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Abstract 

     

 

    Research of metamaterials focuses on unprecedented optical properties that may be 

obtained from composite media, and has attracted great attention since the seminal paper 

“Negative Refraction Makes a Perfect Lens”. The theory underpinning this field treats 

electromagnetic composites using homogenization and effective medium theory (EMT). 

This thesis discusses negative index metamaterials (NIMs) that exhibit negative 

refraction. The results can be summarized as follows: 

1. The refractive index and maximum unit cell size of an arbitrary NIM can be 

determined from its photonic band structure in the zero-loss limit. 

2. A unified, quantitative explanation can be given to negative refraction observed in 

both lossy NIMs and lossless photonic crystals.  

3. A near-infrared subwavelength NIM is demonstrated. 

4. There is no theoretical basis for constructing a superlens.  

We first derive a general relationship between the bulk index of an arbitrary NIM and 

its photonic band structure and a maximum unit cell size in the zero-loss limit. Based on 

discrete translational symmetry, we generalize Bloch’s theorem to a phase matching 

condition with a complex transverse wavevector, which provides a unified explanation of 

negative refraction observed in lossless photonic crystals and lossy NIMs.  



ix 

 

A near-infrared NIM using paired metallic strips is also designed and fabricated using 

electron beam lithography. It operates at a wavelength of 1μm, and has a ratio of 

wavelength to periodicity of 7, to our knowledge the highest yet achieved among 

experimental optical NIMs. The NIM is characterized by scanning electron and atomic 

force microscopies. Optical transmission and interferometric measurements are also 

consistent with a bulk negative index derived from band structure.   

Finally, a model NIM is designed based on Mie resonances, resulting in an effective 

medium with ε=µ=-1 after homogenization. EMT predicts that such a material is capable 

of perfect lensing, but is found to substantially overestimate the range of recoverable 

evanescent waves due to neglect of the microstructure. This result explains the fact that 

the perfect lens has not been demonstrated after a decade of experimental effort.  

This dissertation emphasizes the physical behavior of composites, as well as the 

importance of microscopic models and experiment in metamaterials research. 
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CHAPTER 1 

 

Introduction: Classical Electromagnetism and Metamaterials 

     

    Metamaterials comprise a field of research that focuses on electromagnetic composite 

structures that yield novel phenomena such as a negative refractive index. The design, 

fabrication, and characterization of these composites, as well as predictions and 

experimental implementations of their applications, have led to numerous publications in 

this new field. This chapter introduces the concept of metamaterials and the underlying 

effective medium theory in a historical context. The description is intended to be 

logically, rather than technically, complete and thorough. More details can be found in 

the references.   

 

1. 1    Maxwell’s Equations and Their Empirical Justification 

Classical electromagnetism is described by Maxwell’s Equations first published in 

1862, which were later rewritten by Heaviside in the more compact form using vector 

calculus:  
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These equations are the microscopic form of Maxwell Equations, since ρ and J are 

densities of total charges and currents, including those on the atomic level. These sources 

of excitation determine the experimental observables of electric field, E, and magnetic 

induction, B, and ε0 and μ0 are vacuum dielectric constant and magnetic permeability, 

respectively. Equations 1.1 are therefore also known as “Maxwell’s Equations in a 

vacuum”.  

However, ρ and J in natural materials involve complicated distributions of bound 

charges and currents due to polarization and magnetization, which are difficult to access 

directly. Therefore, auxiliary fields D (electric displacement field) and H (magnetic field) 

are introduced in macroscopic Maxwell’s Equations:  
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Here, ρf and Jf are densities of only free charges and currents. For linear isotropic 

homogeneous materials, D and H are related to E and B through simple constitutive 

relations: 
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where ε and μ are the dielectric constant and magnetic permeability characteristic of the 

material, respectively. For anisotropic materials, ε and μ are represented by tensors. 

    Macroscopic Maxwell’s Equations can be derived from their microscopic counterparts 

using a procedure that averages the charges and currents on a scale much greater than the 

inter-atomic spacing, yet still much smaller than the electromagnetic wavelength. An 

example of such a procedure can be found in Ref. [1]. This treatment, or its various 

classical or quantum mechanical analogues [2], filter out fluctuations of the 

electromagnetic field on the atomic scale, and lead to the expressions of ε and μ in terms 

of the average electric and magnetic polarization densities.  

