526.
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were out of the thermal window for authigenic clay formation during later faulting
episodes. The potential for temperature to control illite growth has implications for
interpretation of authigenic illite ages and their relationship to deformation episodes

within fault zones.

3.1 Introduction

Measurements of timing and rates of upper crustal deformation are central in the
ongoing debate regarding the relative roles of tectonics and climate in mountain building
(Willett, 1999; Whipple, 2009). However, a paucity of independent measures of fault
motion, erosion, and elevation change in active orogens hinders progress in
understanding the complex interaction of these competing processes (Whipple, 2009).
Dating fault motion in particular is challenging because offsets of stratigraphic units
useful in determining fault timing are not always preserved and stratigraphic ages are
often poorly constrained. Thus, isotopic dating of clays in fault gouge provides an
important alternative to directly date brittle fault motion because the energetics of
faulting and fluid flow promotes growth of authigenic clay during faulting episodes
within the shallow crust.

Fault gouge clays are assumed to comprise a two population mixture of mica
polytypes: (1) detrital illite (2M;) derived from wall rocks and (2) authigenic or in situ
illite (IMy) formed within the brittle fault zone during faulting. Isolation of pure
authigenic clay for isotopic analysis is typically not possible (Pevear, 1992; Grathoff et
al., 2001). As a result, ages from different clay size fractions that contain different

relative percentages of each clay polytype are used to determine the age of the pure
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authigenic clay assuming a two-end member mixing model (Solum et al., 2005; van der
Pluijm et al., 2006; Haines and van der Pluijm, 2008).

Because fault ages calculated using the two-end member mixing model correspond to
discrete events that represent either the timing of short-lived faulting or a finite period of
fluid-present fault motion (Solum et al., 2005; van der Pluijm et al., 2006; Haines and van
der Pluijm, 2008), determining the complete history of fault activity from a single fault-
gouge age is unlikely. Illite ages determined for faults with prolonged histories are
thought to represent the last major period of fault motion assuming that new authigenic
illite growth occurs with each successive faulting event and the complete overprinting of
illite grown during earlier phases of deformation (Solum et al., 2005; Haines and van der
Pluim, 2008). Whether such assertions should apply to all cases, however, remains
largely untested.

The conditions under which authigenic clay forms in a fault zone are critical to the
interpretation of illite ages. Temperature is likely to be one of the key parameters
controlling its growth but due to limited temperature data within fault zones dated using
the illite age analysis technique, the growth temperature of authigenic illite in fault gouge
is not well constrained. Early experimental work and studies of basin brines suggests the
2M; polytype grows above 280°C and that it is the most stable phase (Velde, 1965),
whereas the 1My polytype is thought to form at significantly lower temperatures below
200°C (Grathoff et al., 2001; Velde, 1965). If the window of growth temperatures of
authigenic illite is relatively narrow, then the range of fault depths where formation can
occur will also be limited. Importantly, in this case, there will be a relationship between

depth and age of fault events and, specific periods of fault motion (i.e. first or last slip
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event or some stage in between) could be targeted for sampling if exhumation history
along the fault is independently known.

In this study, we determine timing of fault motion using *“’Ar/*’Ar dating of illite in
fault gouge for a major reverse fault in northern Tibet where the erosional history from
thermal data is precisely known (Clark et al., 2010). There are several advantages to
combining results from fault gouge dating with thermochronometry at the same location.
Cooling histories from thermochronometry place important constraints on the
temperature of authigenic illite growth and thus interpretation of gouge ages.
Additionally, comparison of thermal histories with gouge ages from a single or multiple
faults offers independent information on the timing of discrete fault events along specific
structures that relate to range growth, and may also provide separate evidence for

potential erosional periods that are related to climate rather than fault motion.

3.2 West Qinling Fault site, northeastern Tibetan Plateau

Recent work in northern Tibet has shown that thrust faulting initiates at around the
time of collision, which is significantly earlier than previously thought. Observations of
an early, collision-age deformation history are not predicted simply by existing end-
member descriptions of plateau formation (Clark, in review; Clark et al., 2010; Dayem et
al., 2009; Kong et al., 1997). Although continuum (England and Houseman, 1986) and
step-wise growth (Tapponnier et al., 2001) models of Tibet are widely cited as
contrasting end members for plateau development, they share the view that edge forces
resulting from India’s northward advance into Asia (collision circa 50 Ma, Rowley

(1996)) produced high strain rates and crustal thickening that first accumulates at the
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plate boundary and then propagates outward in time. Mid-to-late Miocene compressive
structures along the distal, northeastern plateau margin (Figure 3.1) are well documented
(Lease et al., 2007; Meyer et al., 1998; Zheng et al., 2006). Additionally, regional
deformation at or near collision time is implied by clock-wise rotations up to 40 degrees
and onset of basin deposition between 55-52 Ma in the greater Xining Basin region (Dai
et al., 2006; Dupont-Nivet et al., 2004; Horton et al., 2004) and by at least 29 Ma in the
Linxia Basin (Fang et al., 2003), as well as by low-temperature thermochronology (Clark
et al., 2010) and structural observations (Yin et al., 2008) that indicate Eocene activity
along major northern Tibet thrust structures (Figure 3.1).

We compare the fault gouge age results with the thermal history of hanging wall rocks
along a segment of the West Qinling Fault in northeastern Tibet (Figure 3.1) where the
slip history likely took place along only a single strand. Eocene thrust activity is proposed
along this fault, which is one of the longest and most continuous structures within the
northern margin of the plateau. Recently published apatite (U-Th)/He ages (closure
temperature of 60 - 70°C) from samples collected along a single depth transect show an
interval of steep age/depth gradient starting at ~45 - 50 Ma and continuing through at
least 12.5 Ma, which is interpreted as an increase in erosion rate of hanging wall rocks
due to thrusting along the West Qinling Fault (Clark et al., 2010). Assuming that faulting
is the cause of accelerated erosion, Clark et al. (2010) proposed that initial rapid cooling
at the West Qinling Fault signals the first major thrust activity in northeastern Tibet,
coincident with the timing of India-Eurasia collision. Forward thermal modeling of
helium data that considers radiation damage effects on helium closure temperature and

regional geologic constraints suggest sedimentary cover of up to 2 km over the West
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/7 paleomag rotation
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ﬁ fault gouge site

Figure 3.1. Shaded relief location map of West Qinling study area in north-
ern Tibet. Faults and basins shown are those thought to be active during the
Eocene (55.8 — 33.9 Ma). Inset a: extent of Figure 3.1 within the greater
Himalaya/Tibetan Plateau region. Inset b: generalized geologic map simpli-
fied from BGMR Gansu (1989). Q-quaternary deposits, N-Neogene
sandstones and shales of the Linxia Basin, K-Cretaceous sandstones and
shales, Tr-Triassic flysch deposits (Songpan Ganzi complex), P-Permian
rocks, C-Carboniferous rocks, An-Archean rocks. A-A’ line shows the
location of the (U-Th)/He vertical transect in Clark et al. (2010).
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Qinling rocks during late Cretaceous through Eocene time (Clark et al., 2010). Sediment
deposition during this time implies regional lowlands and basin inversion following the
initiation of the West Qinling thrust fault. We sampled gouge from a site along this fault
located near the helium transect (Figure 3.1). Although the fault zone is more complex to
the west and east, it appears to be comparatively simple at the sample site (BGRM
Gansu, 1989). Here, the moderately-dipping (~45°) reverse fault is exposed as a single
strand that bounds the Linxia Basin (Figure 3.1). Hanging wall rocks are dominantly
middle-late Triassic flysch deposits of the Songpan Ganzi complex and footwall rocks are
primarily Neogene fine-to-coarse grained sandstones (BGRM Gansu, 1989) deposited
within the Linxia Basin as a result of flexural loading (Fang et al., 2003). Subsidence
patterns derived from several measured stratigraphic sections (Fang et al., 2006) indicate
that the basin is flexurally loaded from the south by the West Qinling Fault (Figure 3.1).
Based on detailed magnetostratigraphy, six cycles of fining upward sedimentary
sequences were deposited within the Linxia Basin from at least 29 Ma through 1.7 Ma
(Fang et al., 2006). Poor fossil control at the base of the deepest section prevents tighter

age estimates and earlier sediment deposition may have occurred.

3.3 Illite age analysis

Fault dating is accomplished by measuring **Ar/’Ar of clays in fault gouge. It is
rarely possible to date 100% fault-formed clay as most size fractions of gouge material
include both detrital and authigenic phases and thus comprise a mixture of grain ages
(van der Pluijm et al., 2006). As a result, a mixing line of individual gouge clay size

fractions that contain various percentages of authigenic clay is created to circumvent this
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issue. The percentage of 2M; polytype plotted against apparent argon age for several size
fractions is extrapolated to pure authigenic and pure detrital illite end member ages
assuming that these are the only two K-bearing components within the sample (Figure
3.2). Coarse (0.2 — 2.0 um), medium (0.05 — 0.2 pm), and fine (<0.05 pm) grained clay
sized fractions were prepared for analysis of gouge sampled from the fault zone (Figure
3.1). All fault-rock materials were disaggregated and separated into clay-sized fractions
by first gravitational and centrifugal settling, and then drying under low-heat lamps.
Carbonate minerals, which obscure peaks used for polytype quantification, were removed
with a weak (~1M) acetic acid solution after separating a small aliquot of material for
A1/’ Ar dating.

A possible complication when analyzing fine-grained crystallites is the displacement
of *Ar that results from the nuclear transformation of *’K. This “recoil effect” may lead
to a significant loss of neutron-induced **Ar and thus produce erroneously old ages. To
circumvent this issue, all clay size fractions were packaged into fused silica vials and
sealed prior to irradiation, thereby retaining any *°Ar expelled due to recoil (see van der
Pluijm et al., 2001 for details on this glass encapsulation technique). Irradiation was
performed at the McMaster University Nuclear Reactor (MNR) research facilities and Ar
measurement took place at the University of Michigan. The sample vials were first
broken open and the initial (recoiled) gas was analyzed followed by step-heating under a
defocused laser until sample fusion occurred. Due to Ar recoil (Dong et al., 1995) and
because each size fraction comprises a mixture of grain ages, the resulting age spectra

from this study do not yield clear plateaus and we determine the time of faulting by
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Figure 3.2. a. “Ar/*Ar results for the coarse, medium, and two fine fractions of West Qinling
fault gouge. b. Illite age analysis plot for West Qinling fault rocks. Plot displays percent detrital
(2M1) illite versus the age (expressed as e* — 1). Black symbols represent total gas ages.
Horizontal error bars represent uncertainty on 2M1% (precision 3 — 5%) (Haines and van der
Pluijm, 2008), vertical error on e* — 1 is smaller than the symbol. The function e* — 1, where A
is the decay constant of argon and t is the apparent age, is plotted rather than age because it is
the decay constant of argon that is linearly proportional to the percentage of detrital mica. 0%
2M1 age on the left side of the plot represents the authigenic or fault age, and the 100% 2M1
age on the right side of the plot is interpreted as the detrital age of wall rocks. Grey lines repre-
sent errors derived using a York regression (York, 1968). Shaded boxes represent age of onset
of rapid erosion from (U-Th)/He analysis (Clark et al., 2010) and age of the Songpan Ganzi wall
rocks (BGMR Gansu, 1989; Weislogel, 2008).

50



plotting total gas ages rather than retention ages on the illite-age analysis plot (Figure
3.2).

X-ray diffraction methods were utilized to quantify the percentage of the detrital 2M,
and authigenic 1My illite polytypes for each aliquot. The separate size fractions of clay
were step scanned from 16 — 44 20 with a 0.05° step size at 30 seconds per step using a
Scintag X-ray diffractometer at the Electron Microbeam Analysis Laboratory (EMAL),
University of Michigan. We used an end-packer device similar to that described in Moore
and Reynolds (1989) in order to create near-random powder mounts for scanning, which
is necessary to quantify illite polytypes accurately. The relative intensity of the (002) and
(020) peaks were used to determine whether randomness was achieved (Pevear, 1992).
Illite polytype quantification was accomplished by using the WILDFIRE© program
(Reynolds, 1994; Grathoff and Moore, 1996). Modeling of the data entailed matching
measured x-ray diffusion patterns for each clay size fraction with those generated using
WILDFIRE®© for variable populations of the two illite polytypes. Typical precision for
this method is on the order of 3 — 5 % as determined by comparing synthetic and natural

samples (Haines and van der Pluijm, 2008).

3.4 Results

Four clay size fractions were analyzed in this study. Modeling of XRD powder
patterns for each aliquot indicates 23, 45, and 63% (£ 3%) 2M; for the fine, medium and
coarse clay fractions respectively with an additional fine size fraction at 20% (£ 5%)
(Table 3.1). Corresponding *°Ar/*’Ar total gas ages for these aliquots are 94.1 +0.5,

131.1+ 0.7, 170.6+ 0.5, and 95.2+ 3.2 (Table 3.1). A least squares regression (York,
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Table 3.1. West Qinling fault gouge data results

Clay Size Detrital lllite “Ar/*Ar total gas age “Ar/*Ar retention age
(um) (%) (Myr) (Myr)
fine (a) 2313 94.1+0.5 159.3+0.8
fine (b) 2045 95.2+3.2 172.615.6
medium 4513 131.1+0.7 181.1+0.8
coarse 6313 170.6%0.5 202.4+0.6
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1968) of 2M, percentage versus illite Ar age constrains a 50 £ 8§ Ma (MSWD = 0.6) age
of the authigenic component and a 236 + 7 Ma (MSWD = 0.9) age of the detrital
component (Figure 3.2). The larger errors (< 16%), calculated using a York regression
(York, 1968), mostly reflect the statistics of low sample numbers compared with other
similar fault gouge studies that produce repeat analyses that differ less than 2 Ma (e.g.,
van der Pluijm et al., 2001). Additionally, the range in percentage of illite components
within the individual clay size fractions (20 — 65% 2M, in the West Qinling sample) also
affects the intercept errors.

Several assumptions are inherent in illite age-analysis. First, illite from fault-gouge
samples is derived from a two end-member system (e.g., no late diagenesis) where these
end-member polytypes have known and identifiable x-ray diffraction patterns. Second,
we assume that authigenic illite is primarily a product of faulting at low-temperature
conditions (<200°C) and that the authigenic age represents the time of illite formation
rather than a time when the sample passed through a particular thermal window or
“closure temperature”. In addition, we assume negligible Ar loss from the sample in
nature. We consider our results in the context of these assumptions and demonstrate their
reliability.

The relationship between detrital illite percentage and Ar age is useful in assessing
the two end-member assumption because the percentage of detrital illite should be
linearly related to age for the different clay size populations only if two distinct polytypes
exist within the mixture. If authigenic and/or detrital illite components with variable
argon ages due to post-faulting diagenesis, preservation of multiple phases of detrital

illite from wall rocks, or multiple phases of authigenic illite grown during different
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faulting events are present within a single fault-gouge sample, then a linear relationship
between illite percentage and age is highly unlikely because more than two argon-age end
members comprise the mixture. The age and 2M; percentage of the size fractions from
the West Qinling Fault site are well fit by a linear segment and the 2M,; percentage
correlates positively with grain size and total gas age, both of which support the two-
population illite assumption (Figure 3.2). Separation of finer clay size fractions would
improve the error on the linear regression used to determine the authigenic age, but gouge
from the West Qinling Fault does not contain measurable quantities of super fine clay
(<<0.05 pm). Thus, we were unable to produce a size fraction with less than 20% 2M;. A
coarser size fraction (> 65% 2M,) could also improve intercept constraints, however,
previous studies have shown that fractions greater in size than 2 microns are likely to be
contaminated with other potassium bearing phases (e.g., potassium feldspar) and thus
yield uninterpretable Ar ages (e.g., van der Pluijm et al., 2001).

The growth of authigenic illite is assumed to be lower than the closure temperature to
argon loss and thus, the authigenic illite age represents the time of formation. Here, we
can estimate the temperature conditions of illite growth by comparing the authigentic
illite age to the temperature history of West Qinling hanging wall rocks. One-
dimensional forward thermal models of West Qinling apatite helium data constrain
accelerated hanging wall erosion at 45 or 50 Ma following a period of isothermal holding
since 110 Ma, assuming a layered thermal structure and using the helium closure
temperature from the radiation damage model (RDAMM) kinetics of Flowers et al.
(2009) (Clark et al., 2010). Figure 3.3 shows the time-temperature history of West

Qinling hanging wall rocks given these model results and assuming a geothermal gradient

54



Temperature (°C)

140 A

120 A S
mp. ran 7~ 4110°C
100 - I temp. range //_7:
P ©
80 Z g 0 T
s =1
e & - e
60 1 /4 8 E 1000 ﬁ‘
/ o g p
40 1 {/ (_% 52000 /'/ fault gouge depth
20 '/ / 300050 40 60 80 100 120 140 160
ad 50 J+8 Ma (U-Th)/He Age (Ma)
O L] L} L} L} L} L} L} L} L} L}
0 20 40 60 80 100 120
Time (Ma)

Figure 3.3. Time-temperature plot of West Qinling hanging wall rocks constructed using
preferred one-dimensional forward thermal models of apatite helium age data (Clark et al.,
2010) for a geothermal gradient in basement rocks of 25°C/km (grey dashed line) and
30°C/km (black dashed line). Grey box represents temperature range of authigenic illite
formation estimated by superimposing fault gouge age and errors onto these cooling profiles.
Dots and squares mark cooling rate changes for each profile. Inset shows apatite helium age
data for West Qinling vertical transect. Horizontal error bars represent 2¢ uncertainty on
mean age based on single grain replicate ages and vertical error bars represent uncertainty on
elevation or depth estimate below local geomorphic surface. Preferred one-dimensional
forward thermal models show accelerated hanging wall erosion at 50 Ma (grey dashed line)
or 45 Ma (black dashed line) following a period of isothermal holding since 110 Ma, assum-
ing a layered thermal structure and using the radiation damage model (RDAMM) kinetics of
Flower et al. (2009). Plot adapted from Clark et al., 2010.
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within basement rocks of 25°C/km (grey dashed line Figure 3.3) and 30°C/km (black
dashed line Figure 3.3). Using this thermal history and the fault gouge age and errors, a
temperature of 108 +/- 10 °C is estimated at the time of authigenic clay formation (Figure
3.3). Though it cannot be ruled out that fluid circulation may be responsible for a
different thermal regime within the fault zone, if temperatures were similar within the
fault and the hanging wall rocks, then gouge formation occurred well below the
approximate 250 to 350°C illite closure temperatures estimated using the equations of
Dodson (1973) and recently published muscovite diffusion parameters appropriate for a
cylindrical geometry (E=64 kcal/mol and D=4 cm®/s; Harrison et al., 2009) for effective
diffusion radii of 0.05 to 2 pm and cooling rates ranging from 1 to 10°C/Ma. This
supports the notion that argon age of authigenic illite represents formation and not
subsequent cooling and provides further information on temperature of authigenic illite

growth.

3.5 Discussion

A fault gouge age of 50 + 8 Ma overlaps with accelerated cooling rates of hanging
wall rocks at 45- 50 Ma (Clark et al., 2010) (Figure 3.3). Correlation between these two
datasets indicates that erosion of the hanging wall was commensurate with fault motion.
Neogene-aged footwall rocks within the Linxia Basin in contact with the fault gouge
(Fang et al., 2003; BGRM Gansu, 1989) (Figure 3.1) suggest faulting must have occurred
after the Eocene Epoch, likely during Miocene time. However, correlations of these
sediments to well-dated stratigraphic sections are tenuous. Continued rapid exhumation

of West Qinling hanging wall rocks until at least 12.5 Ma (the age of the deepest sample
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dated) supports long-lived fault activity (Clark et al., 2010). The interpolated Triassic
detrital illite age also agrees well with independent geologic constraints. Footwall
sandstones at the West Qinling site are likely derived from eroded Songpan Ganzi rocks
in the hanging wall and thus the hanging wall and footwall have the same detrital Ar
signature. middle-late Triassic sediments of the Songpan Ganzi complex were reportedly
deposited in a thick package of ten to twenty kilometers (Weislogel, 2008), thick enough
to likely reset muscovite argon ages during burial assuming an average crustal
geothermal gradient. Later burial events significant enough to reset Ar are not known,
however Late Triassic and Jurassic magmatism occurred regionally (Weislogel, 2008).
Therefore, a Triassic detrital age at this site is expected regardless of dominant footwall
or hanging wall contribution to the fault zone.

Despite evidence of a protracted West Qinling Fault history, post-Eocene fault motion
does not appear to be reflected in the fault gouge age. Multiple episodes of fault slip that
generate more than one preserved population of authigenic illite could, in theory, be
difficult to resolve using fault gouge dating of illite polytypes because different
populations of 1My illite are indistinguishable by XRD analysis thus producing a pseudo
end member. In such cases, the 100% authigenic illite would record a mixture of ages
rather than the timing of a discrete fault event. A linear relationship between illite age and
percentage of detrital component, however, requires that illite polytypes are grown in the
same relative proportions during each event for all size fractions. Such conditions are
extremely unlikely given the wide variability in percentage of authigenic and detrital illite
for same size clay fractions in previous fault gouge studies (Haines and van der Pluijm,

2010; Haines and van der Pluijm, 2008; Solum et al., 2005; Solum et al., 2007; van der
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Pluijm et al., 2006). Thus, a well-defined linear relationship between Ar age and the
percentage of illite polytype likely only results from a single fault episode. Based on
West Qinling cooling history, geologic relationships at the fault gouge site, and the linear
trend of the fault gouge data, we conclude that the estimated fault age records the earliest
phase of fault motion, rather than an average of the fault duration or older and younger
pulses that mix to form a 50 Ma age of faulting.
3.5.1 Implicatons for conditions of authigenic illite growth in fault zones

The absence of overprinting by younger fault motion suggests that conditions for illite
growth existed only during a relatively short interval of fault activity (< 10 Myr) at this
sample site compared to the longevity of the West Qinling as an active fault-bounded
range (~50 Myr). High potassium (K) content, large surface area, circulating fluids, and
temperatures below at least 200°C are thought to be generally appropriate for
precipitation of 1My illite (Grathoff et al., 2001; Pevear, 1992). Wall rock material at the
West Qinling site is predominately made up of shales and fine-grained sandstone, which
commonly have high K concentrations conducive to forming clays in fault gouge. The
geologic record suggests no changes in wall rock material occurred as faulting
progressed, so we expect that K was also available during later faulting events. We also
assume that ample surface area for clay growth during later fault episodes existed
because the fault zone would have been developed after faulting initiated during the
Eocene. Fluids likely play an important role in clay gouge formation; however,
determining the presence and temperature of fluids circulating during the time of fault

motion is outside the scope of this study.
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Wall rock temperatures derived from thermochronometry (Clark et al., 2010) suggest
that the purely authigenic illite component formed at ~110°C assuming that the fault and
wall rock experienced similar thermal histories (Figure 3.3). One possible explanation for
the lack of overprinting of younger fault ages at this site is that rocks moved outside the
thermal window suitable for illite formation as thrust faulting and erosion of uplifted
hanging wall rocks progressed. In this interpretation, we expect that the later fault events
are recorded in gouges not yet exhumed to the surface. Unfortunately, suitable exposures
of fault gouge are rare and other sites along the fault, including along more deeply
exhumed segments, have not been identified. A fault gouge study from the Sierra
Mazatan extensional core complex in Mexico (Haines and van der Pluijm, 2008) with
reliable, independent temperature constraints provides an important comparison to our
results. At this site, onset of faulting is deduced from the timing of rapid cooling recorded
by *“Ar/’Ar of K-feldspar from ductile footwall rocks (Wong and Gans, 2003). The
detrital illite age (2M;) matches with the approximate timing of mylonite formation
whereas the authigenic age (1My) is assumed to date the later stages of faulting because it
is only slightly older than an ignimbrite that caps the mylonitic carapace (Haines and van
der Pluijm, 2008). Extrapolating the K-feldspar cooling data through the brittle history of
faulting, the authigenic age and errors can be used to constrain the temperature of 1My
illite formation at this site to between 110° and 160°C (Haines and van der Pluijm, 2008),
which overlaps with the temperature constraint from the West Qinling Fault presented
here.