    In practice, macroscopic Maxwell’s Equations are sufficiently accurate for describing 

all macroscopic experimental observations involving conventional dielectrics in nature 

and are therefore considered exact. This enables experimentalists to characterize ε and μ 

with only one type of measurement, such as ellipsometry. Further, this also allows 

theorists to use ε and μ in these equations as fundamental material properties.  

    Note, however, that macroscopic Maxwell’s Equations replace a physical material with 

a pair of parameters, ε and μ, which are constants with no spatial dependence. These 

equations, therefore model realistic granular materials as structureless continuous media, 

and are approximate. Furthermore, the averaging procedure assumes that the atomic 

radius, the detector resolution, and the electromagnetic wavelength are well separated. 

Macroscopic Maxwell’s equations, as well as ε and μ, are therefore only meaningful for 

experiments that probe macroscopic electromagnetic fields. These equations are not 
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applicable to effects with a characteristic length scale approaching atomic or molecular 

dimensions, such as atomic structure or chemical bonds.  

Indeed, the microscopic Maxwell’s Equations are also ab initio on experimental 

ground, which are extrapolated from the empirical observations by Coulomb, Biot and 

Savart, Faraday, and Ampere. “Electromagnetism…developed as an experimental 

science…The extension of these macroscopic laws, even for charges and currents in 

vacuum, to the microscopic domain was for the most part an unjustified extrapolation” 

[2]. The agreement of microscopic and macroscopic Maxwell’s Equations with numerous 

experimental measurements, however, ultimately justifies these mathematical constructs.  

 

1. 2    Metamaterials: Effective Medium Theory and Homogenization 

The natural range of ε and μ of conventional materials are quite limited. At optical 

frequencies, for example, large ε is rare, and usually μ=1 for any natural material. Landau 

[3] examined the contribution to magnetic susceptibility by atomic and molecular orbitals, 

and qualitatively explained this lack of high frequency magnetic response as an 

incompatibility between small atomic dimensions and macroscopic magnetism. Merlin, 

however, argued [4] that this may not be the case for mesoscopic composite structures. 

Indeed, since ε and μ derive from the averaged electromagnetic response of atoms and 

molecules, the restriction to a limited range of ε and μ may be removed by composites 

consisting of natural materials, provided they have a characteristic length scale of 

inhomogeneities still much smaller than the wavelength. An averaging procedure that 

calculates ε and μ of a composite by approximating it as a homogeneous medium is a 

homogenization theory. 
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Assuming that these composites, or metamaterials, can be modeled in macroscopic 

Maxwell equations with ε and μ obtained from homogenization, unusual effects may 

emerge. Such a model for describing metamaterials is known as an effective medium 

theory (EMT).  

Therefore research on metamaterials has two main thrusts, corresponding to the above 

two postulates that provide a theoretical framework: What kind of effects and 

applications are predicted by macroscopic Maxwell’s Equations, assuming no restrictions 

on ε and μ? How does one design and fabricate composites out of available materials to 

realize such unusual ε and μ?  

 A third, equally important question is whether one can observe the physical behavior 

of the composite predicted by EMT. In the case of conventional materials, the accuracy 

and generality of macroscopic Maxwell’s Equations is confirmed by numerous 

experiments. For metamaterial composites, the applicability of EMT is, however, not 

fully established. To be able to predict the electromagnetic behavior of an arbitrary 

macroscopic composite based on its microscopic structure, considerable effort has been 

devoted to developing a general homogenization theory [5].    

 

1. 3    History of Negative Refraction 

In 1967, Veselago [6] considered materials with both ε<0 and μ<0. Using macroscopic 

Maxwell Equations, he predicted that such a medium supports backward electromagnetic 

waves with opposite phase and group (energy) velocities. He also discussed several other 

unusual effects, such as reversed Doppler shift and Cerenkov radiation at an obtuse angle. 