The authigenic illite formation temperatures estimated are similar to the thermal range

of two of the most commonly applied thermochronometers, apatite helium (~60 — 70 °C)
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and apatite fission track (~110 °C). Thus, comparison among results from these
techniques provides a powerful means to assess upper crustal deformation. Constraints on
the relatively narrow temperatures of authigenic illite growth also permit targeted
sampling of clays in fault gouge that correspond to particular periods of fault motion if
the exhumation history of potential sample sites is reasonably well known.
3.5.2 Implications for tectonic history of the Tibetan Plateau

The depth of exhumation at the West Qinling Fault site (Clark et al., 2010) predicts
that the fault age measured here should correspond with the beginning of rapid cooling of
hanging wall rocks. Indeed, our results show overlap between that the 100% authigenic
illite age and the beginning of accelerated exhumation, which indicates that faulting was
a first-order control on erosion in this part of the orogen. Commonly, the erosional
response to dip-slip fault motion inferred from low-temperature thermochronometry is
employed as a proxy for fault motion (Wagner and Reimer, 1972). Increased fluvial
incision occurs in response to faulting because accelerated rock-uplift rates in the hanging
wall drive increased erosion by steepening river gradients, channel narrowing, or some
combination of both (for the same discharge) (Whipple and Tucker, 1999; Duvall et al.,
2004; Whipple, 2004). However, increased rates of erosion can occur solely with
increased precipitation (Reiners et al., 2003) where relief is pre-existing, thereby
complicating unique correlation of erosion events with faulting episodes. The
combination of fault-gouge age and thermochronometry offers an avenue by which we
can circumvent the ambiguity of precipitation versus fault driven exhumation patterns.

Together, the geologic history of the West Qinling Fault from clay gouge dating and

thermochronometry shows an internally and regionally consistent fault history that begins
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in the Eocene and extends through much of the Miocene. Our result offers definitive
evidence of Eocene-age reverse faulting within the northeastern Tibetan Plateau and,
along with reported ages on thrust faults near the Qaidam Basin (Clark et al., 2010; Yin et
al., 2008), suggests that compressive deformation across a significant portion of the
northern margin of the plateau initiates within 10 myr of the initial collision between
India and Eurasia. Recent model results show that far-field lithospheric deformation due
to the Indian indenter shortly after collision is permissible provided that Asian lithosphere
can be approximated as a thin viscous sheet, given a strong lithosphere north of Tibet and
relatively thick crust in southern Tibet at the onset of plateau building (Dayem et al.,
2009). Alternatively, faulting in northern Tibet signifies the constant stress and strength

conditions that characterize the orogen since collision (Clark, in review).

3.6. Conclusions

Dating of illite from the West Qinling Fault in northern Tibet suggests thrust fault
motion at ~50 Ma. This age fits well with erosional and geologic constraints from
hanging wall rocks and the adjacent foreland basin. Results from this site demonstrate
that the *°Ar/*’Ar age of authigenic illite represents a single interval in West Qinling
Fault history rather than an amalgamation. Our results also show that the fault-formed
illite age does not always represent the latest phase in fault motion (Solum et al., 2005;
Haines and van der Pluijm, 2008) as in this case, we document the initiation of faulting.
Instead, authigenic illite growth appears to be restricted to a thermal window of the fault
history (108 +/- 10 °C), thus the stage of faulting recorded will vary among sample sites

depending, at least in part, on thermal history.

61



3.7 Acknowledgements

We thank Chris Hall for Argon analysis in the University of Michigan’s Radiogenic
Isotope Geochemistry Laboratory; Sam Haines and Jim Hnat for assistance with sample
preparation and data interpretation; Anja Schleicher for guidance with XRD analysis
carried out at the University of Michigan Electron Microbeam Analysis Laboratory; and
Karen Vasko for assistance in the field. We also acknowledge two anonymous reviewers
whose comments improved this manuscript. Support for this research was provided by
the National Science Foundation, Continental Dynamics Program (EAR-0507431), the
National Science Foundation of China (40234040) and by the State Key Laboratory of

Earthquake Dynamics (LED2008AO01).

3.8 References

Bureau Geological and Mineral Resources (BGMR) Gansu Province, 1989, Regional
Geology of Gansu Province, Geological publishing house, Beijing (in Chinese, 690
pp).

Clark, M.K., in review, Does the crust matter? A new view of post-collisional
convergence rates: Nature.

Clark, M.K., Farley, K.A., Zheng, D., Zhicai, W., and Duvall, A.R., 2010, Early
Cenozoic faulting of the northern Tibetan Plateau margin from (U-Th)/He ages: Earth

Planet Sci Lett., v. 296, p. 78-88.

62



Dai, S., Fang, X., Dupont-Nivet, G., Song, S., Gao, J., Krijgsman, W., Langereis, C.,
Zhang, W., 2006, Magnetostratigraphy of Cenozoic sediments from the Xining Basin:
Tectonic Implications for the northeastern Tibetan Plateau: J. Geophys. Res., v. 111,
doi:10.1029/2005JB004187.

Dayem, K.E., Molnar, P., Clark, M.K., and Houseman, G.A., 2009, Far-field lithospheric
deformation in Tibet during continental collision: Tectonics, v. 28,
doi:10.1029/2008TC002344.

Dodson, M.H., 1973, Closure temperature in cooling geochronological and petrological
systems: Contrib. Mineral. Petrol., v. 40, p. 259-274.

Dong, H., Hall, C., Peacor, D., Halliday, A., 1995, Mechanism of argon retention in clays
revealed by laser *’Ar’”Ar dating: Science, v. 267, p. 355-259.

Dupont-Nivet, G., Horton, B.K., Butler, R.F., Wang, J., Zhou, J., and Waanders, G.L.,
2004, Paleogene clockwise tectonic rotation of the Xining-Lanzhou region,
northeastern Tibetan Plateau: J. Geophys. Res., v. 109, doi: 10.1029/2003JB002620.

Duvall, A.R., Kirby, E., and Burbank, D.W., 2004, Tectonic and lithologic controls on
bedrock channel profiles and processes in coastal California: J. Geophys. Res., v.
109, doi: 10.1029/2003JF000086.

England, P. and Houseman, G., 1986, Finite strain calculations of continental
deformation II: comparison with the India-Asia collision zone: J. Geophys. Res., v.
91, p. 3664-3676.

Fang, X., Garzione, C., Van der Voo, R., Rea, D.K., Li, J., and Fan, M., 2003, Flexural
subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia

Basin, China: Earth Planet Sci Lett., v. 210, p. 545-560.

63



Flowers, R.M., Ketcham, R.A., Shuster, D.L., and Farley, K.A., 2009, Apatite (U-Th)/He
thermochronometry using a radiation damage accumulation and annealing model:
Geochemica et Cosmochimica Acta, v. 73, p. 2347-2365.

Grathoff, G., Moore, D., Hay, R., and Wemmer, K., 2001, Origin of illite in the lower
Paleozoic of the Illinois Basin: evidence for brine migration: Geological Society of
America Bulletin, v. 113, p. 1092-1104.

Grathoff, G., and Moore, D., 1996, Clays and Clay Minerals, v. 44, p. 835-842.

Haines, S.H., and van der Pluijm, B.A., 2008, Clay quantification and Ar—Ar dating of
synthetic and natural gouge: Application to the Miocene Sierra Mazatan detachment
fault, Sonora, Mexico: Joural of Structural Geology, v. 30, p. 525-538.

Haines, S.H., and van der Pluijm, B.A., 2010, Dating the detachment fault system of the
Ruby Mountains, Nevada: Significance for the kinematics of low-angle normal faults:
Tectonics, v. 29, doi:10.1029/2009TC002552.

Harrison, T.M., Célérier, J., Aikman, A.B., Hermann, J., and Heizler, M.T., 2009,
Diffusion of **Ar in muscovite: Geochim. Cosmo. Acta., v. 73(4), p. 1039-1051.

Horton, B.K., Dupont-Nivet, G., Zhou, J., Waanders, G.L., Butler, R.F., and Wang, J.,
2004, Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins,
northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results: J.
Geophys. Res., v. 109, doi:10.1029/2003JB002913.

Kong, X., Yin, A., Harrison, T.M., 2007, Evaluating the role of pre-existing weakness
and topographic distributions in the Indo-Asian collision by use of a thin-shell

numerical model: Geology, v. 25, p. 527-530.

64



Lease, R.O., Burbank, D.W., and Gehrels, G.E., 2007, Signatures of mountain building:
detrital zircon U/Pb ages from northeastern Tibet: Geology, v. 35(3), p. 239-242.

Meyer, B., Tapponnier, P., Bourjot, L., Metivier, F., Gaudemer, Y., Peltzer, G. Shunmin,
G., Zhitai, C., 1998, Crustal thickening in Gansu-Qinghai, lithospheric mantle
subduction, and oblique, strike-slip controlled growth of the Tibet plateau:
Geophysics Journal International, v. 135, p. 1-47.

Moore, D.M., and Reynolds, R.C., Jr., 1989, X-ray diffraction and the identification and
analysis of clay minerals: Oxford University Press, New York , 400 pp.

Pevear, D.R., 1992, Proceedings of the 7th International Symposium on Water-Rock
Interaction, 1251 pp.

Reiners, P.W., Ehlers, T.A., Mitchell, S.G., and Montgomery, D.R., 2003, Coupled
spatial variation in precipitation and long term erosion rates across the Washington
Cascades: Nature, v. 426, p. 645-647.

Reynolds R., Jr., 1994, WILDFIRE, A Computer Program for the Calculation of Three-
dimensional Powder X-ray Diffraction Patterns for Mica Polytypes and their
Disordered Variations. Hanover, NH: RC Reynolds, Jr, 8 Brook Rd.

Rowley, D., 1996, Age of initiation of collision between India and Asia: A review of
stratigraphic data: Earth Planet Sci Lett., v. 145, p. 1-13.

Solum, J.G., van der Pluijm, B.A., and Peacor, D.R., 2005, Neocrystallization, fabrics

and age of clay minerals from an exposure of the Moab Fault, Utah: J. Struct. Geol.,
v. 27, p. 1563-1576.
Solum, J., and B. van der Pluijm, 2007, Reconstructing the Snake River/Hoback Canyon

segment of the Wyoming thrust belt through direct dating of fault rocks, in Whence

65



the Mountains? Inquiries into the Evolution of Orogenic Systems: A volume in
honor of Ray Price, Geol. Soc. Amer. Mem. 433, p. 183-196.

Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Jingsui,
Y., 2001. Oblique stepwise rise and growth of the Tibet Plateau: Science, v. 291, p.
1671-1677.

van der Pluijm, B.A., Hall, C.M., Vrolijk, P., Pevear, D.R., and Covey, M., 2001, The

dating of shallow faults in the Earth’s crust: Nature, v. 412, p. 172-174.
van-der-Pluijm, B., Vrolijk, P., Pevear, D., Hall, C., and Solum, J., 2006, Fault dating in
the Canadian Rocky Mountains: Evidence for late Cretaceous and early Eocene
orogenic pulses: Geology, v. 34, p. 837-840.
Velde, B., 1965, Experimental determination of muscovite polymorph stabilities: Amer.
Mineral., v. 50, p. 436-499.
Wagner, G.A., and Reimer, G.M., 1972, Fission track tectonics: The tectonic
interpretation of fission track apatite ages: Earth Planet Sci Lett., v. 14, p. 263-268.
Weislogel, A.L., 2008, Tectonostratigraphic and geochronologic constraints on evolution
of the northeast Paleotethys from the Songpan-Ganzi complex, central China:
Tectonophysics, v. 451, p. 331-345.

Whipple, K.X., 2004, Bedrock rivers and the geomorphology of active orogens: Annual
Review and Earth and Planetary Sciences, v. 32, p. 151-185.

Whipple, K.X., 2009, The influence of climate on tectonic evolution of mountain belts:

Nature Geoscience, v. 2, p. 97-104.

66



Whipple, K.X., and Tucker, G.E., 1999, Dynamics of the stream-power river incision
model: Implications for the height limits of mountain ranges, landscape response
timescales, and research needs: J. Geophys. Res., v. 104, doi:10.1029/1999JB900120.

Willett, S.D., 1999, Orogeny and orography: The effects of erosion on the structure of
mountain belts: J. Geophys. Res., v. 104, doi: 10.1029/1999JB90024S8.

Wong, M.S. and Gans, P.B., 2003, Tectonic implications of early Miocene extensional
unroofing of the Sierra Mazatan metamorphic core complex, Sonora, Mexico:
Geology, v. 31(11), p. 953-956.

Yin, A., Dang, Y., Wang, L., Jiang, W., Chen, X., Gehrels, G.E., and McRivette, M.W.,
2008, Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions
(Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin:
Geological Society of America Bulletin, v. 120, p. 813-846.

York, D., 1968, Least Squares fitting of a straight line with correlated errors: Earth Planet
Sci Lett., v. 5, p. 320-324.

Zheng, D.W., Zhang, P.Z., and Wan, J.L., 2006, Rapid exhumation at similar to 8 Ma on
the Liupan Shan thrust fault from apatite fission-track thermochronology:
Implications for the growth of northeastern Tibet margin: Earth and Plan. Sci. Lett.,

v. 248, p. 198-205.

67



Chapter 1V

Timing of Kunlun and Haiyuan strike-slip faulting, northeastern

margin of the Tibetan Plateau’

Abstract

New low-temperature thermochronometry data and geologic observations date periods
of exhumation associated with transpressional deformation along the Kunlun and
Haiyuan left-lateral faults, two major faults within the northeastern margin of the Tibetan
Plateau. Knowledge of fault slip histories including timing of fault initiation is essential
to understanding the long-term role of major intracontinental strike-slip faults (>1000
km) in Tibet. We provide minimum bounds on fault ages by measure of apatite and
zircon (U-Th)/He and apatite fission-track ages, which record exhumation from ~2-6 km
crustal depths. Results suggest that Kunlun fault motion initiated first along the central
fault segment at approximately 20 Ma and then progressed along strike to the west by 12-
8 Ma and to the east by 8-5 Ma. Thermal histories from ranges associated with the active
Haiyuan fault record primarily late Cretaceous cooling and suggest that exhumation

associated with Cenozoic motion is less than ~2-4 km. Between 15-6 Ma, structures

! Citation: Duvall, A.R., Clark, M.K_, Kirby, E., Farley, K.A., Craddock, W.H., Li, C., Yuan, D.-Y., in
prep, Timing of Kunlun and Haiyuan faulting, northeastern margin of the Tibetan Plateau.
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between the Kunlun and Haiyuan fault became active, from which we infer simultaneous
motion of both the Kunlun and Haiyuan faults that bound an ~250 km wide zone of
associated transpressional shear. Previous studies indicate that faulting along the eastern
tip of the Haiyuan fault began by 10-8 Ma. Thus, collectively, these data suggest that
Haiyuan fault motion propagated to the east in time. Our results suggest that strike-slip
fault initiation in northeastern Tibet occurs earlier than most previous studies suggest,
and that the evolution of this fault system spans more than 15 million years. Moreover,
left-lateral strain appears to dominate the structural landscape of the interior northeastern
plateau margin post-15 Ma. Miocene onset of Kunlun and Haiyuan faulting is also
consistent with the age of initiation reported for other major Tibetan strike-slip faults
(e.g., the Jiali, Karakorum, Xianshuihe, and Ganzi-Yushu faults). We propose that
initiation of these faults may be a part of the evolution of the upper crust within a
continental orogen during the later stages of long-term plate convergence rather than

being tied to a specific event or abrupt change in orogen dynamics.

4.1 Introduction

Deformation within the interior northeastern margin of Tibet is long lived and
comprises compressive as well as lateral strain throughout the Cenozoic era. Strike-slip
faults, including the Kunlun, Haiyuan, and Altyn Tagh, are arguably the most important
active faults as they extend for great lengths (>1000 km), have high geodetic and
Quaternary slip rates (=10 mm/yr along some fault; segments Van der Woerd et al., 1998;
2000; 2002; Zhang et al., 2007), and have produced large-magnitude earthquakes during

historic times (e.g., the 1920 M ~8.6 Ningxia Province earthquake along the Haiyuan

69



fault, the 1997 My, 7.6 Manyi, and 2001 M,, 7.8 Kokaxili ruptures along the Kunlun
fault); yet their long-term geologic history remains unclear. Although modern, Holocene,
and Quaternary slip rates are reasonably well known along these faults (Kidd and Molnar,
1988; Zhang et al., 1991; Gaudemer et al., 1995; Kirby et al., 2007; Van der Woerd et al.,
1998; 2000; 2002; Lasserre et al., 1999, 2002; Zhang et al., 2004; Cowgill, 2007; Cavali¢
et al., 2008; Li et al., 2009; Harkins et al., 2010), robust estimates of the age of left-lateral
strike-slip inception are lacking due to few piercing points in well-dated geologic units
along fault traces.

Utilizing predominately remote-sensing data, Fu and Awata (2007) estimate fault
initiation at 10 = 2 Ma based on ~100 km of maximum displacement of Cretaceous
sedimentary rocks and an average long-term slip rate of ca. 10 mm/yr. The Cretaceous
clastic deposits of northern Tibet are rarely precisely dated and commonly include
multiple intervals of regular repeating lithofacies. Thus, correlating these units on either
side of the fault is inherently unreliable without tracking additional diagnostic marker
horizons. In addition, applying a long-term slip rate of 10 mm/yr universally along the
entire length of the fault is also problematic as slip rates have been shown to decrease
eastward along the fault (Kirby et al., 2007; Harkins et al., 2010). For these reasons, the
estimated 10 Ma onset of strike-slip faulting along the entire fault length is questionable.

To the west, within the Jingyu splay of the Kunlun fault zone (Figure 4.1), Jolivet et
al. (2003) suggest that left-lateral motion initiated much earlier, possibly in late Eocene
times, and occurred either episodically or continuously to the present. They also find
evidence for recent initiation of new strike-slip fault strands within the fault zone and

conclude that potential eastward propagation of the fault with time (Meyer et al., 1998;
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Métivier et al., 1998) must not be a simple process. Geologic mapping and
thermochronometry supports Eocene to Oligocene SW-NE compression in the western
Kunlun Shan (Jolivet et al., 2003). Compression apparently ceased prior to 20 Ma
followed by extension, strike-slip faulting, and volcanism along the Kunlun fault during
the Miocene, which is attributed to the initiation of subduction of the Tarim-Qaidam
lithosphere under the Kunlun Shan (Jolivet et al., 2003). Assuming that compressional
deformation near to the modern trace of the Kunlun fault relates to strike-slip motion,
Jolivet et al. (2003) suggest left-lateral motion began at the onset of Kunlun Shan
compression and topographic relief generation during the FEocene. Linking early
compressional deformation directly with Kunlun strike-slip faulting is challenging within
this region because recent studies show that compression was widespread across the
length and width of the Kunlun Shan (Yin et al., 2007; Wu et al., 2009; Clark et al.,
2010). As a result, it is difficult to decipher the initiation of strike-slip faulting from
compressional events that may have occurred irrespective of left-slip motion.

Fewer constraints on timing of fault initiation exist along the left-lateral Haiyuan fault.
Burchfiel et al. (1989; 1991) suggested a late Pliocene onset age based on estimates of
only 10.5- 15.5 km total offset of clastic sedimentary rocks with poor age constraints. On
the other hand, Gaudemer et al. (1995) concluded an older onset age of 10 Ma from an
estimated 95 km of total displacement and assuming a slip rate of 10 mm/yr. Strike-slip
deformation along the eastern Haiyuan fault tip is kinematically linked with ~ E-W
directed thrusting in the Liupan Shan (Zhang et al., 1991). Based on late-Miocene rapid
cooling within the Nanhua, Yeuliang Shan, and Liupan Shan thrust belts (Zheng et al.,

2006; Lin et al., 2011) and sedimentation patterns in the adjacent Sikouzi basin (W.Wang
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et al., 2011), motion along the eastern-tip of the Haiyuan fault is thought to initiate by 10-
8 Ma. However, earlier fault initiation along more central and western parts of the fault is
possible.

A growing dataset that includes sedimentation rates, low-temperature
thermochronometry, stable isotopes, and paleomagnetic rotations suggests that
deformation within the northern plateau margin began shortly after the initiation of Indo-
Eurasian collision at ~50 Ma (Rowley, 1996; 1998). Deformation at this time involved
mainly contractional structures oriented favorably to accommodate NNE-SSW
convergence (Jolivet et al., 2001; Sobel et al., 2001; Yin et al., 2002; Horton et al., 2004;
Dupont-Nivet et al., 2004; Dai et al., 2006; Yin et al., 2008a; Dayem et al., 2009; Clark et
al., 2010; Duvall et al., 2011; X. Wang et al., 2011; Lin et al., 2011; Huang et al., 2011).
Studies also suggest that faulting continued, and in some cases, initiated during Neogene
time (Fang et al., 2003; 2005; Pares et al., 2003; Zheng et al., 2003; 2006; Yan et al.,
2006; Lease et al., 2007; 2011; Hough et al., 2011; Yuan et al., 2011; Zhang et al., 2011;
W.Wang et al., 2011; X.Wang et al., 2011; Lin et al., 2011; Craddock et al., in review).

At present it is unclear how the Kunlun and Haiyuan faults fit into this emerging
geologic history. These faults represent two of the most important structural features
within the northeastern margin of the Tibetan Plateau. As a result, assessing timing of
their onset is essential to our understanding of the kinematic development of this region
and potentially, the role of major intracontinental strike-slip faults in the long-term
development of this orogenic system. Fault timing is necessary to consider outstanding
questions with regard to lateral strain across Tibet such as whether strike-slip faulting

initiated abruptly or gradually and/or occurred in a spatial progression or randomly. The
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Kunlun and Haiyuan faults lie near to the northern plateau limit, thus timing of their onset
is especially relevant to evaluating such spatial and temporal patterns.

In this study, we provide minimum bounds on the age of initiation of left-lateral
Kunlun and Haiyuan fault motion by dating periods of exhumation associated with
transpressional deformation along both the main fault strands and related structures
(Figures 4.1-4.3). Exhumation histories are described from new low-temperature
thermochronometry results including apatite and zircon helium and apatite fission-track,
as well as published “’Ar/*’Ar data (Mock et al., 1999). We target multiple sites along

each fault in order to consider potential fault propagation.

4.2 Geologic setting

The left-lateral Kunlun fault extends roughly E-W for ~1500 km marking the
boundary between the low-relief Tibetan Plateau highland to the south and basins and
ranges of the plateau margin to the north (Figure 4.1). The Qaidam basin, which is
located ~ 75 km north of the Kunlun fault (Figure 4.1), contains ~ 15 km of Cenozoic
sediment (Bally et al., 1986; Zhou et al., 2006; Yin et al., 2008a). Internal deformation
within this basin is documented (Yin et al., 2008b), although in general, it is thought to be
underlain by strong basement (Zhou et al., 2006; Zhu et al., 1995) and remains a
relatively intact depocenter (Figure 4.1). To the east and in sharp contrast, the
northeastern plateau margin is characterized by several small to intermediate size rhomb-
shaped terrestrial basins (e.g., Linxia, Xining, Xunhua, Guide, and Gonghe basins)
separated from one another by intervening N-S and E-W oriented mountain ranges above

reverse faults (Figure 4.1). Sediments within these basins include alternating
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conglomerates, sandstones, and finer-grained lake deposits that are mainly Cenozoic in
age, although Cretaceous sediment is exposed in several localities throughout this region
(Pan et al., 2004). Based on sedimentology, stable isotopes, structural arguments, and
paleomagnetic data, it has been suggested that these individual basins were linked in a
larger basin system (Zhai and Cai, 1984; Horton et al., 2004) that then became isolated
from one another by deformation and topographic development as recently as the middle-
to-late Miocene (Zheng et al., 2003; Fang et al., 2005; Yan et al., 2006; Lease et al.,
2007; Hough et al., 2011; Lease et al., 2011; Zhang et al., 2011; Craddock et al., in
review). To the northeast, the Haiyuan left-lateral strike-slip fault, which is oriented
parallel to the Kunlun fault and also of great length (~1000 km), marks the boundary
between the basins and ranges of the greater Linxia area and a vast region of Cenozoic
folding, thrust, and strike-slip faulting to the north and west known as the Qilian Shan

(Figure 4.1).

4.3 Approach

Due to a lack of precisely-measured offsets of rocks of well-known and variable ages
for most of the length of the Kunlun and Haiyuan faults, we rely on indirect methods to
estimate the timing of fault motion. Exhumation of deep rocks is more commonly
associated with dip-slip rather than purely strike-slip fault motion. However, both uplift
and subsidence often occur along major strike-slip faults due to fault geometry (i.e.
restraining and releasing bends and -stepovers” from one fault strand to another), the
distribution of slip rates along the fault trace (Bilham and King, 1989), and secondary

compressional and extensional structures related to distributed strain around the main
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fault strand. Here we target regions of topographic growth related to transpressional
deformation and assume that local erosion rates increase in response to associated
changes in base level. In order to ascertain the timing of increased erosion rate and by
proxy, the age of faulting, we use low-temperature thermochronometry, which provides a
measure of how fast rocks move through the shallow crust from effective closure depths
to the surface (Reiners and Ehlers, 2005 and references therein). Some delay between the
initiation of faulting and the creation of topography could occur depending on fault-slip
rates and rock strength. Lags in the erosional response to fault-induced base-level change
are also possible in cases with less-erosive climates and/or erosion-resistant rocks. As a
result, we consider our estimates minimum ages of fault onset.

We utilize apatite and zircon (U-Th)/He and apatite fission-track thermochronometry,
which have relatively low effective closure and annealing temperatures (~55 — 75°C,
~200°C, and ~100-120°C, respectively depending on grain size, cooling rate, and
effective uranium concentration (Gleadow and Duddy, 1981; Wolf et al., 1996; Farley,
2000; Reiners et al., 2002; Ketcham et al., 2007; Flowers et al., 2009)). Given average
continental geothermal gradients, cooling ages of these systems typically record
exhumation from ~2-6 km depths, thus are useful in studying upper-crustal processes
(Zeitler et al., 1987; Wolf et al., 1996; 1998; Ehlers and Farley, 2003). In cases where
rocks cool as a consequence of erosional exhumation, thermochronometry provides a
means to assess timing and rates of denudation events. Thermochronometry has been
utilized successfully to assess the timing of fault initiation (e.g., Wagner and Reimer,

1972) as denudation rates commonly increase in response to relief generation by faulting.
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Our approach entails two different sampling strategies depending on site-specifics. In
locations with high relief and well-exposed apatite- and zircon-bearing rocks, samples
were collected along steep vertical transects. Age-elevation data along such transects
reveals rates of cooling and potentially, changes in cooling rate through time. In ideal
circumstances, ages correlate with elevation such that higher-elevation samples are older
and variable and lower-elevation samples are younger and relatively invariant. Such a
marked transition from a shallower to steeper gradient along the profile (i.e. -break in
slope” e.g., Fitzgerald and Gleadow, 1990) is interpreted to reflect an increase in
denudation rate, with older ages representing pre-faulting slow erosion or stasis in the
partial retention zone (PRZ) and younger ages defining a rapid-cooling interval. Regions
of low relief, poor accessibility to higher altitudes, limited rock exposure, and/or lack of
apatite or zircon-bearing rocks at variable elevations, required a different approach. In
these cases, multiple thermochronometers with different closure temperatures were
employed on a single sample to reveal the site’s cooling history. This approach is
effective as long as denudation sufficiently exposes reset ages for multiple

thermochronometry systems.

4.4 Sample Site Descriptions and Results

We targeted several sites (Figure 4.1-4.2; Table 4.1) along both the Kunlun and
Haiyuan faults as well as within an area north of the Kunlun fault linked kinematically to
strike-slip motion (Duvall and Clark, 2010), referred to informally as the Dulan-Chanka
Highland (Figure 4.3). Multiple sites are essential to assess fault propagation, both along

strike of the faults individually and more broadly across northeastern Tibet by comparing
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to one another. Rocks sampled for thermochonometry in all locations were crushed and
sieved using standard crushing techniques. Apatite and zircon separates were derived by
exploiting density and magnetic susceptibility differences. Individual apatite and zircon
grains were handpicked at the University of Michigan and Caltech (respectively) and
analyzed for (U-Th)/He ages at the Noble Gas Laboratory at Caltech using standard
procedures (Farley and Stockli, 2002; Reiners et al., 2002). All apatite fission-track
analyses were performed by Apatite to Zircon, Inc. and ages were determined using a
modified decay equation that includes calibration for the LA-ICP-MS using the Durango
fluorapatite standard (fission-track age of 30.6 Ma) (Donelick et al., 2005).

We present new apatite (U-Th)/He, apatite fission track, and zircon (U-Th)/He ages as
well as one-dimensional modeled thermal histories found using HeFTy v. 1.6.7.43
software (Ketcham, 2005). Typically 4 single-grain analyses were used to calculate mean
helium ages and standard error (26) and 40 individual grains were measured to estimate a
pooled fission-track age and 26 analytical error (Appendix Table 4.1). Grains that yielded
helium upon a second reheating step (—re-extract”) following the initial laser heating and
degassing of individual apatite grains were excluded on the basis of likely inclusions of a
different radiogenic phase. In addition to low-temperature thermochronometry results, we
also summarize geological and geomorphic observations from within the Dulan-Chaka
Highland.

In cases with multiple thermochronometers from a single sample site, simple Monte
Carlo inversion was utilized to determine viable thermal histories. Models were run until
100 acceptable (0.05) or good (0.5) randomly-generated thermal histories were found

(worse-fit probability designation for the thermal history envelopes calculated with a
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Kuiper’s statistical test, Ketcham, 2005). Apatite fission-track densities and c-axis
projected track length distributions were modeled using a modification of the fanning
Arrhenius model (Ketcham et al., 2007; 2009), and apatite and zircon helium data were
modeled with diffusion properties of Flowers et al. (2009) and Reiners et al. (2004),
respectively. Thermal models were further constrained by surface temperatures of ~10°C
and, in the case of the KFW samples, high-temperature *’Ar/*’Ar thermochronometry
(Mock et al., 1999). Sub-segment spacing of cooling paths was allowed to vary randomly
and monotonic cooling was not assumed. In cases with elevation transects, we utilize the
forward-modeling function in HeFTy to compare modeled helium ages to our observed
data. Reported model results correspond with simple tectonic/geomorphic scenarios most
consistent with the observed age/elevation data. We recognize that more complicated

scenarios not considered may also satisfy the data.

Kunlun Fault (KF)

We sampled Mesozoic rocks at three separate locations over a distance of ~ 750 km
along the Kunlun fault (Figure 4.1; Table 4.1). The western segment site (KFW), which is
located south and west of Golmud (Figure 4.2), is also one of the sample localities in
Mock et al.’s (1999) *°Ar-*’Ar thermochronology study (Figure 4.1). Two Triassic
granitoid samples from this location (KFW1 and KFW2, Figure 4.2a), were analyzed for
zircon and apatite helium. Approximately 500 km along strike to the east, the central
segment sites (KFC) are located near to the Kunlun fault restraining bend resulting in the
Anyemaqgen massif (Figure 4.2b). Within this region of transpression, we collected two

samples from approximately 3900 m elevation - fine-grained sandstone of the Songpan

83



Garze flysch deposit (KFC3) and diorite (KFC4). Farthest to the east (KFE) within the
greater Anyemaqen Shan region of high topography (Kirby et al., 2007; Harkins et al.,
2007), Triassic granitoid rocks were collected along an elevation transect spanning 800 m
of relief (KFC 5-9; Figure 4.1-4.2¢). Samples from this transect were analyzed for apatite
helium and fission track.
Low-Temperature Thermochronometry Results

Samples from the western Kunlun fault segment yield zircon and apatite helium ages
of 28.62+0.12 Ma and 17.45+1.97 for KFW1 and 7.78+2.22 Ma and 7.52+0.74 Ma for
KFW2 (Figure 4.2a, Table 4.2). Overlapping KFW2 apatite and zircon helium ages
indicates rapid cooling during this time interval. Biotite and K feldspar *°Ar/*°Ar data and
modeling results from an earlier study of samples from this same region (Figure 4.1-4.2;
Mock et al., 1999) indicate temperatures between 160°C and 400°C from 140 to 30 Ma
followed by a cooling event (9-15°C/m.y.) beginning around 30 Ma. Here we model
cooling histories for each of the individual KFW samples using our helium ages as well
as “"Ar/°Ar results as higher-temperature constraints. Models show that sample KFW 1
underwent ~ 170°C of cooling to the surface starting between 30 and 25 Ma and lasting
until 20-15 Ma, following a less well-constrained Cretaceous interval of slower cooling
or isothermal holding (Figure 4.4, Table 4.3). This thermal history yields cooling rates of
~11-34°C/m.y. and apparent erosion rates of ~ 0.4-1.4 mm/yr (assuming a range in
average geothermal gradient of 25-30°C/km in this and all following cases). In contrast,
KFW2 model results suggest a younger cooling interval beginning at ~ 10 Ma lasting

through ~ 5 Ma following slow cooling or isothermal holding from at least Cretaceous
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Figure 4.4a-b. Thermochronometry results for the Kunlun Fault. Time (Ma) versus tempera-
ture (°C) plots for samples along the western fault segment (a) and the central fault segment (b).
Swaths represent randomly generated cooling paths that fit the data to an acceptable (dark gray)
and good (light gray) standard (Ketcham, 2005; see text for details). All models constrained by
at least two thermochronometric ages (shown in parentheses for each sample). AHe (black text),
AFT (bold italic black text), and ZHe (light gray). Biotite and potassium feldspar 40Ar/39Ar
data (Mock et al., 1999) provide additional higher-temperature constraints for samples 1 and 2

(KFW).
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Figure 4.4c. Thermochronometry results for the Kunlun Fault. Inverse and forward thermal-

modeling accomplished using HeFTy v. 1.6.7 software. Time (Ma) versus temperature (°C) plots
for samples along the western fault segment. Top panel shows age/elevation plot of hte eastern
Kulun Fault vertical transect (#5-9). Horizontal error bars of helium ages (black circles) represent
2c uncertainty of mean age based on single-grain replicate ages from each sample and of fission-

track ages (gray diamonds) represent 2¢ uncertainty of pooled age based on analytical error.
Vertical error bars represent uncertainty on elevation (Table 4.2; Appendix Table A4.1). Inset
shows the entire suite of helium and fission-track data. Main plot shows a subset of reliable ages
and time-temperature forward model results (solid and dashed lines). Helium samples with poor
reproducability and ages older than the fission-track age from the same sample (KFES, 7-9) are
not included. Bottom four panels show results of HeFTy thermal modeling for samples KFE6-9.
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time (Figure 4.4; Table 4.3). Approximately 185°C of cooling during this interval yields
rates of ~ 37°C/m.y. and apparent erosion rates of 1.2-1.5 mm/yr.

Results from sample KFC3 from the central segment of the Kunlun fault show a mean
zircon helium age of 59.65+10.07 Ma and an apatite fission-track pooled age of 12.9+1.4
Ma (Table 4.2). Apatite of the appropriate size and quality for helium analysis was not
available from this sample. Sample KFC4, which is located ~ 40 km to east of KFC3
along strike (Figure 4.2b), has a zircon helium age of 132+3.6 Ma, an apatite fission-track
pooled age of 19.1+1.2, and an apatite helium age of 20+0.93 Ma (Table 4.2).
Overlapping KFC4 apatite helium and fission-track ages indicates rapid cooling during
this time interval. Model results for sample KFC3 show ~110°C of cooling beginning
between 15 and 12 Ma and slowing by ~5 Ma (Figure 4.4, Table 4.3), which equates to a
cooling rate of ~11°C/m.y. and apparent erosion rates of ~0.37-0.44 mm/yr. In addition,
model results for this sample also suggest a possible earlier interval of increased cooling
beginning in the Eocene, however the rate, magnitude, and onset of such an event is
poorly constrained. Model results suggest sample KFC4 underwent ~110°C of cooling
beginning at ~20 Ma and lasting through the present, which equates to a cooling rate of
5°C/m.y. and apparent erosion rates of ~0.17-0.2 mm/yr. This interval of increased
cooling followed a period of slower cooling or isothermal holding from at least 70 Ma
(Figure 4.4; Table 4.3).

The KFE elevation transect generally shows a positive age/depth gradient for both the
apatite helium (black circles) and apatite fission-track (gray diamonds) data, with a steep
gradient in fission-track ages between 10 and 5 Ma suggesting an interval of rapid

cooling during this time (Figure 4.4 inset). However, most of the apatite helium are older
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than the apatite fission-track ages (Table 4.2), which is unexpected given the difference
in closure temperatures between the two systems (~55-70°C and ~100-110°C
respectively). Large errors in apatite helium age due to poor replicate reproducibility as
well as the occurrence of anomalous ages (a replicate with age greater than 30% different
from the other three) among three of the five apatite helium samples (Appendix Table
4.1) may help explain the apparent discrepancy between the helium and fission-track
ages. Scatter of sample replicate ages that exceeds analytical uncertainty possibly relates
to inclusions of a non-apatite uranium-bearing phase or zonation of U and Th (Farley et
al., 2011).

We compare the observed data to calculated model helium ages along a depth section
based on prescribed cooling histories using a one-dimensional thermal model (Clark et
al., 2010; Lease et al., 2011). Except for sample KFE6, we exclude the helium ages from
this comparison because of poor reproducibility and incompatible ages. Using HeFTy,
monotonic t-T histories were derived given a range of rapid-cooling onset times, cooling
rates, and changes in rates through time. Temperature histories prior to the onset of a
prescribed erosion rate are modeled as isothermal holding, which is indistinguishable
from slow erosion or slow deposition within error of the age measurements. A range in
geothermal gradient from 25-30°C/km and removal of 0.5 to 3 km of overburden
provided fits most consistent with the observed data. A geotherm approximated as
constant is likely appropriate in this setting because a combination of maximum possible
erosion rates (<1.5 mm/yr) and cooling duration (<10 m.y.) yields <25% increase in

thermal gradient (Ehlers, 2005).
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TABLE 4.3: Thermochronometry results summary

Location Sample(s)  Onset of increased cooling’
Kunlun Fault West KFW1 30-25 Ma
KFW?2 12-8 Ma
Kunlun Fault Central KFC3 20 Ma
KFC4 15-12 Ma
Kunlun Fault East KFE5-9 8-5 Ma
Haiyuan Fault Central HFC10 -
Haiyuan Fault East HFE11 -
Dulan-Chaka Highland  DCH12-30 17-12 Ma

'During Cenozoic era
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Thermal model results that reasonably describe the suite of reliable ages suggest ~100
-170°C of cooling (Figure 4.4c¢ solid and dashed lines respectively) related to erosion of
hanging wall rocks starting at 8-5 Ma after a prolonged period of isothermal holding
since the Cretaceous. This range in cooling histories equates to an interval of increased
cooling of 13-34°C/m.y. and apparent erosion rates of 0.4-1.4 mm/yr. In addition, we
inversely modeled fission-track age and length data for each sample individually using
HeFTy (Figure 4.4c lower panels). The modeled thermal histories for samples KFE9, 8,
and 7 suggest cooling ~100-150°C beginning at 8-5 Ma (Figure 4.4c lower panels),
which is consistent with the preferred forward-modeled cooling histories. Inverse model
results for sample KFE6 suggest a thermal history with increased cooling beginning
earlier at ~20-15 Ma. It is unclear why this sample would have experienced a different
thermal history than the others. One possibility is that unmapped structural complexity
exists along the elevation profile. No acceptable paths were found for KFES, the highest
sample on the elevation transect, potentially due to incompatibility between the fission

track age and track-length results for this sample.

Haiyuan Fault (HF)

To the north, the Haiyuan fault dissects a highly arid, loess-draped landscape. Sample-
site options are more limited than along the Kunlun fault due to generally less structural
relief along the fault (Figure 4.1) and fewer granitoid rocks in close fault proximity
(Figure 4.2). We collected Mesozoic granitoid rocks at two localities along the Haiyuan
fault (HFC10, HFE11; Figure 4.1) for apatite helium and fission-track analysis. The HFC

sample site sits at an elevation of ~ 2800 m along the central fault segment and the HFE

92



sample site is located 175 km east along strike at an elevation of ~ 2300 m within the
eastern fault segment (Figure 4.2d-e).
Low-Temperature Thermochronometry Results

Sample HFC10 from the central Haiyuan fault segment yields an apatite fission-track
pooled age of 83.9+3.3 Ma and an apatite helium age of 72.77+3.29 Ma (Table 4.2).
Model results for this sample indicate that HFC10 underwent ~10°C of cooling from ~85
Ma to ~75 Ma and then 65°C of faster cooling to the surface by ~70 Ma (Figure 4.5a;
Table 4.3). This model result yields a cooling rate of 13°C/m.y. and apparent erosion
rates of ~0.4-0.5 mm/yr. Because this sample appears to have resided at or close to the
surface since the late Cretaceous and was not reset during the Cenozoic, it is not useful in
assessing Cenozoic Haiyuan fault activity, though we can conclude that it was not buried
significantly (>2 km) post-Cretaceous time.

Sample HFC11 from the eastern Haiyuan fault segment yields an apatite fission-track
pooled age of 132.7+7.2 and an apatite helium age of 29.06+9.72 Ma (Table 4.2). Late
Cenozoic cooling events associated with the possible onset of Haiyuan faulting are poorly
constrained by this sample. Overall, model cooling pathways record slow cooling from
the Cretaceous through present, with a possible rate increase (albeit to still low rates) at
~90 Ma (Figure 4.5b). This cooling history suggests that the sample experienced ~60°C
of cooling in 90 m.y., which equates to a cooling rate of 0.66°C/m.y. and apparent erosion
rates of ~0.02-0.03 mm/yr. However, alternative cooling scenarios with short intervals of
rapid cooling, including during the middle-to-late Miocene or early Pliocene, are

permissible but not required (Figure 4.5b).
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Figure 4.5. Thermochronometry results for the Haiyuan Fault. Two panels show results of
thermal-history modeling using HeFTy software for the Haiyuan Fault central (#10) and east
(#11) locations. Swaths of time (Ma) versus temperature (°C) represent randomly generated
cooling paths that fit the data to an acceptable (dark gray) and good (light gray) standard
(Ketcham, 2005; see text for details). Models from both sites constrained by AHe (black text)
and AFT (bold italic black text).

94



Dulan Chaka Highland (DCH)

The Dulan-Chaka Highland (DCH), a region underlain by ~ 60 km thick crust (Meyer
et al., 1998) and with an average elevation of ~ 4400 m, stands as a topographic divide
between the Qaidam basin to the west and the rhomb shaped basins of the greater-Linxia
region to the east (Figure 4.1). The DCH is locally bound by the left-lateral Kunlun fault
to the south and the right-lateral Elashan fault (also known as Wenquan fault) to the east
(Figure 4.1). En-echelon reverse faults within the DCH region are thought to relate to
right-lateral Elashan fault activity (Wang and Burchfiel, 2004), though some of the
deformation within the southern DCH may also relate more directly to Kunlun fault
motion. Based on age and offset estimates of terrace risers displaced by the Elashan fault,
Yuan et al. (2011) determine average slip rates of 1.1+0.3 mm/yr and a fault initiation
age of 9£3 Ma using 9 — 12 km of measured offset within Triassic granitoid rocks and
assuming constant long-term slip rates during late Cenozoic time. The parallel Elashan
and Riyueshan faults (Figure 4.1) are thought to be antithetic right-lateral structures that
accommodate shear in between the Kunlun and Haiyuan faults through counterclockwise
block rotation in a bookshelf or domino style (Duvall and Clark, 2010). Thus, estimating
the timing of deformation and range growth within the DCH provides an important
constraint on the timing of concurrent Kunlun and Haiyuan fault activity.

Three vertical transects spanning ~700 m of relief over minimal horizontal distance (<
2km) were collected within hanging walls of steeply-dipping reverse faults (within the
DCH (DCHVTI1-VT3, Figure 4.2f). Granitoid rocks of the Triassic Kunlun Arc (Pan et
al., 2004; Pullen et al., 2008) comprise all samples from this region. In the absence of

structural or geomorphic horizons in the vicinity of sample transects, we assume vertical
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hanging wall movement with little to no internal deformation and interpret elevation as a
proxy for depth. We also collected a horizontal transect comprising individual samples
collected at constant elevation (~4100 m: DCH27-30) away from mapped faults and
mountain ranges in order to determine if increases in exhumation relate directly to fault
motion.

Geological field investigations within several localities (Figure 4.6), mainly in the
northern and central parts of the DCH, provide a regional structural context. We targeted
accessible areas indicated by previous studies to have preserved Tertiary sediments
(QBGMR, 1991; Wang and Burchfiel, 2004), though rock exposure turned out to be poor
or nonexistent at sites 3,5,6, and 7 (Figure 4.3).

Geologic and geomorphic observations

The DCH consists of two topographically distinct regions, both with high average
elevation (~4400 m) but with variable relief. The northern region is characterized by en-
echelon NW trending mountain ranges above southeast-vergent reverse faults and
intervening narrow, high-elevation basins, which contain terrestrial sediments overlain by
Quaternary deposits (QBGMR, 1991). Basin strata can be divided generally into two
lithofacies: orange-to-pink conglomerates with mudstone and sandstone interbeds and
interbedded gray-to-orange mudstones and fine-grained sandstones. The majority of well-
exposed basin deposits in the DCH are classified as gravel (site 1) or pebble-to-cobble
(sites 2 and 4) polymict orthoconglomerates (Figure 4.6) interpreted to be alluvial-fan
deposits in origin. These conglomerates are well-cemented with muddy matrices, variable
clast composition (Figure 4.7) and have no obvious imbrications. The degree of grading

within beds ranges from poor (site 2 and 4) to moderate (site 1). The mudstone and fine-
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Figure 4.6. Digital images showing the geology and landscape of field localities
visited within the Dulan-Chaka Highland.
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grained sandstones are poorly exposed or mantled by rust-colored soil (Figure 4.6b and
d). Finer-grained units likely were deposited in fluvial, flood-plain, or lake
paleoenvironments. The clastic deposits of the DCH are thought to be late Miocene to
Pliocene in age based on regional lithostratigraphic correlation to rocks within the
Qaidam basin (QBGMR, 1991; Wang and Burchfiel, 2004). Poor exposure and/or
preservation and the coarse nature of rocks commonly found in outcrop preclude better
age constraints from magnetostratigraphy.