Moreover, Veselago found that the refractive index should be n εµ= − , which implies 
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that negative refraction occurs when light is incident on the interface between such a 

medium and air. Based on this effect, he further proposed that a flat slab composed of a 

medium with ε=μ=-1(Fig. 1.1) acts as a lens, since it directs all the rays emitting from the 

object to the focus twice the lens thickness away.  

d

2d

Object Image

 

Fig. 1.1 A flat lens composed of an ε=μ=-1 material. It forms an image by refocusing all the   

light rays emitting from an object through negative refraction.    

 
Veselago was not the first to discuss backward wave or negative refraction [7]. H. 

Lamb [8] in 1904 and subsequently Pocklington [9] in 1905 discussed the existence of 

backward waves on certain mechanical systems. Almost at the same time, Schuster [10] 

considered backward waves and negative refraction in the context of electromagnetism.      

Electromagnetic backward waves and negative refraction have since been studied by a 

number of authors. Mandel'shtam [11] in 1944 discussed negative refraction for media 

with opposite group and phase velocities. Malyuzhinets [12] in 1951 studied backward 

waves on radio-frequency transmission lines consisting of capacitors and inductors. 

Sivukhin [13] in 1957 was the first to consider materials with simultaneous negative ε and 
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μ, although he recognized that no such medium was known. Pafomov [14] further 

examined unusual Cerenkov effects in backward wave media.  

Veselago was, however, the first to consider a negative refractive index and propose 

the flat lens in Fig. 1.1. Although he speculated about various physical systems that might 

be candidates to the hypothetical medium with simultaneous negative ε and μ, it was 

noted that no such material was known, and his theoretical consideration was on a 

“purely formal” basis [6]. For this reason, Veselago’s work and the flat lens went largely 

unnoticed for nearly 30 years.  

 

1. 4    Mesh Wires, Split Ring Resonators, and the Perfect Lens 

Metals with good conductive properties have a negative ε below the plasma frequency, 

which is typically in the ultraviolet region of the electromagnetic spectrum. The plasma 

frequency of the free electrons, ωp, is determined by the metal conduction electron 

density (n) through 
2

2

0
p

eff

ne
m

ω
ε

= , where e is the electron charge, and meff is its effective 

mass. For Al, ωp is approximately 15eV. In 1996, Pendry [15] proposed that the artificial 

dielectric of conducting mesh wires [16, 17] may behave like a metal having a very 

diluted free electron density, with a plasma frequency in the microwave domain. Here we 

consider in Fig. 1.2 a simple 2D case of such a medium [18] with wires perpendicular to 

the diagram. The metallic wires are of radius r, and are placed periodically with spacing 

a>>r.  
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a

a
r

x
y

z

        

       Fig. 1.2 A 2D wire medium where the infinitely long wires of radius r are along the z     

       direction, and the square lattice spacing is a.  

 

For transverse electric (TE, ˆE=E z ) polarized electromagnetic waves, the electrons 

oscillating along z direction have a reduced effective density  

                                                       
2

2eff
rn n

a
π

= .                                                        (1.4) 

Accounting for the self and mutual inductances due to the inhomogenous magnetic field 

and in the limit of 0r− > , the vector potential of the magnetic field at a distance R from a 

wire can be written as  

                                                   
2

0 ˆ( ) ln( / )
2
r nevR a Rµ π
π

=A z ,                                        (1.5) 
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where v is the mean electron drift velocity. An electron in a magnetic field corresponds to 

momentum eA, which leads to an effective mass  

                                                         
2 2

0 ln( / )
2eff
r nem a rµ π
π

= ,                                       (1.6) 

assuming that electrons flow on the surface of the perfectly conducting metal wire. A 

typical set of parameters for the aluminum wire medium are r=1µm, a=5mm, and 

n=1.8×1029 m-3, which correspond to meff =2.7×104me. The plasma frequency for the wire 

medium is therefore lowered to approximately 8.2 GHz due to the changes in neff and meff. 

More detailed study of mesh wires can be found in Refs. [19-22]. 