Ranges are of modest relief (< 800 m) and composed of high-grade metamorphic
rocks of early Proterozoic age and sedimentary and low-grade metamorphic rocks of
Paleozoic and Triassic age which are intruded by numerous granitoid bodies of large
extent (QBGMR, 1991) (Figure 4.3). In general, the southern flanks of ranges are bound
by steep, northeast-dipping reverse faults that place Paleozoic and Mesozoic basement
over Tertiary sedimentary rocks. Range-bounding fault surfaces are not exposed but we
infer steep dips (50-70°) from the linear morphology of mountain fronts and the dip of
minor outcrop-scale faults within Triassic rocks proximal to the range front. Fault offsets
and sub-surface fault geometries were not directly constrained. Basin deposits are
generally gently to moderately deformed striking roughly parallel to range fronts and
dipping 10° — 30° to the NE. Dips of beds in the footwall at locations 1 (Figure 4.6a) and
2 appear to shallow upsection (—fanning dips”), which suggests that sediment was
deposited during progressive fault motion. Syntectonic deposition is also suggested by
proximity of Tertiary deposits to fault-bounded ranges (Figure 4.3). Moreover, the large
size and angular nature of the clasts supports a relatively local origin. However, it is

notable that the composition of clasts in outcrop (counted and described at sites 2 and 4,
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see Figure 4.3 for locations) differs significantly from that of the local streams draining
the surrounding bedrock, especially with regard to granitoid percentage (Figure 4.7). As a
result, we propose that conglomerate clasts represent geologic unit(s) eroded from
overtop the currently exposed granitoids as faulting, range growth, and erosion
progressed.

In contrast to the topography and geology of the north, the southern DCH is devoid of
distinct ranges and basins and is characterized primarily by a low-relief landscape (Figure
4.8). Although patchy exposures of mudstones, sandstones, and conglomerates are also
preserved in this region, its plateau-like character cannot be accounted for by simple
infilling of basin sediments. Instead, exposed Triassic-aged units comprise the majority
of this region (QBGMR, 1991; Figure 4.2f-3) with well-preserved erosion surfaces
beveled across the bedrock (Figure 4.6f).

Low-Temperature thermochronometry results

Two of the three DCH elevation transects (VT1 and VT2; Figure 4.3) show regular
positive age/depth gradients (Figure 4.9; Table 4.2) from which we interpret monotonic
cooling histories. Age/elevation data for VT1 and VT2 are defined by a gentle gradient
from ~ 45 to 15 Ma, which is indicative of slow exhumation or stasis in the PRZ for
helium diffusion during this interval (Figure 4.9a,b). In contrast, a steeper trend in age
data beginning at ~15 Ma indicates an interval of increased cooling during this time
(Figure 4.9a,b).

Age data from VT3 do not show simple positive correlation with elevation (Figure
4.9¢). Two replicates from this transect had to be excluded due to helium re-extracts and

in general, samples along this transect had poorer-than-average reproducibility (Appendix
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DCH field locality 2
Clastcomposition: Clastcomposition:
modern stream

Tertiary conglomerate

DCH field locality 4
Clastcomposition: Clastcomposition:
modern stream Tertiary conglomerate

Figure 4.7. Pie charts demonstrating differences in clast composition between modern stream
and local outcrop of Tertiary conglomerate from two locations with the Dulan-Chaka Highland
(field sites 2 and 4). See Figure 4.3 for locations.
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Figure 4.8. Map of the Dulan-Chaka Highland. M ountain ranges outlined in blue,
Tertiary deposits in yellow-hash pattern. Fluvial network in blue dashed lines with sections of
rivers considered drainage anomalies (watergaps and barbed tributaries) in red. Thick black
dashed line shows drainage divide. Topographic profiles demonstrate the differences in topogra-
phy across the Dulan-Chaka Highland region. Profile A shows the range-and-basin topography
of the northern DCH and profile B demonstrates the more plateau-like nature of the southern
DCH. Inset shows an image of a watergap taken from ~4200 m elevation along the VT2 vertical
transect, view to the southwest.
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Table 4.1), which makes data interpretation more difficult. Additionally, due to poor rock
exposure (Figure 4.3), we do not have good structural control for this locality. Thus, it is
possible that this region is more structurally complex than the others, which also may
explain the more complicated age-elevation relationship. However, data from VT3 are
consistent with VT1 and VT2 in that an increase in rate at ~15 Ma is permissible.

Data results from the horizontal transect show variable ages ranging from ~85 — 27
Ma. We find no obvious relationship between age and distance or modern topography;
however, these data do indicate that rapid exhumation along all of the vertically-sampled
ranges (VT1-3) relates to local faulting and not a broader exhumation process. Ages are
older than predicted for an elevation of 4100 m (gray band, Figure 4.9d) assuming
cooling histories similar to those of the vertical profiles.

Forward model results

Using the same approach as with the KFE vertical transect, we compare the observed
data along the DCH vertical transects to calculated model helium ages along a depth
section based on prescribed cooling histories. As before, we used a range of rapid-cooling
onset times, cooling rates, and changes in rates through time to derive monotonic t-T
histories. Cooling ages were calculated from t-T histories in HeFTy using the RDAMM
apatite (U-Th)/He model (Flowers et al., 2009) and typical concentrations of U, Th, Sm,
and grain radius dimensions for DCH apatites (21 ppm, 44 ppm, 210 ppm, 49um
respectively; Appendix Table 4.1). In all cases, geothermal gradients of 25-30°C/km and
removal of 2 km of overburden provided fits most consistent with the observed data. A

geotherm approximated as constant is likely appropriate in this setting because a
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Figure 4.9. Helium age data for Dulan-Chaka Highland (see Figures 4.1-4.3 for locations). Horizontal
error bars represent 26 uncertainty of mean age based on single-grain replicate ages from each sample
and vertical error bars represent uncertainty on elevation (Table 4.2; Appendix Table A4.1). For compari-
son with observed data, we predicted cooling ages given various montonic time-temperature histories
using a range of rapid-cooling onset times, cooling rates, and changes in rates through time using HeFTy
sofware (see text for details). Lines show preferred model results. Timing of change to a higher cooling
rate is indicated. (a) age-elevation data, DCH vertical transect 1. (b) age-elevation data, DCH vertical
transect 2. Cooling rates must slow before the present in order to fit the data. Cooling rates decrease after
10 Ma for the 13, 15, and 17 Ma curves. The black dashed curve (15-8 Ma) represents a cooling history
with rapid cooling beginning at 15 Ma and abruptly terminating at 8§ ma. Abrupt and graduate decreases
fit the observed data equally well. (c) age-elevation data, DCH vertical transect 3. Cooling rate curves
from VT1 and VT2 are superimposed onto the profile for comparison. We did not model VT3 data
separately due to complexity of age/elevation relationship. First four curves are from VT2 and last curve
(solid gray) is from VTI. (d) DCH horizontal transect. Age data plotted against projected distance (from
location of DCH VT1, Figure 4.2f). Gray band represents the range in apatite-helium age predicted for an
elevation of ~4100 m if samples along this horizontal transect experienced the same cooling history as
those within the hanging wall of mapped reverse faults (a-c).
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combination of maximum possible erosion rates (<1 mm/yr) and cooling duration (<15
m.y.) yields <20% increase in thermal gradient (Ehlers, 2005).

Reported model results (solid and dashed lines, Figure 4.9a-c) correspond with simple
montonic cooling histories most consistent with the observed age/elevation data. Results
for VT1 (solid lines Figure 4.9a) suggest ~55°C of cooling related to erosion of hanging
wall rocks starting at 15-12 Ma after a prolonged period of isothermal holding since the
early Cretaceous. Earlier (17 Ma) or later (10 Ma) onsets of cooling are also possible, but
do not fit the majority of the data within error (dashed lines Figure 4.9a). Our preferred
models suggest increased cooling at a rate of 3.7-4.6°C/my from 15-12 Ma to the present
representing erosion rates of 0.1-0.2 mm/yr. Results for VT2 (all curves Figure 4.9b)
suggest ~10°C of cooling starting at 45 Ma following a period of isothermal holding from
early Cretaceous followed by ~55°C of cooling starting at 17-13 Ma. Unlike VT1
models, VT2 data require either an abrupt or gradual slowdown at 10-8 Ma. Preferred
models suggest a modest cooling rate (0.3-0.4°C/my) between 45 and 17-13 Ma, which
represents an erosion rate of ~0.01 mm/yr, followed by more rapid cooling corresponding
to an erosion rate up to 0.5 mm/yr depending on whether rates abruptly decrease to zero
at 8 Ma (dashed black line Figure 4.9b) or slow down gradually starting at 10-8 Ma (solid
black line, dashed gray lines Figure 4.9b). We cannot discern between these erosion
scenarios.

VT3 age data do not exhibit a simple relationship with elevation (Figure 4.9c). As a
result, we did not attempt to forward model this transect separately, especially without
better structural context. Instead, we assess the possibility of similar cooling histories

among the three profiles by importing preferred model results from VT1 and VT2 to
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compare with VT3 data. VT3 is generally consistent with both VT1 and VT2 (Figure
4.9¢) except two of the samples fall off of the trend within the steep part of the profile.
These two older-age outliers highlight the possibility of a more complicated cooling
history potentially due to greater structural complexity and non-vertical cooling

pathways.

4.5 Geologic history of the Dulan-Chaka Highland

Thermochronologic histories of the three individual DCH vertical transects
collectively suggest onset of rapid erosion at ca. 15 Ma, which we attribute to an increase
in erosion rate following initiation of reverse faulting (Figure 4.9). Accelerated mid-
Miocene cooling appears to be local to fault bounded basin and ranges as apatite helium
ages of samples collected along a constant elevation transect (~4100 m) away from
mapped faults are older than samples from similar elevations along the vertical transects
(Figure 4.9d). Local rather than widespread cooling supports a scenario of hanging-wall
relief generation from faulting and subsequent erosion rather than a regional change to a
more erosive climate across a landscape with significant preexisting topography (>2.5
km). This interpretation is further supported by climatic records within the Linxia basin
(Figure 4.1), which suggest a mid-to-late Miocene shift to more arid conditions (i.e.
potentially less erosive) (Dettman et al., 2003; Fan et al., 2007). Such a shift would
suggest that tectonics rather than a more-erosive climate is the cause of accelerated late
Miocene cooling.

We relate DCH reverse faults to right-lateral Elashan faulting as previously suggested

by Wang and Burchfiel (2004). En-echelon reverse faults in the northern DCH fan
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westward from the Elashan fault and many curve to align parallel with Elashan fault
strike, possibly rooting into this structure at depth (Figure 4.10a). On a more regional
scale, similar contractional splay faults and minor extension (Chaka and Kuhai lakes)
exist on opposite corners of the fault (Wang and Burchfiel, 2004) forming a classic
geometry associated with strain accommodation at the terminating ends of a right-lateral
fault (Figure 4.10a). Asymmetric DCH topography, with elevations decreasing westward
into the Qaidam basin away from a drainage divide located far to the east, in close
proximity to the Elashan fault (Figure 4.8), provides further geomorphic evidence that
DCH deformation is associated with Elashan motion. Rotation and transpression may
also occur in response to differences in slip rate between the Kunlun (~10 mm/yr) and
Elashan (~1 mm/yr) faults (Figure 4.10a) if these rates persisted on geologic timescales.
Timing of DCH faulting found in this study (17-12 Ma) is consistent with the Elashan
fault age from average Quatenary slip rates (943 Ma, Yuan et al., 2011). Total fault
displacement can be estimated for the VT2 reverse fault. We determine the offset of the
paleo-surface (at ca. 15 Ma) on either side of the fault in order to place a minimum and
maximum bound on displacement (Figure 4.10b). The modern elevation of the base of
the partial retention zone (determined from the timing of apparent erosion-rate change
Figure 4.9b) plus the additional 2 km of initial overburden provides a measure of the
modern elevation of the paleo-surface within the upthrusted-hanging wall. The
approximate paleo-surface elevation within the footwall is estimated by assuming that the
base of the Tertiary conglomerate represents the ca.15 Ma surface and assuming ranges in
extent and dip of the basal-conglomerate (20°-30° NW) and dip of the fault plane (50°-70°

NW) (Figure 4.10b). Given these parameters, we calculate ~4-7 km of total displacement,
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Figure 4.10. (a) Line drawing highlighting the relationship between en-echelon reverse faults
of the DCH and the Elashan and Kunlun Faults. DCH faults along with a similar but smaller zone
of fanning reverse faults to the southeast comprise contractional fans along the Elashan Fault.
Small extensional basins (Chaka and Kuhai L.) also possibly accommodate strain related to
right-lateral Elashan motion within the northeastern and southwestern fault corners (Wang and
Burchfiel, 2004). Additional transpression and clockwise rotation within the DCH may result
from disparate modern and Quaternary slip rates among the fast-slipping Kunlun (~10 mm/yr)
and moderate-slipping Elashan fault (~1 mm/yr). Figure drafted after Wang and Burchfiel, 2004.
(b) Structural offset across the VT2 reverse fault. The ca. 15 Ma land surface is reconstructed
from the modern elevation of the paleo-PRZ and correlated with the base of the syntectonic
Tertiary sediment in order to determine fault throw. Minimum and maximum estimates of fault
throw are based on the range of possible elevations of the basal unit at the fault found by project-
ing the minimum and maximum surface extents and dips of Tertiary rocks to depth. Quaternary
deposits cover footwall rocks at the vertical transect location. Minimum and maximum extents
and dips of Tertiary deposits were extrapolated from 2-5 km east along strike where units are
better exposed (Figure 4.3).
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~3-5 km of vertical throw, and ~2-4 km of horizontal heave, which is of the same order
of magnitude as Elashan fault displacement (9-14 km Wang and Burchfiel, 2004; Yuan et
al., 2011).

A once continuous paleo-Qaidam and Gonghe basin has also been proposed
previously (Zhu et al., 1994; Metivier et al., 1998; Wang and Burchfiel, 2004) and our
results bear on this hypothesis. Recent work shows ~20 Ma age onset of Gonghe
sedimentation (Craddock et al., in review), whereas the Qaidam basin is known to contain
much older sediments of early Cenozoic and Mesozoic age (Bally et al., 1986). Barring
the existence of a deeper unsampled Gonghe depocenter, deposition within a spatially
continuous Qaidam-Gonghe basin must be limited to a short window of time between 20
Ma and the onset of DCH deformation at 17-12 Ma that would act to separate the two
basins. We also place constraints on the thickness of such a basin to <2 km because the
Mesozoic and early-to-mid Cenozoic (U-Th)/He cooling ages across the DCH (Table 4.2)
preclude significant burial of the surface. Thus, if a connection between the Gonghe and
Qaidam Basins existed it was probably short lived and the sediment was likely thin.

At present time, Tertiary sedimentary rocks are relatively scarce within the DCH. We
find that ~65% of the eroded overburden is not currently contained within the VT2 fault-
bounded basin based on a gross estimate of the volume of sediment removed from the
mountain top versus the volume of sediment stored in the adjacent basin, assuming
modern range and basin geometries. We propose several plausible scenarios to describe
the evacuation of this material, though at this time we are unable to discriminate among
these. In one end-member scenario, fault motion and sediment accumulation within

narrow basins was concomitant among all of the DCH reverse faults at ~15 Ma and
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continued until ~10-8 Ma followed by a late-stage evacuation of sediment. Regional
drainage reorganization and sediment removal could potentially relate to recent fault-slip
rate changes on either the Elashan or Kunlun faults, climatic variability, or base-level
changes associated with Qaidam basin activity. Events such as these could explain the
many obvious drainage anomalies throughout the DCH region including water gaps and
barbed drainages (Figure 4.8). On the other hand, DCH range growth and basin
deposition may have propagated to the west away from the Elashan fault in time such that
VT3 deformation occurred earlier than VT2, which occurred earlier than VT1. In this
case, piggy-back reverse faulting could induce a regional westward tilting, leading to
predominate evacuation rather than deposition of sediments as they were shed from
hanging walls during fault motion and possibly the formation of water gaps.
Thermochronometry results permit differences in timing of rapid erosion among the
locations but they are limited to at most only a few million years. It is also noteworthy
that VT1 model results, unlike the other two transects, do not require a late-Miocene slow
down in erosion rate. More recent fault activity along VT1, which is located closest to the
Qaidam basin at the western edge of the DCH (Figure 4.3) is perhaps indicative of a later
onset of faulting in this location after the apparent waning of the more eastern faults.

The Miocene phase of mountain building that we document here may have occurred
amidst an antecedent drainage network that would have influenced sediment
accumulation and could result in the now prevalent water gaps (Figure 4.8). Uniformly
thick crust (~60 km, Meyer et al., 1998) and high elevations (~4400 m) could result from
deeper crustal processes acting separately from or synchronously with Miocene upper-

crustal reverse faulting. Lower-crustal flow, which was recently evoked west of the DCH
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under the Kunlun Shan and southern Qaidam basin (Karplus et al., 2011) (Figure 4.1), or
duplexing within the lower crust could explain most of the crustal thickening given the

apparently small contribution by surface faulting.

4.6 Timing of onset of Kunlun and Haiyuan Faulting

Our results suggest that Kunlun fault motion initiated first along the central fault
segment at approximately 20 Ma and then progressed to the west (12-8 Ma) and east (8-5
Ma) as the fault zone evolved (Figure 4.11). This along-strike diachronous history differs
from earlier proposals of eastward fault propagation (Meyer et al., 1998; Metivier et al.,
1998) or late Miocene initiation along the entire fault length (Kidd and Molnar, 1988; Fu
and Awata, 2007). Faulting at 20 Ma along the Kunlun’s central segment is consistent
with the sedimentation record within the Gonghe basin to the northeast of the fault zone
(Figure 4.1) that shows sediment accumulation from a distal source beginning at this time
(Craddock et al., in review). Our results are also consistent with a previous fission-track
modeling study east of the central Kunlun site (Figure 4.1) that revealed a phase of
increased cooling equating to average exhumation rates of 0.1-0.15 mm/yr starting at 20
Ma (Yuan et al., 2006).

Previous thermochronometry data from steep vertical profiles in the hanging wall of
the south Qaidam thrust show an interval of rapid cooling beginning at ~35 Ma (Clark et
al., 2010; transect location stars in Figure 4.2a). We cannot definitively rule out an early
phase of Kunlun strike-slip within a similar time frame, beginning at ~30 Ma (KFW1,
Figure 4.4); yet, we have no independent evidence to support that strike-slip faulting

along the main strand of the Kunlun fault occurred concurrently with compression and
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mountain building during this time. As a result, our preferred interpretation relates
Eocene-Oligocene cooling recorded along the western fault segment (Mock et al., 1999;
Wang et al., 2004) and along the southern Qaidam basin farther to the west (Jolivet et al.,
2003; Yin et al., 2007) to reverse faulting and topographic development of the Kunlun
Shan, including the 2 km escarpment between the Tibetan Plateau and the Qaidam Basin.
We interpret the later pulse of cooling at 12-8 Ma (KFW2, Figure 4.4) to mark the
initiation of left-lateral Kunlun faulting, which is consistent with a later estimated
initiation age of 8-5 Ma along the eastern fault segment (Figure 4.11).

Thermal histories of samples from the two Haiyuan fault sites offer little information
regarding timing of Cenozoic strike-slip faulting. Rather, sample HFC10 indicates an
earlier, late Cretaceous cooling event between ~85 and 70 Ma. Cretaceous sediments are
widely distributed across the northern margin of the Tibetan Plateau (Horton et al., 2004)
and previous thermochronometry data from northeastern Tibet indicate 2-3 km of
Cretaceous sediment blanketed some of the region (Clark et al., 2010). Based on detailed
geologic mapping north of the Kunlun fault and south of the Gonghe and Linxia basins
(Figure 4.1), Craddock et al. (2011) argue that formation of the extensive network of
Cretaceous sedimentary basins within this region relates to NW-SE contractional
deformation similar to that documented throughout the Qinling-Dabie orogen to the east
(Ratschbacher et al., 2000; 2003; Enkelmann et al., 2006). They associate this crustal
shortening with a proposed step-over between two parallel right-lateral shear zones and
thus consider deformation to be relatively local. Other studies suggest that Late Jurassic-
Cretaceous sediment deposition reflects regional crustal extension and post-rift thermal

subsidence (Vincent and Allen, 1999; Horton et al., 2004). Although no direct structural
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relationships are observed, based on location, Cretaceous cooling recorded along the
Haiyuan fault likely relates to this proposed extensional deformation (Lin et al., 2011).

Liupan Shan contractional deformation beginning at 10-8 Ma (Zheng et al., 2003; W.
Wang et al., 2011) at the eastern termination of the Haiyuan fault provides one of the few
constraints on Cenozoic Haiyuan strike-slip timing. On the whole, sample HFE11 located
~75 km west of the Liupan Shan (Figure 4.1) shows relatively slow cooling from the
Cretaceous through the present. However, a late Miocene cooling event on order of 30°C
is permitted by the acceptable modeled time-temperature paths and recently published
apatite fission-track modeling results from a separate study ~20 km to the east and 100 m
lower elevation reveal a Miocene episode of cooling with rate increase in the late
Miocene (Lin et al., 2011).

Kinematic links between Haiyuan strike-slip motion and associated contractional
deformation are also useful in assessing the timing of the western segment of the Haiyuan
fault. Thermochronometry results suggest that thrust deformation within the DCH region,
located to the south of the Haiyuan fault (Figure 4.1), began between 17 and 12 Ma. We
suggest that faults within this region relate most directly to Elashan fault motion (Figure
4.10a). However, based on the kinematic argument that the parallel right-lateral Elashan
and Riyeushan faults result from concurrent Kunlun and Haiyuan fault motion (Duvall
and Clark, 2010), we place bounds on the timing of western Haiyuan faulting to ca. 15
Ma by proxy (Figure 4.11). Relating the Elashan fault to Kunlun and Haiyuan motion
contrasts with an earlier proposal that the Elashan fault is a conjugate to the left-lateral
Altyn Tagh fault (Wang and Burchfiel, 2004) despite greater displacement along the

significantly longer, older and faster-slipping Altyn Tagh fault (Sobel et al., 2001; Yin et
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al., 2002; Ritts et al., 2004; Yue et al., 2004a; Meriaux et al., 2004; Meriaux et al., 2005;
Cowgill et al., 2009; Zhang et al., 2007; Gold et al., 2011) and a lack of documented
clockwise rotation within the Qaidam basin to account for these kinematic differences
(Dupont-Nivet et al., 2002). Ca. 15 Ma initiation of western Haiyuan faulting as
compared to the 10-8 Ma deformation event in the Liupan Shan at the eastern fault
termination (Zheng et al., 2003; W. Wang et al., 2011) suggests eastern propagation of
the fault in time. Collectively, these data indicate diachronous slip histories with left-
lateral Kunlun motion initiating first along the central fault segment before expanding
west and east along strike as well as to the north and east along the Haiyuan fault (Figure

4.11).

4.7 Discussion

We suggest that the Kunlun and Haiyuan strike-slip faults control deformation of
northern Tibet since 20 Ma and contrasts with an earlier phase of deformation
characterized by N-NNE-directed thrust faulting. Faulting, range growth, and basin
deposition along many of the smaller structures (50-100 km in length) within the interior
northeastern plateau margin were commensurate with or post-dated the onset timing of
the bounding Kunlun and Haiyuan faults (Figure 4.11a). Prior to the Miocene Epoch, the
northern margin of the Tibetan Plateau was characterized primarily by contractional
structures accommodating N or NE convergence (Jolivet et al., 2001; Sobel et al., 2001;
Yin et al., 2002; Horton et al., 2004; Dupont-Nivet et al., 2004; Dai et al., 2006; Yin et
al., 2008a; Dayem et al., 2009; Clark et al., 2010; Duvall et al., 2011; X. Wang et al.,

2011; Lin et al., 2011; Huang et al., 2011). At approximately 20 Ma, Kunlun left-lateral
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faulting initiated along the central segment of the fault (Figure 4.11b, 1 panel). By 12
Ma, left-lateral faulting expanded westward (> 300 km) and possibly a little eastward
along Kunlun-fault strike as well as northward to the western Haiyuan fault (Figure
4.11b, 2™ panel).

Initiation of right-lateral Elashan and Riyueshan faulting at ~13-6 Ma (Yuan et al.,
2011) occurred concurrently with the onset of coeval Kunlun and Haiyuan motion.
Rotation of smaller -blocks” of crust (50 km x 50 km) accommodated by these right-
lateral antithetic faults (Duvall and Clark, 2010) produces regional transpression and
crustal thickening along ENE striking thrust and reverse fault-bounded mountain ranges
starting at ~15 Ma in the Dulan-Chaka Highland, ~11 Ma in the Ela Shan (Zhang et al.,
2011), ~10-7 Ma in the Gonghe Nan Shan (Craddock et al., in review), and ~6 Ma in the
Qinghai Nan Shan (Zhang et al., 2011). East of the Riyueshan fault, formation of the N-S
oriented Jishi thrust fault and associated basin sedimentation began at ~13 Ma (Zheng et
al., 2003; Fang et al., 2005; Lease et al., 2011; Hough et al., 2011). By 8 Ma, Kunlun and
Haiyuan faulting expanded to the eastern fault terminations (Figure 4.11b, 31 panel)
concurrent with increased deformation in the Liupan Shan region of thrusts and folds
(Zheng et al., 2006; W. Wang et al., 2011; Lin et al., 2011), the adjacent Tianshui basin
to the southeast (X. Wang et al., 2011), and extension in the Yinchuan graben to the north
(Zhao et al., 2007).

We associate deformation within this region with a broad step-over zone resulting
from Kunlun and Haiyuan strike-slip motion beginning ca. 20 Ma (Figure 4.11). This
contrasts with the earlier phase of deformation characterized by N-NNE-directed thrust

faulting. Perhaps notably, the timing of the development of the Kunlun-Haiyuan strike-
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slip system coincides with a proposed transition at ~16 Ma from an —extrusion phase”
along the Altyn Tagh fault accommodated by fast slip (>20 mm/yr) to mainly surface
uplift and shortening in the Altun Shan (Ritts et al., 2008; Kent-Corson et al., 2009) and
the wider Qilian Shan region (Huang et al., 2011) correlated with a period of slower slip
along the Altyn Tagh fault slip (<9 mm/yr).

The interpretation that Miocene-Pliocene range growth and basin deposition within
northern Tibet co-evolved with the growth of major strike-slip faults is similar to earlier
proposals by Meyer et al. (1998) and Tapponnier et al. (2001) that coeval crustal
deformation partitions between steep strike-slip faults and intervening thrust structures.
In contrast to these previous studies, however, we suggest that the Kunlun and Haiyuan
faults root into the ductile mid crust and are not lithospheric in scale nor do they extend
east beyond the plateau boundary (Kirby et al., 2007; Duvall and Clark, 2010).
Additionally, well-documented Eocene contractional deformation along thrust faults
along the northeastern Tibetan Plateau margin (Yin et al., 2008; Clark et al., 2010; Duvall
et al., 2011) challenges the view that the orogen stepped northward in successive steps in
time (Tapponnier et al., 2001).

The kinematic shift to a dominantly transpressional regime within northeastern Tibet
appears to occur within a protracted period and does not necessitate an abrupt change in
the plateau perimeter or style of faulting (e.g., Molnar and Stock, 2009) resulting from a
singular change in orogen dynamics (i.e., loss of mantle root or changes in plate rate or
convergence direction). Instead, the detailed growth history of the Kunlun and Haiyuan
fault system that we outline here suggests evolution over more than 15 million years,

with left-lateral faulting nucleating along the central Kunlun fault segment before
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growing westward and eastward along strike and northward to the Haiyuan fault. Models
that involve an elastic upper crust underlain by low-viscosity lower crust result in broad
zones of interacting faults whereas crust modeled as entirely elastic results in narrow
zones of deformation focused on single faults (Roy and Royden, 2000). The Kunlun fault
extends from a region of high crustal strength (Qaidam Basin) into a diffuse plateau
margin underlain by a weak lower crust (Clark and Royden, 2000) and the DCH, which
sits just north of the central Kunlun fault segment, represents the rheological boundary
between these two regions (Figure 4.1). Westward expansion along the southern
boundary of the Qaidam basin from the growing tip of the nascent Kunlun fault resulted
in discrete deformation and fast slip rates (Molnar and Dayem, 2010) whereas eastward
expansion into a region of weaker crust likely prohibited continued localized
deformation, eventually resulting in the northward step to the Haiyuan fault and the much
wider and complicated set of structures extant across this region (Duvall and Clark,
2010). Thus, this pattern of deformation suggests that the observed growth history of the
Kunlun-Haiyuan fault system can potentially be explained by viscosity contrasts in the
lower crust.

Onset ages of the Kunlun and Haiyuan faults overlap with initiation of many other
major intracontinental strike-slip faults of the Tibetan Plateau (Figure 4.12). With
exception to the Altyn Tagh fault and the Ailao Shan shear zone, major strike-slip fault
motion appears to initiate within the span of time from ~20 to 5 Ma (see review by Searle
et al., 2011 and references therein). The oldest (Kunlun and Karakorum) and youngest
(Xianshuihe) faults possibly vary by as much as 15 million years, though we cannot

currently discern whether this reflects true variability in onset age or is a function of poor
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Figure 4.12. Simplified geologic map showing major strike-slip faults of the Tibetan Plateau
(after Taylor and Yin, 2009 and Schoenbohm et al., 2006) as well as compressional structures of the
northern Tibetan Plateau margin. Compiled estimates of initiation ages shown in blue (pre-
Miocene) and red (Miocene and younger). Tibetan Plateau suture boundaries shown by dashed gray
line: ITS Indus-Tsangpo suture, BNS Bangong Nujiang suture, JS Jingsha suture, KS Kunlun
suture. Age brackets represent the timing of the onset of strike-slip motion; note that this occurs
during the Miocene or later for the majority of major intracontinental strike-slip faults of Tibet.
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data resolution. In either case, this time frame is at least 30 million years after the initial
continental collision of India and Eurasia. Continued convergence and the progressive
confinement of Tibetan crustal thickening against rigid crustal blocks to the north
(Dayem et al., 2009; Clark, in review) may have eventually led to widespread lateral
strain in the upper crust. The later-stage development of a strike-slip regime within the
upper crust of Tibet may therefore be part of the natural evolution of the orogen in

response to ongoing penetration of India northward into Eurasia.

4.8 Conclusions

Left-lateral Kunlun faulting initiated first along the central fault segment at ~20 Ma
followed later by expansion to the west and east along strike and to the north along the
Haiyan fault. Expansion of these fault systems to present-day extents occurred by ~8 Ma.
Kunlun and Haiyuan fault activity appears to have played a fundamental role in the
Miocene-Pliocene evolution of the structural landscape within interior northeastern Tibet
margin. Miocene onset of Kunlun and Haiyuan left-lateral faulting is consistent with
initiation ages of other major intracontinental strike-slip faults and may result in the later-
stages of orogen development due simply to the long-term convergence of India rather

than relate to a change in orogen dynamics.
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Appendix: Chapter IV

This appendix contains a detailed table (Table A4.1) of low-temperature

thermochronometry analysis results.
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Chapter V

Widespread late Cenozoic increase in erosion rates across the interior of eastern

Tibet constrained by detrital low-temperature thermochronometry1

Abstract

New detrital low-temperature thermochronometry provides estimates of long-term
erosion rates and the timing of initiation of river incision from across the interior of the
Tibetan Plateau. The erosion history of this region provides an important means to
evaluate proposed models of orogenic development as well as a potential record of
regional climatic events. Here we study the externally drained portion of the east-central
Tibetan Plateau by sampling from sandbars along major rivers across a transect that spans
> 750 km and covers a region with few thermochronometric ages. Apatite grains from
eight catchments were analyzed for (U-Th)/He and fission-track thermochronometry. A
wide distribution in ages that in most cases spans the entire Cenozoic and late Mesozoic

eras requires a long period of slow or no erosion with a relative increase in erosion rate

! Citation: Duvall, A.R., Clark, M.K., Avdeev, B., Farley, K.A., and Chen, Z., in review, Widespread Late
Cenozoic increase in erosion rates across the interior of eastern Tibet constrained by detrital low-
temperature thermochronometry: Tectonics.
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toward the present. We apply a recently developed methodology for inversion of detrital
thermochronometric data for three specified erosion scenarios: constant erosion rate, two-
stage erosion history, and three-stage erosion history. Modeling results suggest that rates
increase by at least an order of magnitude between 11-4 Ma following a period of slow
erosion across the studied catchments. Synchroneity in accelerated erosion across the
expanse of the Tibetan Plateau rather than a spatial or temporal progression challenges
the widely held notion that the plateau evolved as a steep, northward-propagating
topographic front. Instead, we suggest that accelerated river incision late in the orogen’s
history relates to regional-scale uplift that occurred in concert with eastern expansion of

the plateau.

5.1 Introduction

Ongoing India-Eurasia continental convergence since ~55-45 Ma (Rowley, 1996;
1998 and references therein; Zhu et al., 2005; Henderson et al., 2010) is the widely
accepted cause of deformation within Tibet and the surrounding region. The manner in
which this convergence is accommodated, however, is controversial. A number of
competing mechanisms to explain crustal thickening and uplift of this region have been
proposed: underthrusting of the Indian lithospheric mantle (Argand, 1924; Powell, 1986)
or injection of Indian crust into Tibetan lower crust (Zhao and Morgan, 1987), block
extrusion and intracontinental subduction (Tapponnier et al., 1982; 2001), distributed
thickening and shortening of Asian lithosphere (England and Houseman, 1986; 1989;
Dewey et al., 1988), which may result in the removal of mantle lithosphere from beneath
Tibet (Molnar et al., 1993), and preferential thickening of the lower crust through channel

flow (Bird, 1991; Royden et al., 1997; Clark and Royden, 2000; Royden et al., 2008).
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Temporal records of elevation relate to our mechanical understanding of plateau
development because the isostatic response of the continental lithosphere to thickening or
reduction in average lithospheric density results in an increase in mean topography.
Several attempts to quantify Cenozoic paleoaltimetry from geochemical proxies at
various locations within the central Tibetan Plateau suggest that paleoelevations are
comparable with modern elevations by at least Miocene time (Garzione et al., 2000;
Rowley et al., 2001; Spicer et al., 2003; Currie et al., 2005; Cyr et al., 2005; Rowley and
Currie, 2006; DeCelles et al., 2007; Polissar et al., 2009). However, applicability of these
results is hindered, at least in part, by limited spatial coverage and large uncertainties
(>1000 m) associated with paleoaltimetry techniques. Alternatively, plateau-wide erosion
histories from the externally drained part of Tibet may be used as a proxy for timing of
elevation change (e.g., Clark et al., 2005; Ouimet et al., 2010) because the erosive
response predicted from surface uplift and resulting base-level change should also vary
among proposed mechanical scenarios. River steepening, channel narrowing, or some
combination of both that likely occurs in response to accelerated surface uplift leads to
increased fluvial erosion (Whipple and Tucker, 1999). Increased precipitation and
storminess (Reiners et al., 2003) or incision into weaker rocks, however, may also lead to
accelerated incision irrespective of surface uplift if topographic relief preexisted.

The influence of climate-enhanced erosion rates is not entirely dissociated from
topography. Once even moderately high topography (~3000 m) is achieved, the Himalaya
and Tibetan plateau are thought to profoundly influence Asian monsoon processes (e.g.,
Prell and Kutzbach, 1992; Molnar et al., 1993; An et al., 2001; Molnar, 2005). It is

commonly thought that the South Asian monsoon results from increased contrast in air
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temperatures between the high-elevation land surface of Tibet and the surrounding
lowlands (Flohn, 1968; Li and Yanai, 1996; Yanai and Wu, 2006) and that tectonic uplift
of the Tibetan plateau drives increased monsoon intensity (An et al., 2001; Molnar et al.,
1993). Recent atmospheric records challenge this view because upper-tropospheric (250
hPa) temperatures are highest, not over the Tibetan plateau, but southward over India and
Pakistan (Yanai and Wu, 2006). Rather than acting as a heat source, Global Circulation
Model (GCM) results demonstrate that high topography in and surrounding Tibet may be
most influential as a barrier to circulation of cool, dry air from the north in the case of the
South Asian monsoon (Boos and Kuang, 2010) and as a deflector of the jet stream in the
case of the “East-Asian monsoon” (Molnar et al., 2010 and refs. therein), which is
actually the head of a mid-latitude storm track (Chao and Chen, 2005). Changes in
strength and/or duration of these systems may be reflected in the regional erosion record
due to the correlation of spatial patterns of erosion with climatic variability across a
landscape (e.g., Montgomery et al., 2001; Reiners et al., 2003; Theide et al., 2004).
Despite the significance of the erosion record, most studies document rates from the
perimeter of Tibet while relatively little is known about the erosion history of the plateau
interior. In this study, we determine erosion patterns across the Tibetan Plateau using (U-
Th)/He and fission tracks in single-grain detrital apatites (nominal closure temperatures
~55 — 75°C and ~100-120°C respectively) (Flowers et al., 2009; Ketcham et al., 2007)
collected from modern river sands (Figure 5.1). Detrital studies are best-suited for work
of this scope because a single sample contains rock materials integrated from a large
spatial area. Applying a recently developed inversion approach that derives erosion

histories from thermochronometric ages within each catchment (Avdeev et al., 2011), we
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Figure 5.1. Shaded relief map of study area. Sampled catchments outlined in black, circle
represents collection sites of modern river sands. Regional faults shown in black (simplified from
active fault map of Taylor and Yin, 2009) and suture boundaries shown in thicker gray line: ITS
Indus-Tsangpo suture, BNS Bangong Nujiang suture, JS Jingsha suture, KS Kunlun suture. Inset
shows broader Tibetan Plateau region.
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quantify rates of erosion as well as timing of erosion-rate changes along a NE-SW
transect that extends across the entire width of the externally drained portion of the

Tibetan Plateau (Figure 5.1).

5.2 Erosion rates across Tibet from previous studies

Short-term erosion rates calculated by measurements of in-situ cosmogenic '°Be in
quartz from exposed rock surfaces from the internally-drained Tibetan plateau interior are
low during the late Pleistocene — Holocene (< 0.03 mm/yr) with exception of the northern
perimeter of the plateau where rates are higher (0.06 — 2 mm/yr) (Figure 5.2a) (Lal et al.,
2004). A suite of '°Be detrital data from modern river sands of the Three Rivers Region,
SE Tibet (middle reaches of the Salween, Mekong, and Yangtze rivers; Figure 5.2a)
yields estimates of millennial basin-wide average erosion rates that vary from 0.01 to 8
mm/yr across catchments that range from small tributaries (drainage area ~2 km?) to the
main trunk rivers (drainage area >300,000 km?”) (Henck et al., 2011). Average erosion
rates within the upper river reaches (0.1 — 0.2 mm/yr) are low compared to average rates
downstream (0.2 - >1 mm/yr) (Henck et al., 2011). A similar '°Be detrital study from
catchments along the eastern margin of the Tibetan Plateau (Figure 5.2a) yields basin-
averaged erosion rates that range from 0.03 mm/yr to 3 mm/yr (over timescales of 27,000
to 200 yrs respectively) and are on average ~0.3 — 0.5 mm/yr within the trunk rivers
(Ouimet et al., 2009). In addition, small basins draining the frontal part of the Longmen
Shan yield mean erosion rates of 0.2 — 0.4 mm/yr (Figure 5.2a) (Godard et al., 2009a).

Longer term erosion rates (10° — 10" yr timescale) relevant to Cenozoic history of

tectonic and climate forcing are derived from low-temperature thermochronometry,
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Figure 5.2. Maps of surficial parameters of central and eastern Tibetan Plateau and perimeter. a) Reported
erosion rates from previous studies. Circles located at the center of the studied area and weighted based on
reported erosion rates, which are shown with corresponding number in the table below. Short-term rates
(~10%-10° yrs timescale from cosmogenic radionuclide dating) in blue and long-term rates (~10° yrs times-
cale from low-temperature thermochronometry) in red. Asterisk indicates rates range widely for this
location. T Burg et al., 1997; 1998; Ding et al., 2001; Malloy, 2004; Booth et al., 2004; 2009; Zeitler et al.,
2006; Seward and Burg, 2008; Stewart et al., 2008. t Jolivet et al., 2001; Zheng et al., 2003; 2006; 2010;
Lease etal., 2007; 2011; Clark et al., 2010; Zheng et al., 2010. See section 2 in text for details. b) Relief map
generated using a 5km moving average window over 250 m resolution digital elevation map (downsampled
90 m SRTM data). Topographic profiles demonstrate differences in relief between less incised plateau
headwaters (A-A’) and more incised eastern plateau perimeter (B-B’). Catchments analyzed for detrital
thermochronometry in this study outlined in white, previously published bedrock thermochronometry
vertical transect locations shown as white triangles (Clark et al., 2005; Ouimet et al., 2010). Black star shows
start location for the projected distance line, which is the x-axis of Figure 5.13c). Slope map of study catch-
ments from 90 m SRTM digital elevation data. Map extent shown in panel 2a. Highest slopes shown in red,
lowest slopes in white. Note the gradient of shallower slopes across the study transect from south to north.
d) Map of annual average precipitation compiled from University of Delaware, Center for Climate Research
global climate database (Matsuura and Wilmott, 2007). Warm colors show low precipitation, cool colors
represent high precipitation.
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which records cooling and exhumation from shallow crustal levels (roughly 2 — 4 km
depth). Across the northern plateau region, apatite fission track (AFT) and apatite helium
(AHe) bedrock cooling histories suggest increases in erosion to rates of ~0.2-1 mm/yr
likely associated with deformation events during Eocene (Jolivet et al., 2001; Clark et al.,
2010), Late Oligocene (Jolivet et al., 2001), and mid-to-late Miocene time (Lease et al.,
2007; 2011; Zheng et al., 2003; 2006; 2010). Apatite fission-track and helium
thermochronology from eastern Tibet suggests that a change from slow to rapid cooling
occurred during the mid-to-late Miocene along the southeastern and eastern plateau
margins (Arne et al., 1997; Xu and Kamp, 2000; Kirby et al., 2002; Clark et al., 2005;
Enkelmann et al., 2006; Godard et al., 2009b; Ouimet et al., 2010; Wilson and Fowler,
2011) (Figure 5.2). This pattern is consistent with an erosional response to crustal
thickening and broad regional uplift around this time (Clark et al., 2005; Clark et al.,
2006; Wilson and Fowler, 2011). Age/depth data collected along river gorges incised into
a low-relief erosion surface yield estimates of late Cenozoic erosion rates on the order of
0.25 — 0.5 mm/yr for the Dadu, Yangtze, and Yalong River gorges (Clark et al., 2005;
Ouimet et al., 2010) and 0.5 — 1 mm/yr for the Longmen Shan (Kirby et al., 2002; Godard
et al., 2009b) (Figure 5.2a).

Some of the highest erosion rates in the Himalaya-Tibetan orogenic system lie just
south of our sampling transect in the Namche Barwa region at the eastern end of the
Himalayan syntaxis (Figure 5.2a). Comparisons of high- and low-temperature mineral
cooling data (**Ar/’Ar hornblende/biotite, U-Pb zircon, (U-Th)/He zircon/apatite,
zircon/apatite fission track) from this area show a “bull’s-eye” pattern of very rapid

focused exhumation (3 — 5 mm/yr) since 5 Ma or earlier (Burg et al., 1997; 1998; Ding et
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al., 2001; Malloy, 2004; Booth et al., 2004; 2009; Zeitler et al., 2006; Seward and Burg,
2008; Stewart et al., 2008). Expansion of the high-exhumation region into the lower
Parlung River watershed to the north appears to have occurred since 4 Ma, likely related
to growth of a north-plunging antiform (Seward and Burg, 2008). Additionally, short-
term basin-wide erosion rates calculated from '°Be analysis range from 0.1 — 4 mm/yr,
with the highest rates corresponding to basins with the greatest relief centered on Namche
Barwa (Finnegan et al., 2008). Studies of Brahmaputra River sediment flux using detrital
zircon fission-track and U-Pb dating for provenance demonstrate that ~50% of the
sediment accumulation in the Brahmaputra system comes from only ~2% of its drainage,
which further supports the notion of extreme localization of rapid erosion within this

region (Stewart et al., 2008).

5.3 Approach and assumptions

We constrain erosion patterns across Tibet by first determining detrital apatite helium
and fission-track ages from modern rivers and then combining these data with basin
hypsometries to estimate catchment-wide erosion histories. The *He concentration in
apatite is a function of both production rate and temperature-dependent diffusive loss and
the rate of fission-track annealing is likewise a function of temperature. Due to relatively
low effective closure and annealing temperatures (~55 — 75°C and ~100-120°C,
respectively) (Gleadow and Duddy, 1981; Wolf et al., 1996; Farley, 2000; Ketcham et al.,
2007; Flowers et al., 2009), both alpha particles and fission tracks are appropriate for
assessing thermal histories in the shallow crust (Zeitler et al., 1987; Wolf et al.,

1996;1998; Ehlers and Farley, 2003). Closure temperatures vary depending on grain size
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and cooling rate (Dodson, 1973) as well as correlate with effective uranium concentration
(eU) due to trapping of helium within radiation-damage sites in the apatite crystal
(Shuster et al., 2006; Flowers et al., 2009). The effect of radiation damage on T, and thus
apatite age is greatest in cases of high eU and is particularly sensitive to the time a
sample spends at temperatures below ~90° C (Shuster et al., 2006; Flowers et al., 2007,
Flowers et al., 2009).

In many cases, thermochronometry ages record the sequential cooling of rocks as they
are exhumed toward Earth’s surface either by erosive processes or normal faulting.
Bedrock elevation transects, which are collections of rocks sampled from incremental
elevations over short horizontal distances, are used commonly to calculate apparent
exhumation rates from the age-elevation gradients (e.g., Fitzgerald and Gleadow, 1990).
The overall shape of the age-elevation profile reflects the thermal history of the samples.
An obvious increase in gradient (i.e. a “break in slope”) indicates an approximate time of
increased exhumation rate. However, in the case of prolonged thermal stability followed
by cooling related to exhumation, apparent rates deduced from age gradients are only
valid where the total amount of exhumation exceeds the depth to the base of the apatite
He or FT partial retention zone (e.g., Fiztgerald and Gleadow, 1990). Thus, this sampling
approach is useful in assessing long-term geologic exhumation histories (10° Ma) rather
than recent events unless those recent events are of large magnitude (>2 km). In cases
where enough denudation has occurred to reveal the preserved partial-retention/annealing
zone (~2-5 km), then age data along the profile provide the onset timing of the
denudation event and give information on denudation rate. Alternatively, ages along a

vertical transect within a region that experienced millions of years of slow or no cooling
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followed by recent and rapid exhumation <~2 km magnitude will largely represent time
spent in the partial retention zone and not be useful in determining apparent denudation
rates. In this landscape, we interpret age-elevation relationships to relate to the long-term
erosion history of the region.

Poor access and sparse bedrock outcrops preclude sampling bedrock for age/elevation
profiles in this study. Instead, we utilize modern river sands collected from single sample
sites to measure a suite of ages for each catchment. Catchment-wide erosion histories are
evaluated wusing a recently developed methodology for interpreting detrital
thermochronometry data (Avdeev et al., 2011). Several assumptions are inherent to this
approach. We relate thermochronometry ages to the cooling history of rocks as they
move toward the surface by erosion rather than due to cooling of volcanics or shallowly-
emplaced plutons or exhumation by normal faulting. Our model results are estimated
assuming piece-wise linear age-clevation relationships, just as in a bedrock sampling
approach. We derive apparent erosion history assuming vertical advection, a flat closure
isotherm, and constant geothermal gradient and surface temperature through time. We
also assume that sediment is not stored for significant periods of time (< 10° yrs) within
catchments and that erosion rates as well as apatite concentrations in bedrock are
spatially uniform.

Catchments without major mapped Cenozoic fault systems (Figure 5.1) were targeted
for sampling because we are interested in erosion related to regional processes rather than
to local deformation. However, it is possible that unmapped structures and minor splays
may be present within our catchments. Topography has been shown to influence the

interpretation of erosion rates from the age/elevation relationship, both by warping of
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isotherms in the shallow crust and by the effect of cooling rate on the effective closure
temperature (e.g., Stiiwe et al., 1994; Mancktelow et al., 1997; Braun, 2002; Ehlers and
Farley, 2003; Reiners and Brandon, 2006). Therefore, we consider the estimated erosion
rates in this study to be apparent and recognize these values may overestimate real long-
term rates if significant advection of the isotherms has occurred. However, we note that
relief within catchments on the high plateau (generally 1000-2000 m) is focused in trunk
rivers, effectively creating short-wavelength topography and therefore the closure
isotherms should be relatively flat (Braun, 2002). Regional geologic mapping (Pan et al.,
2004) shows widespread occurrence of rock types that likely contain apatite, which
diminishes the potential for point sources. Moreover, recent cosmogenic radionuclide
(CRN) studies show that sampling larger catchments (>100 km? drainage area) for longer-
term erosion rates (10° years), as we do here, likely averages out temporal and spatial
point sources related to sediment flux from isolated landsliding events (Niemi et al.,
2005; Yanites et al., 2009).

In previous detrital-thermochronometry studies, time-averaged catchment-wide
erosion rates were calculated either by differencing the oldest and youngest ages and the
lowest and highest elevations within the catchment (Ruhl and Hodges, 2005) or by using
the mean age and elevation within the catchment along with an estimated elevation of the
closure isotherm determined from a thermal model (Brewer et al., 2003) (Figure 5.3). The
principal limitation in these approaches is the assumption of steady-state erosion
histories. In contrast, our approach allows estimation of time-varying thermal histories by
using the distribution of elevation and age data from each catchment (Avdeev et al.,

2011) (Figure 5.3). We aim to find the simplest geologically reasonable erosion histories
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Figure 5.3. Cartoon plots demonstrating different approaches to estimating basin-wide long-term
erosion rates a) Method of Brewer et al. (2003): average erosion rate (slope of gray dashed line) deter-
mined using the catchment mean cooling age and mean elevation and a range of closure isotherm eleva-
tions estimated from a thermal model. b) Method of Ruhl and Hodges (2005): average erosion rate (slope
of gray dash/dot line) determined using the catchment minimum and maximum ages and elevations. The
intercept of the line is the estimated isotherm elevation. c) Method of this paper: catchment wide cooling
histories are modeled using an MCMC algorithm to estimate erosion rate (slope of solid gray line), allow-

ing for more complicated histories (i.e. breaks in slope) (Avdeev et al., 2011). Linear segments from A
(dashed line) and B (dash/dot line) are shown for comparison.
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that adequately explain the data for each catchment beginning with assessment of
constant erosion rate through time. Scenarios with zero or more changes in rate through
time were considered until additional erosion-rate changes did not result in a noticeably
better fit with the data. We recognize that more complicated alternative histories with
spatially varying erosion and non-vertical pathways not considered here may also be

permissible.

5.4 Sampled Catchments

We collected detrital samples from modern headwater rivers along a NE-SW transect
that spans > 750 km within the externally-drained east-central plateau (Figure 5.1).
Catchments along this transect include seven larger basins (drainage area 2000 to 20000
km?): the Yellow, Yalong, Yangtze, Mekong and Mekong(b) (both part of the Mekong
River watershed), Salween, and the Parlung tributary to the Yarlong-Tsangpo, referred to
here after simply as Tsangpo, and one smaller basin (1000 km?), Yellow_small, which is
a tributary of the Yellow River (Table 5.1; Figure 5.1). The hypsometry (relation between
area and elevation) and landscape characteristics (mean/min/max elevation, slope, and
relief) for each catchment were estimated using 90 m resolution SRTM digital elevation
data and are shown in Figure 5.2 and Table 5.1. Mean elevation (~4600 m) and mean
relief (~1500 m) are similar within the studied river basins, with exception to the high-
relief, glaciated Tsangpo catchment (mean relief of f3500 m) (Figure 5.2b; Table 5.1).
Mean slope angle decreases from south to north, with lowest average slopes (<10°) in the
Yellow and Yalong catchments, middle average slopes (~15° ) in the Yangtze, Mekong,

Mekong(b) and Salween catchments, and highest average slopes (~25° ) in the Tsangpo
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Table 5.1 Catchment geomorphology

Catchment Drainage Min. Max. Elev. Mean Mean
Name Area (km®) | Elev. | Elev. | Range | Elev. Slope (°)
(m) (m) (m) (m)

Tsangpo 3520 2750 6184 3434 4535 24.9
Salween 2401 4318 5646 1328 4799 13.6
Mekong 15869 3748 5796 2048 4681 14.6
Mekong(b) 11150 3663 5682 2019 4751 16.3
Yangtze 2210 3684 5461 1777 4475 16.9
Yalong 14011 3980 5208 1228 4536 8.6
Yellow 19170 4219 5219 1000 4507 3.8
Yellow small 998 4217 5174 957 4502 4.9
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catchment (Figure 5.2c, Table 5.1). The high plateau in the vicinity of our sampled
catchments is generally arid with a north to south increase in average annual precipitation
that is inversely correlated with slope (~300 mm/yr within the northern catchments and
~600 mm/yr within the southern catchments) (New et al., 2002; Matsuura and Willmott,
2007). In contrast, the surrounding regions to our study area to the south and east are
wetter with average annual precipitation as much as 1100 — 1500 mm/yr (New et al.,
2002) (Figure 5.2d).

Study-area catchments include mapped geologic units of variable age and rock type
(Pan et al., 2004) (Figure 5.4a-h). Paleozoic rocks are predominantly sedimentary,
including shale, limestone, sandstone, and conglomerate, with minor amounts of slate,
schist, marble, and volcanics. Mesozoic rocks are mainly marine facies mudstone,
siltstone, limestone, and sandstone as well as granitoids (granite, granodiorite, quartz
diorite), with minor amounts of continental clastic deposits. Cenozoic rocks are less
abundant within the study area as we purposefully avoided sampling catchments with
large volumes of mapped sedimentary or igneous rocks from this time period to assure
minimal sediment storage and that cooling relates to erosion. U-Pb ages measured from
detrital zircons from two of the sampled catchments are older than Cenozoic age
(Appendix Table A5.3), which supports our assumption that minerals from Cenozoic
volcanic rocks or shallowly-emplaced plutons were avoided. Quaternary deposits, mostly

fluvial, are present mainly in small volume within all studied catchments.
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d. Geology of the Yellow River Catchment
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Figure 5.4a-b. Generalized geologic maps of studied catchment a) Yellow River and b)
small Yellow River tributary. Geology simplified from 1:1,500,000 geologic map of Pan

et al., 2004.
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C. Geology of the Yalong River Catchment
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d. Geology of the Yangtze River Catchment
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Figure 5.4c-d. Generalized geologic maps of studied catchment c) Yalong River and b)
Yangtze River. Geology simplified from 1:1,500,000 geologic map of Pan et al., 2004.
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e. Geology of the Mekong River Catchment
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Figure 5.4e-f. Generalized geologic maps of studied catchment e) Mekong River and
) Salween River. Geology simplified from 1:1,500,000 geologic map of Pan et al., 2004.
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g. Geology of the Tsangpo River Catchment
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Figure 5.4g-h. Generalized geologic maps of studied catchment g) Tsangpo River and
h) Mekong(b) River. Geology simplified from 1:1,500,000 geologic map of Pan et al.,
2004.
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5.5 Methods

River sands were collected from sandbars within the active channel during the early
winter months when river levels were low. To ensure a well-mixed population of material
from each catchment, each ~5 kg sample was compiled from multiple smaller aliquots
spaced a few meters apart (DeGraaff-Surpless et al., 2003; Lease et al., 2007). Samples
were sieved (Standard #18 1,000 pm mesh sieve), washed in de-ionized water and dried
in an oven at low temperatures (40°C) then further separated by grain size using a U.S.
Standard #60 250 pum mesh sieve. Apatite and zircon separates were derived from these <

250 um aliquots by exploiting density and magnetic susceptibility differences.

5.5.1 Apatite (U-Th)/He dating (AHe)

Individual apatite grains were handpicked at the University of Michigan and analyzed
for (U-Th)/He ages at the Noble Gas Laboratory at Caltech with ~20 single-grain
analyses for each sample (135 total grains analyzed, Appendix Table AS5.1). To avoid
additional bias, we selected grains of varying morphology rather than preferentially
picking only euhedral, unbroken grains as is common in bedrock studies. In many
catchments, this resulted in morphologies that range from pristine to rounded (Figure 5.5)
but all grains were selected to have minimal visible inclusions using a Leica MZ16
stereozoom microscope under cross polarization at 160x magnification. Single grains
were loaded into a platinum packet and laser heated in a vacuum to 1025°C for five
minutes to release all helium. Helium was measured in a quadrupole mass spectrometer
using *He isotope dilution. After initial degassing, samples were reheated to ensure

complete release of helium. Analyses that yield helium upon a second reheating step (“re-
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Example apatite morphologies

a. pristine b. average c. rounded

N En
RS %’

Figure 5.5. Digital images of typical apatite grains selected for helium analysis in this study.
Grains categorized into three classes: a. Example of “pristine” apatite grains, which are gener-
ally clear, euhedral, and in many cases, has well-preserved terminations at either ends of the
crystal. b. Example of “average” apatite grain, which are relatively glassy, have decent crystal
form but that lack one or both well-preserved terminations and possibly have broken edges.
These are similar to typical apatites dated in bedrock helium studies. c. Example of “rounded
grains, which are those that are significantly weathered such that edges are abraded, grains are
clouded, and the grain is somewhat spherical rather than euhedral cylindrical.
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extract”) likely contain inclusion(s) of a different radiogenic mineral phase, such as
zircon. In this study, no samples yielded significant re-extraction of gas during this step.
After gas extraction, each grain was placed in HNO;, spiked with **U and **°Th and
heated to 95°C for one hour to facilitate complete dissolution. The solution was analyzed
on an inductively coupled plasma mass spectrometer (ICP-MS) for uranium and thorium
content. Raw and “corrected” ages were calculated for each replicate. The alpha-ejection
correction (Fr) is based on the measured size of the grain and is applied to correct for “He
ejected from the grain due to the long distance (~20 ums) that alpha particles travel
during production (Farley et al., 1996). Apatite grains in this study ranged from 40 pums
to 75 ums in prism half-width and Fr values ranged from 0.61 to 0.8 (Table 5.2). Grain
abrasion during transport has been shown to complicate alpha-ejection correction in
detrital apatite helium studies (Rahl et al., 2003), which we considered when calculating

corrected ages (see section 5.6.1).

5.5.2 Apatite fission track (AFT)

Apatite fission-track ages were determined for six of the larger catchments and the one
small catchment by Apatite to Zircon, Inc. (Donelick et al., 2005), with ~40 single grains
analyzed per sample (275 total grains analyzed, Appendix Table A5.2). Natural fission
tracks were revealed by immersing polished apatite grain mounts in 5.5N HNO; for 20 s
(+0.5 s) at 21°C (x1 °C). Grain mounts were then irradiated with ~10’ tracks/cm® from a
22Cf source in a vacuum chamber in order to measure horizontal, confined tracks, and

track lengths. Fission-track ages were determined using a modified decay equation that

includes calibration for the LA-ICP-MS using the Durango fluorapatite standard (fission-
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Table 5.2 Detrital thermochronometry age summary

Catchment N"sne | AHe age range NbAFT AFT age Elev. Mean
(Ma) range (Ma) | Range (m) Elev.

(m)

Tsangpo 19 1.17-14.29 40 1.33-44.46 | 2750-6184 | 4535
Salween 20 28.2-145.12 40 13.21-145.99 | 4318-5646 | 4799
Mekong 10 9.98-57.12 0 - 3663-5682 | 4681
Mekong(b) 20 9-76.4 40 9.32-224.27 | 3748-5796 | 4751
Yangtze 20 3.93-72.69 40 3.01-264.66 | 3684-5461 4475
Yalong 19 12.57-143.92 40 5.42-163.29 | 3980-5208 4536
Yellow 20 4.32-160.22 40 16.24-238.30 | 4219-5219 | 4507
Yellow small 17 32.11-203.73 35 21.66-277.91 | 4217-5174 | 4502

*Number of apatite grains analyzed for (U-Th)/He.
PNumber of apatite grains analyzed for fission track.
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track age of 30.6 Ma) (Donelick et al., 2005). The discrete nature of tracks formed by
spontaneous fission biases the age estimate for grains with zero to few counts. This is less
of an issue in bedrock studies that typically report an average of 20-40 single grain ages
or a pooled age, which is calculated from the sum of spontaneous counts divided by the
sum of induced counts for all grains analyzed per sample. However, in our detrital
approach, we rely on every individual age and therefore apply a 1/2 track correction in
calculating ages, which has negligible effect for grains with large counts (Galbraith,
2005). The average difference between the ages calculated with and without the track

correction is less than 10% among the 275 grains analyzed (Appendix Table AS5.2).

5.5.3 Inverse detrital erosion models

We jointly model AHe and AFT data for each catchment using a Bayesian estimation
technique (Avdeev et al., 2011) to estimate specified erosion models that, in some cases,
allow for changes in spatially uniform erosion rate through time. Estimates of free model
parameters, which are erosion rates (e; in km/My), age of change in erosion rate (o, in
My), and modern elevation of the closure isotherm (4. in km), were obtained (see
supplementary materials and Avdeev et al.,, 2011 for further method details). All
inversion models in this study are based on the following likelihood function that defines
the probability of the observed detrital data given values of model parameters and

hypsometry

Pa (@) =[f pp(h(wW), )dw

w ( 1 )
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where p, is the probability density of observing a detrital grain with age a and is an
integral of the probability of observing this age in bedrock p; over a watershed W where

elevations h(w) are defined by a digital elevation model. The probability of observing a

bedrock age a at the catchment surface is defined by b and its measurement error (s)

where b is a function of the exhumation history of the catchment. We assume that
measurement error has a normal distribution with a mean equal to the true age and a

standard deviation o, thus

pp(h, a) = 1/ 2moexp (—% (a_z(h))z) @

Because we assume a vertical exhumation pathway and a flat closure isotherm, bedrock
cooling ages are invariant in the horizontal direction and thus a function only of
elevation. We rely on approximately twenty individual age analyses per each catchment
and estimate average standard deviation from AHe bedrock age replicates reported
previously from bedrock data in northeastern Tibet (Clark et al., 2010), eastern Tibet
(Kirby et al., 2002) and southeastern Tibet (Clark et al., 2005; Ouimet et al., 2010) and
use it as the uncertainty on detrital ages (22% of age). Error estimation for single fission-
track ages is problematic, especially for grains with low track counts (Galbraith, 2005).

We estimate error along with other model parameters assuming that it is proportional to

the true fission-track age (o=s E) (Avdeev et al., 2011).

Each model specifies priors, which are probability distributions of model parameters
that express prior knowledge. Soft data inputs of this type eliminate unrealistic model
results (e.g., closure isotherm elevations at or above the Earth’s surface, or unreasonably

high erosion rates). In this study, priors for erosion rate in all cases were set uniform
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between 0 mm/yr to 1 mm/yr, which encompasses a wide range of reasonable erosion
rates for high-elevation plateaus such as Tibet. Priors for the age(s) of erosion-rate
change(s) (i.e. “break in slope”) were set uniform between 0 Ma to 65 Ma, allowing for
rate change(s) at any time during the Cenozoic Era. Finally, the priors for the closure
isotherm elevation were assigned as a truncated normal distribution about a mean value,
which was calculated on a per-catchment basis by subtracting 2.2 km and 3.7 km from
the average elevation within the sampled catchment for AHe and AFT respectively.
These closure isotherm depths are based on geothermal gradients across the sampling
transect of 20-35°C/km determined from heat-flow measurements (Hu et al., 2000) in
combination with appropriate ranges in effective closure temperatures of helium in
apatite of 55-75°C, predicted by the RDAMM model (Flowers et al., 2009) assuming
cooling rates, eU, and grain sizes reasonable for this study, and fission-track annealing

temperatures of 100-120°C (Ketcham et al., 2007).

5.6 Results
5.6.1 Detrital cooling ages

The catchments have widely- distributed apatite helium and fission-track ages that
span the entire Cenozoic and into the Mesozoic eras and mean basin-wide elevations of
~4600 m (Table 5.2; Figure 5.6). Cooling-age distributions from the Tsangpo catchment
are more limited, with no AHe ages older than mid-Miocene or AFT ages older than
Eocene (Table 5.2; Figure 5.6). Although the Salween and Yellow small catchments
have broadly ranging age populations that include Mesozoic ages, they have no AHe or

AFT ages younger than Miocene (Table 5.2; Figure 5.6).
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Figure 5.6a. Sampled catchment thermochronometric ages. PDF plots of apatite (U-Th)/He ages
shown in black and apatite fission-track ages shown in gray for studied catch-
ments, south to north. Probability density functions constructed using kernel density estimation.
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b. Catchment Hypsometry
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Figure 5.6b. Sampled catchment hypsometries. PDF plots of elevation within each catchment.
Probability density functions constructed using kernel density estimation.
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Apatite grain quality varies across the sampled catchments from pristine to rounded
(Figure 5.5), yet there is no strong correlation between grain morphology and corrected
helium age and all morphology types yield ages that span the Cenozoic era (Figure 5.7).
Detrital helium results are potentially complicated by the partial or entire loss of the He
depleted rim of apatite due to abrasion during transport. Abrasion may alter crystal shape
such that the analyzed and original grain shapes are significantly different, thereby
complicating the Ft correction (Rahl et al., 2003). The majority of uncorrected AHe ages
(Table 5.2) are younger than the depositional age of most sedimentary units (Paleozoic
and early Mesozoic) mapped throughout the study area (Pan et al., 2004) (Figure 5.4),
which suggests that rocks were buried and heated after sedimentary deposition to
temperatures greater than 70°C. Additionally, a strong positive correlation between grain
quality and bedrock geology (Table 5.2) suggests that the majority of the
rounding/clouding in highly weathered grains probably occurred before deposition in pre-
Cenozoic sedimentary basins rather than from more recent weathering and river transport.
Because grains are likely reset with respect to the AHe system, we apply the full alpha-

ejection correction to all analyses.

5.6.2 Modeled erosion histories

We jointly inverted AHe and AFT data for each individual catchment assuming three
erosion scenarios: (1) constant erosion rate through time (2) two distinct erosion rates in
time and (3) three distinct erosion rates in time. We found that including more than three
distinct periods of erosion did not provide additional information (i.e. additional periods

produced similar erosion rates). The fit of models to data is evaluated by comparing
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Apatite Morphology vs. Helium Age
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cumulative probability distribution from the actual samples to those of synthetic samples
generated from model parameters using a goodness-of-fit plot (Avdeev et al., 2011). All
reasonable models should produce synthetic data that are similar to observed data;
therefore, overlap of the two sample suites indicates an acceptable model fit. Inability to
find reasonable fits for proposed models likely invalidates the tested erosion history or
model assumptions. Model estimates of erosion rates over various intervals and timing of
rate changes for all catchments individually are reported as 95% confidence intervals

(Table 5.3).

5.6.2.1 Constant erosion rate through time
Initially, we constrain a constant exhumation model assuming that erosion rate does not
change through time within the catchments. In this scenario, bedrock ages (h(w) in Eq. 2)

are described by a piecewise linear function of elevation with one segment:
b (h.) = he 3)

where e is the slope. Model results are displayed as a series of plots (Figure 5.8). Panel a.
shows cooling pathways predicted for AHe (blue lines) and AFT (green lines) plotted on
a graph of age versus elevation. Panel b. is a cumulative probability density plot
displaying the observed AHe (blue dots) and AFT (green dots) detrital ages and synthetic
data (gray band) generated using results of predicted model parameters. Model fidelity is
judged by visual comparison of the observed data and simulated data, with high degree of
overlap between the dots and the swath indicating an acceptable model fit. Panels c. and
d. show the relative probability of predicted erosion rate and closure isotherm elevation

for AHe (blue) and AFT (green). Model runs that include changes in erosion rate will
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Model results: Constant erosion rate through time
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Figure 5.8. Model results of joint AHe and AFT inversion assuming a constant erosion
rate through time. Panel a) plots of age (Ma) against elevation (km), blue lines represent
AHe cooling pathways and green lines represent AFT cooling pathways. Panel b) “Good-
ness of Fit” plots: cumulative probability density plots showing actual AHe (blue dots) and
AFT (green dots) ages and swaths of synthetic AHe (blue) and AFT (green) data. Because
reasonable models should produce synthetic data that are similar to observed data, overlap
of the two sample suites indicates an acceptable model fit. Panel c) Relative probability of
erosion rate (mm/yr). Panel d) Relative probability of closure isotherm elevation (km) for
AHe (blue) and AFT (green).
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have an additional panel showing the relative probability of the timing of the rate
change(s) (Figures 5.9-5.13).

Strong mismatch between predicted synthetic data and observed data suggests that the
constant erosion model is unsuitable for all of the catchments with two exceptions in the
southern part of our study area (Figure 5.8b). The Tsangpo catchment is reasonably well
described by a constant erosion rate of 0.28-0.41 mm/yr (Figure 5.8, Table 5.3). The
goodness-of-fit plot for the Salween catchment also shows that these data are reasonably
fit by a constant erosion rate model with an erosion rate of 0.04-0.06 mm/yr (Figure 5.8,

Table 5.3).

5.6.2.2 Two-stage erosion history
Next we assume a two-stage exhumation model assuming bedrock ages are described
by a piecewise linear function of elevation with two segments:
b (h.) = (he— he))ler, b >ap,

(h. — heo)les, b <Qpy (4)
where ¢; is the slope and /; is the intercept of each segment and ay, is the age of the break
in slope. Goodness-of-fit plots show that an erosion history with an increase in erosion
rate is reasonable for all of the catchments (Figure 5.9b). Although the constant erosion
rate model provided a reasonable fit to the Tsangpo and Salween data, adding a break in
slope results in a better fit to the oldest ages in these samples, thus we prefer a two-stage
model for these catchments. Assuming a single break in slope occurred, four of the
catchments (Tsangpo, Mekong, Yangtze, and Yellow) have relatively narrow probability

peaks for the timing of erosion-rate change suggesting that the erosion rate, which was
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Model results: One discrete change in erosion rate through time
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Figure 5.9. Model results of joint AHe and AFT inversion assuming one discrete change in erosion rate
through time. Panel a) plots of age (Ma) against elevation (km), blue lines represent AHe cooling pathways
and green lines represent AFT cooling pathways. Panel b) “Goodness of Fit” plots: cumulative probability
density plots showing actual AHe (blue dots) and AFT (green dots) ages and swaths of synthetic AHe (blue)
and AFT (green) data. Because reasonable models should produce synthetic data that are similar to observed
data, overlap of the two sample suites indicates an acceptable model fit. Panel c) Relative probability of
erosion rate (mm/yr). Initial erosion rate is shown as light gray line and post-change erosion rate is shown in
black. Panel d) Relative probability of timing of erosion rate change (Ma). Panel E) Relative probability of
closure isotherm elevation (km) for AHe (blue) and AFT (green).
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slow (0.003-0.01 mm/yr), increased at least an order of magnitude (0.1-1 mm/yr)
sometime between 17 and 4 Ma (Figure 5.9, Table 5.3). The Yalong River shows an
increase in erosion rate from 0.003-0.005 mm/yr to 0.06-0.72 mm/yr between 24 and 3
Ma (Figure 5.6). The change in erosion rates from 0.003-0.03 mm/yr to 0.05-0.73 mm/yr
and 0.003-0.009 mm/yr to 0.05-0.49 mm/yr for the Salween and Yellow small
catchments are less precisely constrained between 61-3 and 58-4 Ma respectively (Figure

5.6; Table 5.3).

5.6.2.3 Three-stage erosion history
Bedrock ages described by a piecewise linear function of elevation with three
segments (i.e. two breaks in slope) can be expressed as:
b (he) = (he— hep)ler, b >apy

(he— hes)les, b <aprq > apy

(h.— h.3)les, b <Apyo (5)
With one exception (Yangtze), results from this model do not show significant
improvement in goodness of fit from two-stage models and relative probabilities of
timing of the first and second breaks in slope overlap (Figure 5.10b). In the Yalong case,
precision on the timing of rate changes is reduced as the window of ages within the 95%
confidence interval spans almost the entire Cenozoic (Figure 5.10d; Table 5.3). For these
reasons, we prefer the two-stage erosion rate models for all catchments except for the
Yangtze. The Yangtze catchment data is well fit by a three-stage erosion history with an

initial increase in erosion rate from 0.001-0.002 mm/yr to 0.08-0.18 mm/yr at 60-54 Ma
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Figure 5.10. Model results of joint AHe and AFT inversion assuming two discrete changes in erosion rate
through time. Panel a) plots of age (Ma) against elevation (km), blue lines represent AHe cooling pathways
and green lines represent AFT cooling pathways. Panel b) “Goodness of Fit” plots: cumulative probability
density plots showing actual AHe (blue dots) and AFT (green dots) ages and swaths of synthetic AHe (blue)
and AFT (green) data. Because reasonable models should produce synthetic data that are similar to observed
data, overlap of the two sample suites indicates an acceptable model fit. Panel c) Relative probability of
erosion rate (mm/yr). Initial erosion rate is shown as light gray line, rate post first erosion-rate change is
shown in black, and rate post second erosion-rate change is shown as black dashed line. Panel d) Relative
probability of timing of erosion rate change (Ma). Timing of first change in erosion rate shown in light gray
and timing of second change in erosion rate is shown in black. Panel E) Relative probability of closure
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followed by a second and larger increase to erosion rates of 0.21-0.44 mm/yr at 12-6 Ma

(Figure 5.10; Table 5.3).

5.6.2.4 Common erosion history among catchments

The overlap in timing (late Miocene to early Pliocene) of an increase in erosion rates
shown by individual catchment models suggests a synchronous erosion history across the
sampling transect. In order to test this hypothesis, we considered all of the data together
in a single model. Essentially, a larger dataset may allow us to more precisely constrain
the timing of rate change. The common erosion model assumes that all catchments
experienced an increase in erosion rate at the same time and allows for three linear
segments, the most flexible model that was found prior. Model results show reasonable
fits to data with an increase in erosion rate across all catchments at 11-4 Ma (95%
confidence; Figure 5.11, Table 5.4). Results also show an earlier change in erosion rate at
60-54 Ma (95% confidence; Figure 5.11, Table 5.4). The goodness-of-fit plots
demonstrate that this erosion history is permissible for all of the catchments. However,
because only the Yangtze catchment showed two distinct peaks in timing of erosion rate
increase in individual modeling (at 60-54 Ma and 12-6 Ma, see section 5.6.2.3), the
timing of the initial break in slope for the common erosion model may be weighted by

this catchment.

5.6.3 Comparison of joint versus independent AHe and AFT inversions
In theory, analysis of minerals from the same sample with multiple

thermochronometers should resolve consistent erosion histories when modeled
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Model results: common timing of erosion-rate change
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Figure 5.11. Model results of inversion using all of the data assuming that catchments share a
common erosion history. Panel a) plots of age (Ma) against elevation (km), blue lines represent AHe
cooling pathways. Panel b) “Goodness of Fit” plots: cumulative probability density plots showing
actual AHe (blue dots) ages and swaths of synthetic data. Because reasonable models should produce
synthetic data that are similar to observed data, overlap of the two sample suites indicates an accept-
able model fit. Panel c) Relative probability of erosion rate (mm/yr). Initial erosion rate is shown as
light gray line and post-change erosion rate is shown in black. Panel d) Relative probability of timing
of erosion rate change (Ma). Note that the earlier break in slope at 60-54 Ma is an artifact of the
model (see text for details). Panel ) Relative probability of closure isotherm elevation (km) for AHe
(blue).
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Model results: One discrete change in erosion rate through time

(AHe only)
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Figure 5.12. Model results of AHe only inversion assuming one discrete change in erosion rate through
time. Panel a) plots of age (Ma) against elevation (km), blue lines represent AHe cooling pathways. Panel b)
“Goodness of Fit” plots: cumulative probability density plots showing actual AHe (blue dots) ages and swaths
of synthetic data. Because reasonable models should produce synthetic data that are similar to observed data,
overlap of the two sample suites indicates an acceptable model fit. Panel c) Relative probability of erosion
rate (mm/yr). Initial erosion rate is shown as light gray line and post-change erosion rate is shown in black.
Panel d) Relative probability of timing of erosion rate change (Ma). Panel e) Relative probability of closure
isotherm elevation (km) for AHe (blue).
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Model results: One discrete change in erosion rate through time

(AFT only)
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Figure 5.13. Figure 5.13. Model results of AFT only inversion assuming one discrete change in
erosion rate through time. Panel a) plots of age (Ma) against elevation (km), green lines represent AFT
cooling pathways. Panel b) “Goodness of Fit” plots: cumulative probability density plots showing actual
AFT (green dots) ages and swaths of synthetic data. Because reasonable models should produce synthetic
data that are similar to observed data, overlap of the two sample suites indicates an acceptable model fit.
Panel c¢) Relative probability of erosion rate (mm/yr). Initial erosion rate is shown as light gray line and
post-change erosion rate is shown in black. Panel d) Relative probability of timing of erosion rate change
(Ma). Panel e) Relative probability of closure isotherm elevation (km) for AFT (green).
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independently, though AFT and AHe data will be sensitive to older and younger erosion
events respectively due to differences in closure temperature. For comparison, we present
results of independent AHe and AFT inversion models assuming one discrete change in
erosion rate in time (Figure 5.12-5.13; Table 5.3). In general, the independent AHe and
AFT models are compatible with one another and with a late Cenozoic increase in
erosion rate interpreted from joint inversions using both thermochronometers (Figure
5.9). Joint inversions increase the precision of estimated parameters compared to models
using AHe or AFT data independently.

Comparison of independent AHe and AFT modeling results also sheds light on
potential point-source biases in the Yellow small catchment. Results show a different
AHe age distribution and model result between this catchment and the adjacent larger
Yellow River (Figure 5.6, 5.12, Table 5.2), yet fission-track age distributions and model
results are very similar between the two (Figure 5.6, 5.13, Table 5.2). One possible
explanation for this discrepancy relates to point-source biasing of apatite of the correct
size and quality required in helium analysis. Only two mapped geologic units comprise
the smaller Yellow drainage basin: Jurassic granite of Mt. Lunag Dungze (between 4600
m and 5200 m elevation) and Triassic marine facies (below 4600 m elevation; Figure
5.4h). Given this geologic pattern and the smaller size of this catchment, it is possible that
apatite suitable for helium dating is not well distributed within this catchment. Rather, the
sample may be dominated by grains from granitoid rocks present at higher elevations,
causing a disproportionate influx of older ages. Bedrock data would allow for further

assessment of the validity or degree of such biasing.
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Table 5.4 Common erosion history model results summary

Joint inversion

Catchment
Name abr' abr? e e’ e
Tsangpo 54-60 4-11 0.05-1 0.002-0.12 0.33-0.67
Salween 54-60 4-11 0.0005-0.27 0.02-0.07 0.002-0.02
Mekong 54-60 4-11 0.002-0.007 0.009-0.02 0.2-0.58
Yangtze 54-60 4-11 | 0.0006-0.001 0.01-0.02 0.23-0.63
Yalong 54-60 4-11 0.002-0.004 0.004-0.04 0.08-0.63
Yellow 54-60 4-11 0.002-0.005 0.002-0.007 0.22-0.67

Yellow small 54-60 4-11 0.002-0.006 0.008-0.06 0.002-0.4

abr* age of first erosion rate change.

2 .
abr” age of second erosion rate change.

e, earliest erosion rate.

e, erosion rate after first change.

e; erosion rate after second change.
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5.6.4 Model assumptions

Fast exhumation can result in heat advection that significantly alters the thermal field
thereby invalidating the assumption of constant geothermal gradient in time and
complicating interpretation of erosion rates from age/elevation relationships. However, a
geotherm approximated as constant is appropriate in this study because a combination of
maximum possible erosion rates (<1 mm/yr) and cooling duration (<15 Myr) yields
<20% increase in thermal gradient (Ehlers, 2005).

Quantitative predictions of variable erosion rates are not possible using previous
approaches to detrital thermochronometry because these methods necessitate the
assumption of exhumational steady state (Ruhl and Hodges, 2005; Brewer et al., 2003).
Statistical tests outlined in Ruhl and Hodges (2005) provide a means to assess the steady-
state assumption but not to directly estimate rates during the different erosive stages. As
we have shown in section 6.2.1. and 6.2.2., the Tibet detrital data are in general poorly fit
by a constant erosion rate therefore violating a steady-state condition. If constant erosion
rates were assumed despite this obvious misfit, calculated erosion rates using methods
outlined in this paper and these previous methodologies would be similar and would
underestimate true late Cenozoic erosion rates by an order of magnitude (1072 vs. 10™
mm/yr).

A wide range in AHe and AFT ages and weak correlation between apatite morphology
and AHe age supports our assumption that analyzed grains are broadly sourced from
within the catchment and that the numbers of grains analyzed are sufficient to

characterize catchment age distributions. Goodness-of-fit plots of model results show that
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sample sizes of ~20 grains per catchment are large enough to reject a constant erosion
rate model and to estimate reasonable exhumation parameters for the two-and three-stage
erosion histories for most catchments (Figures 5.8-5.13). Models with more than three
stages of erosion do not produce significantly different erosion histories. Thus, the model
results shown here provide reasonable first order interpretations of the data. Comparison
of the Mekong and neighboring Mekong(b) catchment, which share similar erosion
histories, further supports the reliability of our sample size. Due to low apatite yields,
Mekong(b) has no fission-track ages and 50% fewer AHe ages. Both Mekong(b) (AHe
N=10) and Mekong (AHe N=20) are well fit by a two-stage erosion history with a late
Cenozoic increase in erosion rate (Figure 5.11), though the larger sample size for the
Mekong does result in a higher precision estimate of the timing of erosion-rate increase

(15-10 Ma as opposed to 20-1 Ma for Mekong(b)).

5.7 Discussion

Erosion histories from the externally drained portion of the Tibetan Plateau
potentially provide a record of surface uplift and climate conditions during orogen
evolution, though erosion histories alone do not uniquely indicate a given tectonic or
climatic scenario. Specifically, our samples should be sensitive to expansion of high
topography related to plateau growth following continental collision. In addition, because
the catchments we study are at or near the headwaters of major rivers that drain off the
plateau, erosion histories are also potentially sensitive to upstream propagation of erosion
signals that originate on the plateau perimeter. By comparing our results to studies on the

same rivers at the plateau margins, we can evaluate whether or not the subdued
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topography of the interior of Tibet is isolated from erosion rates affecting its margins.
Isolation from base-level changes by either slow or stalled knick-point propagation
(Ouimet, 2007; Whipple, 2010) has been suggested as a means by which the interior of
Tibet has been or will continue to be protected from erosion allowing the plateau to
remain high and relatively flat.

Despite differences in precipitation, mean drainage-basin slope and relief, catchments
spanning over 6° latitude share similar erosion histories (Figures 5.2 and 5.14). To first
order, regional slow erosion for much of the Cenozoic must be followed by a recent and
widespread increase in erosion rate in order to preserve both old and young ages observed
in each individual catchment. Inverse modeling results confirm that data are poorly fit by
a constant erosion rate model (Figure 5.8) and instead require increases in erosion rate
since at least the mid-to-late Miocene in order to adequately describe the data (Figure
5.14). Posterior probabilities of the timing of increased erosion are centered during the
mid-to-late Miocene for four of the studied catchments (Tsangpo, Mekong, Yangtze,
Yellow) indicating a regional pattern of increased erosion rate beginning over a 7 Myr
period (Figure 5.14). Such an erosion history is also permissible by the other large
catchments studied (Salween, Yalong), although the lack of ages younger than 13 Ma in
these catchments do not allow precise constraints on the timing of rate change.

Sample sites within the center of the study transect along eastward draining rivers
appear to have an earlier onset of increased erosion rate (mid-to-late Miocene) as
compared to sample sites on the northern and southern edges of the plateau (Miocene to
early Pliocene) (Figure 5.14a). The 11-4 Ma age range found from a common-erosion

history model for all of the catchments may encompass real variability in the timing of
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Figure 5.14. a) Summary plot of the timing of late Cenozoic erosion rate increase
within large catchments studied. The x-axis plots the catchments in order from south
to north with distance away from the eastern syntaxis (black star in Figure 5.2b shows
the start location of the projected distance line). Error bars reflect catchment width.
The y-axis shows the age range (within 95% confidence) in Ma for each catchment
determined from preferred model results (Table 5.3). b) Plot of mean annual precipita-
tion rate (mm/yr) across each catchment (Matsuura and Willmott, 2007) against late
Cenozoic erosion rate (mm/yr) within 95% confidence (Table 5.3). Ranges in precipi-
tation rate reflect the minimum and maximum cell values within each catchment
(Figure 5.2d). Note the lack of obvious positive correlation between precipitation and
erosion rates as is expected (see text for details).
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erosion rate change within 7 Myr or may be due to imperfect sampling of catchment
surfaces. If the age variability is real, we imagine either a time-transgressive response of
individual fluvial systems to common base-level change or uplift event, or true spatial
variability in tectonic or climatic forcing across the plateau interior. Future work,
including additional analyses from these samples and other smaller catchments along the
study transect, may potentially highlight important nuances in the erosional response to
forcing, geomorphic processes, and details in the spatial variability of the tectonic record.

An earlier erosion event at 60-54 Ma is observed in the Yangtze catchment, though of
lesser magnitude than the late Miocene event. Models that allow for two breaks in slope
do not produce significantly better data fits for the other individual catchments. Yet, the
simultaneous inversion of all data assuming a common erosion history shows that a
widespread change in erosion rate at ~55 Ma is permissible, albeit the erosion rates still

remain fairly low (<0.1 mm/yr).

5.7.1 Implications with respect to previous Tibetan erosion studies

Extensive preservation of low-relief relict-landscape remnants (Clark et. al., 2006),
knickpoints in river profiles, and variability in short-term erosion rates have been cited as
evidence that late-Miocene incision of the eastern margin of the Tibetan Plateau has yet
to equilibrate throughout the landscape (Clark et al., 2006; Ouimet et al., 2010). Ouimet
et al. (2010) also proposed that the erosion increase on the eastern plateau margin has not
yet propagated into the headwaters of the major rivers. Similarity in timing between our
results and accelerated erosion downstream suggests an incision signal has in fact reached

the headwaters of eastern Tibet rivers. Elevation transects of apatite and zircon helium
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and apatite fission track collected over short horizontal distances in the Dadu, Yalong,
and Yangtze River gorges (Clark et al., 2005; Ouimet et al., 2010), in the Longmen Shan
(Kirby et al., 2002; Godard et al., 2009b), and from a regional study of the eastern plateau
margin (Wilson and Fowler, 2011) (Figure 5.2a) record an onset of rapid fluvial incision
into a regional low-relief surface across the eastern margin of the Tibetan Plateau
between 15 and 5 Ma compared to between 11 and 4 Ma from the detrital data presented
here. Bedrock data from elevation transects show a change in erosion rate from 0.01-0.06
to 0.25-5 mm/yr compared to catchment-wide increases in erosion rate from a slowly-
eroding landscape (~0.005 mm/yr) to ~0.2-0.6 mm/yr from this study. The similarity in
timing between our results and accelerated erosion downstream suggests that the
relatively low-relief interior of east-central Tibet is not protected from dissection by slow
or stalled knickpoint migration along trunk rivers (Ouimet et al., 2007; Korup and
Montgomery, 2008). Similar to reaches on the plateau perimeter, isolated relict surface
remnants and early Cenozoic to Mesozoic helium ages in the headwater region suggest
that the landscape is adjusting to new conditions (Clark et al., 2005; Ouimet et al., 2010).
Mesozoic (U-Th)/He cooling ages and fission-track ages across eastern Tibet also
preclude significant burial of the high-plateau surface as suggested by Liu-Zeng et al.,
(2009).

Estimates of long-term erosion rates since late Miocene time from low-temperature
thermochronology are consistent with short-term (10*-10° yr) erosion rates measured with
cosmogenic '’Be within the Dadu, Yalong, and Yangtze gorges (~0.3-0.5 mm/yr)
(Ouimet et al., 2009) as well as the headwaters of the Salween, Mekong, and Yalong

rivers (~0.1-0.2 mm/yr; Figure 5.4 in Henck et al., 2011). However, millennial erosion
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rates vary locally from 0.01-8 mm/yr within the Three Rivers Region, an area of focused
high rock-uplift rates (Henck et al., 2011).

The Tsangpo River has a much more limited range of AHe and AFT ages (22 — 2 Ma)
and significantly higher catchment relief (Figure 5.2, 5.6), despite broadly similar timing
and rates of increased erosion as compared to the other catchments. Higher erosion rates
from the early Miocene to the late Miocene (~0.1 mm/yr compared to ~0.005 mm/yr;
Figure 5.9) likely contribute to the difference in relief between this catchment and the
others. Erosion events that account for 1-2 km of exhumation since 2 Ma (i.e. more recent
than the youngest thermochronometric ages measured) cannot be resolved with our
approach. Thus, it is possible that modern and/or Quaternary erosion rates are also higher
within this catchment due to glaciation and/or the northward expansion of the eastern
Himalayan syntaxis (Seward and Burg, 2008). It is also noteworthy that we find erosion
rates of ~0.4 mm/yr within the Tsangpo catchment (Figure 5.9). Thus, despite its
proximity to the eastern Himalaya indenter corner, very rapid exhumation rates (3-5
mm/yr) (Burg et al., 1997; 1998) are locally confined to within ~60 km of Namche
Barwa (Seward and Burg, 2008), and do not extend (yet) throughout the catchment, at
least on geologic timescales.

Rates of clastic sediment accumulation offshore of Southeast Asia have been used as
proxies for rates of continental erosion (Clift et al., 2002; Clift, 2006, Clift et al., 2006).
Recent sediment budgets derived from compilations of seismic data from Asian marginal
seas show that sediment flux first peaked in the early-middle Miocene, which is thought
to relate to increases in precipitation and possibly rock-uplift rate (Clift, 2006). Our

results indicate slow erosion within east-central Tibet before the late Miocene. Thus, the
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pulse of sedimentation offshore is not correlative with an erosion event in the headwaters

of the Tibetan Plateau at this time.

5.7. 2 Impact of climate on Tibetan Plateau erosion rates

Our results show no obvious correlation between erosion and precipitation rates across
the study site or when comparing the high plateau to the wetter eastern plateau margin.
Modern mean annual precipitation amounts increase across the study transect from south
to north (~600 mm/yr in the south to ~300 mm/yr in the north (New et al., 2002)).
Isotopic evidence supports that the northern plateau was arid by Neogene time (Kent-
Corson et al., 2009), which suggests that modern trends in precipitation existed in the
geologic past. A correlated pattern of northward-decreasing erosion rates is not borne out
in our results (Figure 5.14b). Instead, the catchments with the highest erosion rates
(Tsangpo and Yellow) are in the wettest and driest regions, respectively (Figure 5.2,
Table 5.3). These catchments are also characterized by extremes in mean catchment relief
and slope (Figure 5.2). Moreover, erosion rates from our sites on the Tibetan Plateau
highland are very similar to rates from the high-precipitation eastern plateau margin
(>1000 mm/yr mean annual precipitation (New et al., 2002)).

The shift to increased erosion rates between 11-4 Ma overlaps broadly with the timing
of various purported climate changes in Asia at about 10 Ma, many of which have been
linked with strengthening monsoon intensity (see review by Molnar et al., 2010 and
references therein). However, correlating climatic events with changes in erosion rates is
difficult in the east-central Tibetan Plateau. Although in some cases increased

precipitation has been shown to drive enhanced erosion (e.g., Brozovic et al., 1997;
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Montgomery et al., 2001; Reiners et al., 2003; Theide et al., 2004), our results are
consistent with other studies that suggest that there is not always a direct influence of
precipitation on erosion rates (e.g., Riebe et al., 2001; Burbank et al., 2003; Finnegan et
al., 2008; Binnie et al., 2010; Henck et al., 2011). Relating erosion rate changes to
climatic events is further complicated by complex moisture source interactions in this
region (e.g., Hren et al., 2009), particularly with respect to the monsoonal systems. The
Asian monsoon systems surely influence study catchments but not necessarily to the
same degree across the sampling transect. Furthermore, a lack of understanding as to how
the monsoonal systems along the eastern plateau have evolved through time yields even
greater uncertainty in speculating the role of climate change on erosion history in this
region.

Although erosion histories alone cannot be used to definitively discern the relative
roles of climatic and tectonic processes, it is unlikely that monsoon strengthening is the
sole driver of the observed increase in erosion rates at 11-4 Ma. Attributing erosion-rate
increases exclusively to climatic changes requires that high topography existed in the
east-central plateau prior to at least the middle Miocene. Our results show constant low
erosion rates throughout the early and middle Cenozoic. Thus, creation of this high
topography prior to 11-4 Ma would have occurred without discernable widespread
increases in erosion rate, which seems improbable. If the rivers of this region were
internally drained in the past, surface uplift could occur without discernable increases in
erosion rate. However, there is no evidence in the large-scale drainage patterns to suggest
major reorganization from isolated paleo-basins to the current externally-drained system

(Clark et al., 2004). Perhaps a more likely scenario is that the creation of high
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topography, changes in climate, and increased erosion rates are linked such that both
surface uplift and an associated stronger monsoon system acted in concert to drive higher

erosion rates across east-central Tibet.

5.7.3 Tectonic interpretation of Tibetan Plateau erosion patterns

A common prediction of many tectonic scenarios for Tibet is the northward
propagation of topography since collision time. If the onset of increased erosion rates
across the east-central Tibetan Plateau interior is interpreted as a proxy for the timing of
significant elevation increase, the spatial patterns in erosion documented here challenge
competing descriptions of plateau development. Mechanical and geodynamic models of
Tibetan Plateau formation as disparate as localized shear and stepwise growth (e.g.,
Tapponnier et al., 2001), distributed shortening and thickening of Asian lithosphere (e.g.,
England and Houseman, 1986), and underthrusting of Indian crust and/or lithosphere
(e.g., Powell, 1986) share the common prediction of topographic growth progressing
northward away from the collision boundary with time. If Tibet grew by appending
material to a northward-expanding deformation front starting with initial collision circa
50 Ma, then we expect a similarly migrating front of high erosion rates either
continuously or in stages. Results from this study, which document relatively uniform
rather than spatial or temporal progressions in timing or rates of erosion, are inconsistent
with this prediction across the east-central high plateau.

Nor do our results support the proposition of widespread surface uplift of the eastern
plateau at 40 Ma (Chung et al., 1998) or that an early Cenozoic central nucleus of high

topography grew outward to the south and north as collision progressed (Wang et al.,
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2008). An Eocene increase in erosion rate within the Yangtze and possibly the other
catchments, is roughly coincident with the timing of Indo-Asian collision (Rowley, 1996;
1998). Fault studies in the Yushu-Nanggian region in close proximity to the Yangtze
catchment, suggest contractional deformation from prior to 50 Ma to 37 Ma (Spurlin et
al., 2005). Eocene faulting thought to be related to collision has also been identified
across the northern margin of Tibet (Yin et al., 2008; Clark et al., 2010; Duvall et al.,
2011) and in the Fenghuo Shan-Nangqian thrust belt in central Tibet (Horton et al., 2002;
Liu et al., 2003; Wang et al., 2008). A subtle Eocene increase in erosion rate could
signify widespread faulting close to collision time, but we suggest that it was not
accompanied by regional surface uplift that affected the eastern plateau.

We find that the timing of increased erosion rate is similar across the length of our
sampling transect. Thus, our results are generally consistent with processes thought to
result in wide-spread, uniform surface uplift such as loss of a mantle root (Molnar et al.,
1993), injection of Indian crust into Tibetan lower crust (Zhao and Morgan, 1987), or
channel flow (Bird, 1991; Royden, 1996; Clark and Royden, 2000; Royden et al., 2008).
Late Miocene initiation of major river incision within the easternmost margin of Tibet
(Figure 5.2) (Clark et al., 2005; Ouimet et al., 2010; Wilson and Fowler; 2011) has been
proposed to relate to broad uplift due to crustal thickening by lower crustal flow (Clark
and Royden, 2000; Kirby et al., 2002; Clark et al., 2006; Royden et al., 2008; Ouimet et
al., 2010). A late-Miocene shift to increased erosion rate is also observed along our study
transect (Figure 5.14a) and the magnitude of erosion rates after this shift is similar in each
region, suggesting surface uplift related to lower crustal flow may also have influenced

the east-central Tibetan Plateau. Due to the relatively broad range in estimated timing of
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onset of increased erosion rates in both locations (15-5 Ma in the eastern margin of the
Tibetan Plateau and 11-4 Ma from this study), we cannot conclude if increased erosion
rates occurred truly simultaneously or if rates increased first in the east and then later in
the west as knickpoints moved upstream or if a rate increase propagated from west to east
relating to a migrating front of lower-crustal material. Testing specific predictions of
west-to-east (or vice versa) propagation within a 10 million year window requires more

precise estimates in timing.

5.8 Conclusions

This study determines patterns in erosion rates and timing of erosion-rate change
across the east-central Tibetan Plateau interior by measurements of low-temperature
thermochronometry in detrital apatites collected from modern river sands. The following
points summarize the main conclusions from this work, which have implications
regarding Tibetan Plateau tectonic and geomorphic evolution.

1. AHe and AFT ages range widely within all but one of the large catchments
studied, which suggests that erosion histories are relatively uniform among
catchments that span the entire width of the east-central Tibetan Plateau.
Generalized modeling results show slow erosion until the late Cenozoic (11-4
Ma) when an abrupt increase to faster erosion rates (~0.2-0.6 mm/yr)
occurred. The timing and rates of increased erosion found in this study also
overlap results from the eastern plateau margin.

2. Uniform, slow erosion across much of Tibet until the late Cenozoic does not

support a steep propagating plateau migrating to the north from collision time,
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as is predicted for many geodynamic and mechanical descriptions of plateau
evolution.

. Although we cannot definitively distinguish between tectonic and climatic
influences on the erosion record from this dataset alone, our results are
consistent with broad surface uplift as the main driver of late Cenozoic
erosion rate increase. We suggest that regional uplift potentially relates to flux
of lower crustal material into this region, driving widespread and abrupt
increases in erosion rate across the east-central Tibetan Plateau. We also relate
a smaller-magnitude Eocene erosional event to local surface faulting
associated with Indo-Asian plate collision.

We find no obvious correlation between erosion rate and precipitation either
across the study site or when comparing to erosion rates within much wetter
parts of the plateau (i.e. the eastern plateau perimeter). Erosion rates and
timing of rate increases are commensurate along upstream and downstream
sections of the major rivers draining Tibet. Thus, fluvial reaches within the
Tibetan highlands are not isolated from base-level changes by a migrating
knickpoint that has yet to drive into the headwaters regions, as has been

thought previously.
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Appendix: Chapter V

This appendix contains three tables. Table A5.1 contains the detailed results of apatite
(U-Th)/He analyses for all catchments studied. All samples were analyzed at the Noble
Gas Laboratory, California Institute of Technology. Table A5.2 contains the detailed
results of apatite fission-track analyses for all catchments with exception to the
Mekong(b) due to low apatite yields. All analyses were completed by A to Z, Inc. Table
AS5.3 contains the detailed results from zircon U-Pb dating for two catchments: 07TS06
(Yellow River) and 07TS12 (Yangtze River). All analyses were completed at the

University of Arizona LaserChron Center.
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Chapter VI

Synopsis and Conclusions

6.1 Summary of primary dissertation results

This dissertation includes new results and interpretations with the aim of constraining
the structural and topographic evolution of the Tibetan Plateau at two scales. Detailed
studies along the northeastern margin of Tibet (Chapters II-IV) yield new timing of major
faults, from which I interpret the kinematic framework for structures within this region.
Integration of this work yields a comprehensive description of the deformation history of
this part of the Tibetan orogen over the last 50 Ma. The broad-scale plateau-wide study
presented in Chapter V offers a broader context for the work in Chapters II, III, and IV.
New detrital low-temperature thermochronometry data coupled with a recently developed
inverse-modeling approach provides estimates of long-term erosion rates and the timing
of initiation of river incision from across the interior of the Tibetan Plateau (Chapter V).
The results of this work have implications for validation of previously proposed
geodynamic and mechanical models of plateau growth as well as climatic influences on

erosion rates within Tibet.
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6.1.1 Chapter 11

Analysis of geodetic velocities, Quaternary fault slip rates, and structural patterns
reveals the modern deformation field in the northeastern margin of the Tibetan Plateau.
Results from this work demonstrate that fast slip on the left-lateral Kunlun fault (>10
mm/yr) is transferred northward, in the direction of plate convergence, rather than
eastward. Specifically, deformation is partly accommodated by the left-lateral Haiyuan
fault and intervening faults in a regional step-over, and partly by distributed extensional
faults or block rotation farther north. This interpretation of slip dissipation explains both
the distribution and sense of motion on faults that lie between the Kunlun and Haiyuan
faults as well as extensional faulting in the northern plateau foreland. Furthermore, the
transfer of Kunlun fault motion northward over 500 km suggests that a wide deforming
zone develops in a region of weak lower crust. These findings do not support the notion
of eastward extruding crustal blocks toward a lateral “free” boundary (Tapponnier et al.,
1982).
6.1.2 Chapter 111

Dating of illite in fault gouge from the West Qinling reverse fault in northern Tibet
suggests fault motion was ongoing at 50 + 8 Ma. This age, together with erosional
constraints from adjacent hanging-wall rocks, indicates that faulting initiated near to the
time of India-Eurasia collision and continued until at least the middle Miocene epoch.
These findings offer definitive evidence for Eocene-age reverse faulting within the
northeastern Tibetan Plateau and, along with reported ages on thrust faults near the

Qaidam Basin (Clark et al., 2010; Yin et al., 2008), suggests that compressive
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deformation across a significant portion of the northern margin of the plateau initiates
within 10 myr of the initial plate collision.

This work demonstrates the advantages of pairing fault-gouge dating and low-
temperature thermochronometry in order to elucidate a comprehensive and unambiguous
interpretation of fault zone history difficult to infer from the erosion record or fault ages
alone. Results from this study also have implications for the fault-gouge dating technique
in general. Data demonstrate that the YA Ar age of authigenic illite represents a single
interval in West Qinling fault history rather than an amalgamation. These results also
show that the fault-formed illite age does not always represent the latest phase in fault
motion as has been proposed previously (Solum et al., 2005; Haines and van der Pluijm,
2008). Authigenic illite growth appears to be restricted to a thermal window during the
fault history (108 +/- 10 °C), thus the stage of faulting recorded will vary among sample
sites depending, at least in part, on thermal history.

The potential for temperature to control illite growth has implications for
interpretation of authigenic illite ages and their relationship to deformation episodes
within fault zones. The authigenic illite formation temperatures estimated in this study
are similar to the thermal range of two of the most commonly applied
thermochronometers, apatite helium (~ 60 — 70 °C) and apatite fission track (~ 110 °C).
Thus, comparison among results from these techniques provides a powerful means to
assess upper crustal deformation. Constraints on the relatively narrow temperatures of
authigenic illite growth also permit targeted sampling of clays in fault gouge that
correspond to particular periods of fault motion if the exhumation history of potential

sample sites is reasonably well known.
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6.1.3 Chapter IV

New low-temperature thermochronometry ages and geologic observations date
periods of exhumation associated with transpressional deformation along the Kunlun and
Haiyuan left-lateral faults, two major faults within the northeastern margin of the Tibetan
Plateau. Results suggest that Kunlun fault motion initiated first along the central fault
segment at approximately 20 Ma and then progressed to the west (12-8 Ma) and east (8-5
Ma) as the fault zone evolved. This history differs from earlier studies that proposed
eastward fault propagation (Meyer et al., 1998; Metivier et al., 1998) and an Eocene onset
of faulting along the western fault segment (Jolivet et al., 2003) or late Miocene initiation
along the entire fault length (Kidd and Molnar, 1988; Fu and Awata, 2007).

Thermal histories from mountain ranges associated with the active Haiyuan Fault
record primarily late Cretaceous cooling and suggest that total exhumation associated
with Cenozoic motion is less than ~ 2-4 km. However, results also show that structures
between the Kunlun and Haiyuan fault become active at 15-6 Ma, which I infer as the
timing of simultaneous motion of both the Kunlun and Haiyuan faults that bound an ~250
km wide zone of associated transpressional shear. Strike-slip deformation along the
eastern Haiyuan fault tip is kinematically linked with ~ E-W directed thrusting in the
Liupan Shan (Zhang et al., 1991) which is thought to initiate by 10-8 Ma (Zheng et al.,
2006; Wang et al., 2011; Lin et al., 2011). Thus, it appears that Haiyuan fault motion
propagated to the east in time.

Collectively, data from this and previous studies indicate diachronous slip histories
with left-lateral Kunlun motion initiating first along the central fault segment before

expanding west and east along strike as well as to the north and then east along the
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Haiyuan fault. Strike-slip fault initiation at ~20 Ma occurs earlier than most previous
studies propose and this timing indicates that evolution of this fault system spans more
than 15 Ma. Additionally, Miocene onset of Kunlun and Haiyuan faulting is also
consistent with the age of initiation reported for other major Tibetan strike-slip faults
(e.g., the Jiali, Karakorum, Xianshuihe, and Garze-Yushu faults) implying regional rather
than local forcing drives lateral strain.

6.1.4 Chapter V

Low-temperature thermochronometry analysis of detrital apatites collected from
modern river sands across the east-central Tibet interior places new constraints on
patterns in erosion rates and timing of erosion-rate change that reflect the tectonic and
geomorphic evolution of the Tibetan Plateau. Apatite-helium and Apatite-fission-track
ages range widely (in most cases spanning the entire Cenozoic and late Mesozoic eras)
within all but one of the large catchments studied, which suggests uniform catchment
erosion histories spanning the width of the east-central Tibetan Plateau.

To first order, preservation of both old and young ages observed in each individual
catchment suggests that regional slow erosion for much of the Cenozoic must be
followed by a recent and widespread increase in erosion rate. Modeling using a recently
developed methodology for inversion of detrital thermochronometric ages (Avdeev et al.,
2011) confirms that data are poorly fit by a constant erosion rate model and instead
require increases in erosion rate since the mid-to-late Miocene in order to adequately
describe the data. A joint model with ages from all of the studied catchments modeled
simultaneously indicates slow erosion until the late Cenozoic (11-4 Ma) when an abrupt

increase to faster erosion rates (~0.2-0.6 mm/yr) occurred. An earlier erosion event at 60-
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54 Ma, though of lesser magnitude than the late Miocene event, is also observed in one of
the catchments and supported by model results.

Comparison of results from this sample transect within interior Tibet to bedrock
studies along the same rivers farther east of the plateau margin show similar timing and
rates of increased erosion. Bedrock studies record an onset of rapid fluvial incision into a
regional low-relief surface between 15 and 5 Ma with a change in erosion rate from 0.01-
0.06 to 0.25-5 mm/yr (Kirby et al., 2002; Clark et al., 2005; Godard et al., 2009; Ouimet
et al., 2010; Wilson and Fowler, 2011) compared to between 11 and 4 Ma and catchment-
wide increases in erosion rate from a slowly-eroding landscape (~0.005 mm/yr) to ~0.2-
0.6 mm/yr from the detrital data of the central-eastern plateau presented in this
dissertation. Commensurate erosion rates and timing of erosion rate increases along
upstream and downstream sections of the major rivers draining Tibet, indicate that fluvial
reaches within the Tibetan highlands are not isolated from base-level changes by a
migrating knickpoint that has yet to drive into the headwaters regions, as has been
thought previously (Ouimet et al., 2007; Korup and Montgomery, 2008; Whipple, 2010).

Although in some cases increased precipitation has been shown to drive enhanced
erosion (e.g., Brozovic et al., 1997; Montgomery et al., 2001; Reiners et al., 2003; Theide
et al., 2004), our results are consistent with other studies that suggest that there is not
always a direct influence of precipitation on erosion rates (e.g., Riebe et al., 2001;
Burbank et al., 2003; Finnegan et al., 2008; Binnie et al., 2010; Henck et al., 2011).
Despite differences in precipitation, mean drainage-basin slope and relief, catchments
spanning over 6° latitude share similar erosion histories. Nor were obvious correlations

between erosion rate and precipitation evident when comparing interior Tibet to the
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wetter eastern plateau perimeter. Although long-term erosion data were compared to
modern mean annual precipitation (New et al., 2002), isotopic evidence supports that the
northern plateau was arid by Neogene time (Kent-Corson et al., 2009) suggesting that
modern trends in precipitation existed in the geologic past.

Erosion histories from the externally drained portion of the Tibetan Plateau have
potential implications for the surface uplift history and climate conditions during orogen
evolution, though erosion histories alone do not uniquely indicate a given tectonic or
climatic scenario. Uniform, slow erosion across much of Tibet until the late Cenozoic
does not support a steep propagating plateau migrating to the north from collision time,
as is predicted for many geodynamic and mechanical descriptions of plateau evolution.
Rather, results from this study are consistent with broad surface uplift as the main driver
of late Cenozoic erosion rate increase. Such regional uplift potentially relates to flux of
lower crustal material into this region (Clark and Royden, 2000), driving widespread and
abrupt increases in erosion rate across the east-central Tibetan Plateau. In addition, the
smaller-magnitude Eocene erosional event is likely related to local surface faulting

associated with Indo-Asian plate collision.

6.2 Synthesis of Cenozoic deformation history of northern Tibet

A coherent history of Cenozoic deformation along the northern margin of the Tibetan
Plateau emerges from the detailed work presented in part I of this dissertation (Figure
6.1a). All together, data indicate that earlier (prior to the Miocene epoch) deformation
involved mainly contractional structures oriented favorably to accommodate NNE-SSW

Indo-Eurasian plate convergence (Jolivet et al., 2001; Sobel et al., 2001; Yin et al., 2002;
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Figure 6.1. a. Proposed late Cenozoic deformation history of the northern Tibetan Plateau region through
time (see chapter IV for details). b. Timing of initiation of intracontinental strike-slip faults of Tibet
compiled from Searle et al., 2011 and this dissertation: blue (pre-Miocene) and red (Miocene and younger).
Tibetan Plateau suture boundaries shown by dashed gray line: ITS Indus-Tsangpo suture, BNS Bangong

Nujiang suture, JS Jingsha suture, KS Kunlun suture
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Horton et al., 2004; Dupont-Nivet et al., 2004; Dai et al., 2006; Yin et al., 2008; Dayem
et al., 2009; Clark et al., 2010; Duvall et al., 2011; Lin et al., 2011; Huang et al., 2011),
whereas later deformation (post middle-Miocene) involves faults of various orientations
that accommodate both left and right lateral fault motion as well as thrusting. At
approximately 20 Ma, Kunlun left-lateral faulting initiated along the central segment of
the fault. By approximately 15 Ma, left-lateral faulting expanded northward to the
western Haiyuan fault and by 12-5 Ma, Kunlun faulting expanded west and east along
strike and Haiyuan faulting propagated eastward (Figure 6.1a).

Faulting, range growth, and basin deposition along many of the smaller structures (50-
100 km in length) within the northeastern plateau margin (Zheng et al., 2003; Fang et al.,
2005; Zheng et al., 2006; Yan et al., 2006; Zhao et al., 2007; Lease et al., 2007; 2011;
Hough et al., 2011; Zhang et al., 2011; Yuan et al., 2011; Wang et al., 2011; Lin et al.,
2011; Craddock et al., in review) interior were commensurate with or post-dated the onset
timing of the bounding Kunlun and Haiyuan faults (Duvall et al., in prep). Based on this
timing and the location and spatial orientation of these structures, I suggest the formation
of a broad step-over zone of deformation resulting from concurrent Kunlun and Haiyuan
strike-slip motion beginning ca. 15 Ma that continues through the present (Duvall and
Clark, 2010). I further propose that the Kunlun and Haiyuan strike-slip faults control the
structural landscape of northern Tibet beginning at the onset of concurrent fault activity
at ca. 15 Ma. Thus, Miocene-Pliocene range growth and basin deposition within this
region co-evolved with the growth of these two major fault systems and need not result

from northward propagation of crustal thickening and upward growth of the Tibetan
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Plateau into this region at this time (e.g., Meyer et al., 1998; Tapponnier et al., 2001;

Royden et al., 2008).

6.3 Implications for the development of the Tibetan Plateau

The conclusions of this dissertation have important bearing on the mechanics of
Tibetan Plateau evolution. Results from the West Qinling fault-gouge study (Duvall et
al., 2011) add to a growing body of work that reveals long-lived faulting within the
northern Tibet region that was located many thousands of kilometers north of the plate
boundary at the time of initial plate convergence. Furthermore, plateau-wide erosion
patterns across the eastern part of the interior Tibetan Plateau (Duvall et al., in review)
show a uniform mid-Miocene increase in erosion rate rather than a northward
propagating plateau front. Thus, these results are at odds with the long-standing view that
Tibetan Plateau deformation began in the south and evolved northward in time.
Widespread major strike-slip fault initiation during the mid-to-late stages of orogen
development (Duvall et al., in prep) is also not predicted by the classic “continental-
extrusion” (e.g., Molnar and Tapponnier, 1975; Tapponnier et al., 1982) or subsequent
“step-wise growth” descriptions of Tibetan Plateau evolution (Tapponnier et al., 2001).
Moreover, the notion of eastward extruding crustal blocks toward a lateral “free”
boundary (Tapponnier et al., 1982) also lacks support from the Quaternary and modern
deformation field in northern Tibet (Duvall and Clark, 2010).

Results from this dissertation and previous studies suggest an overlap in timing
between lower-crustal flow and widespread intracontinental strike-slip faulting beginning

approximately in the middle Miocene (Figure 6.1b). I propose that the development of
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both of these crustal phenomena is part of the later-stage progression of the orogen as a
result of long-term plate convergence rather than being tied to a specific event or abrupt
change in orogen dynamics. Continued penetration of a strong Indian indentor northward
into Eurasia and the increasing confinement of thickening Tibetan crust against rigid
blocks to the north (Dayem et al., 2009; Clark, in review) may have eventually led to the
funneling of deformation toward the unconfined eastern margin (Lease et al., 2011)
facilitated by these two crustal processes. Geological offsets along the major strike-slip
faults are generally limited (Searle et al., 2011), lateral motion does not always extend
much beyond the plateau boundaries (Kirby et al., 2007; Duvall and Clark, 2010), and
only minor Miocene expansion of marginal thrust faulting is observed (Clark et al.,
2010). As a result, significant eastward expansion of the orogen likely occurred/occurs by
flow in the deeper crust.

The connection between the tectonic evolution of the Tibetan Plateau and the Asian
monsoon system 1is still highly speculative. The shift to increased erosion rates across
east-central Tibet between 11-4 Ma (Duvall et al., in review) overlaps broadly with the
timing of various purported climate changes in Asia at about 10 Ma, many of which have
been linked with strengthening monsoon intensity (Molnar et al., 2010 and references
therein). However, correlating specific climatic events with changes in erosion rates
across the Tibetan Plateau is difficult. One complicating factor is the poorly-constrained
relationship between erosion and precipitation. Although a case has been made that
wetter climates lead to higher erosion rates (e.g., Reiners et al., 2003), results from the
plateau-wide erosion study in this dissertation show no obvious correlation between

erosion and precipitation rates (Duvall et al., in prep). Relating erosion rate changes to
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climatic events is further complicated by complex moisture source interactions in this
region (e.g., Hren et al., 2009), particularly with respect to the monsoonal systems. Thus,
although documenting the tectonic and erosion history of Tibet helps to inform the roles
of climate change in tectonics and vice versa, perhaps our greatest research need toward
resolving this issue is better understanding of the complex monsoonal system and its
evolution in time along the eastern plateau, the region of Tibet where the monsoon is

predicted to be most sensitive to its uplift (Molnar et al., 2010).
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Appendix

This appendix includes a preliminary original geologic map resulting from three field
seasons of work (August 2006; July 2007; September 2010) within the greater Maxian
Shan region of northeastern Tibet. Three generalized stratigraphic columns rom this area

are also included.
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Generalized Stratigraphic Column: Cretaceous Hekou formation
Old Maxian Shan highway
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Generalized Stratigraphic Column: Cretaceous Hekou formation
West Maxian Shan
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Generalized Stratigraphic Column: Tertiary clastics
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