In 1998, Pendry proposed split ring resonators (SRRs) [23, 24] as a means to achieve 

substantial magnetic response, and in particular negative μ, in a desired frequency range 

[25]. Figure 1.3 shows the 2D case [18], where the metal rings with substantial self 

inductance are in the plane of the diagram and placed on a square lattice (not shown) of 

spacing a. In a transverse magnetic (TM, H=Hz) polarized electromagnetic field, the 

large gaps in each ring force the current induced by the external varying magnetic field to 

complete the circuit through displacement currents flowing through the small radial gaps 

of width d between the rings, which act as capacitors. Each pair of rings is therefore a 

resonant L–C (inductor-capacitor) circuit, which results in a dispersive magnetic 

response. The effective permeability is given by the ratio of average B to H fields, that is, 

ave
eff

ave

B
H

µ = . Assuming that the capacitance due to the large gaps in a single ring is 

negligible, and the wire and small gap widths are both also small compared to the ring 
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radius of r, a procedure [26] that calculates the average fields by their line or surface 

averages gives: 

                                                       
2

2 2
0

1eff
f ωµ

ω ω
= −

−
                                                (1.7) 

as a function of frequency, where the resonant frequency 1/2
0 2 3

0 0

3( )d
r

ω
µ ε π

= , and filling 

factor 2 2/f r aπ= . µeff is negative between ω0 and the “magnetic plasma frequency” of 

1/2

2 3
0 0

3
(1 )m

d
f r

ω
µ ε π

 
=  − 

. For a set of typical parameters of r=1.5mm, a=5mm, 

d=0.2mm, these frequencies are 0ω =6.41GHz, mω =7.56GHz. Note that the bandwidth 

with a negative µ can be tuned by d and f. 

 

r d
y

x
 

     Fig. 1.3 A pair of split ring resonators as an L-C circuit. The rings are of radius r, and the   

     radial gap is of width d<< r. 

 

In 2000, Pendry published the seminal paper titled “Negative Refraction Makes a 

Perfect Lens” [27]. He considered isotropic materials with ε and μ <0, and used Fresnel’s 
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formula to calculate the transmission of plane waves through the flat lens in Fig. 1.1. 

When both ε and μ approach -1, the surprising result is that the limit of transmission is 

unity, independent of the transverse wavevector of the incident radiation. This result 

suggests that such a slab would result in a perfect image of a point light source, since it 

would restore all Fourier components of the optical field of an object, including 

evanescent waves. The flat lens made of ε=µ=-1 materials (the Veselago-Pendry lens) 

hence promises a superior optical imaging device based on negative refraction, and is 

therefore named the “perfect lens” or “superlens”. Although Pendry recognized the lack 

of such materials, he proposed that they may be engineered from known composites with 

negative ε and μ, such as mesh wires and SRRs. The perfect lens paper ignited the field of 

metamaterials, which has since seen thousands of academic publications in the ensuing 

decade [18, 28-34].  

 

1. 5    Transformation Optics and Invisibility Cloaking  

    Based on the invariance of macroscopic Maxwell’s Equations under coordinate 

transformation, Pendry et al [35] in 2006 further proposed optical devices using 

anisotropic metamaterials with spatially dependent ε and μ tensors. A similar scheme 

based on conformal mapping in the geometrical optics formulation was developed at the 

same time by Leonhardt [36].  

Under a coordinate transformation, macroscopic Maxwell Equations and constitutive 

relations maintain the same form, provided the material parameters and fields in the new 

coordinate system are transformed and scaled accordingly. For example, when the 
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transformation maps Cartesian coordinates (x, y, z) to another system of orthogonal 

coordinates (u, v, w), the corresponding scaling is [35]: 

                                                      

2
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u v w
i i

i

u v w
i i

i

i i i

i i i

Q Q Q
Q

Q Q Q
Q

E Q E
H Q H

ε ε
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′ =
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                                                    (1.8) 

Here, quantities with a prime are those after scaling, i is a subscript used to denote field 

or tensor components in the u, v, or w directions (with no index contraction), and Qi’s are 

given by: 

                                           

2 2 2 2

2 2 2 2
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∂ ∂ ∂
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∂ ∂ ∂

.                                           (1.9) 

Transformation to non-orthogonal coordinates results in more complicated, but similar 

expressions.  

This formalism, now known as “transformation optics” [33], allows the solution of 

“invisibility cloaking” problem within EMT, as shown in Fig. 1.4(a), where any light ray 

(yellow line) incident on the blue outer sphere is required to be bent smoothly around the 

red inner sphere without scattering, thereby maintains its propagation direction to exit the 

blue sphere. Thus an observer outside the outer sphere will not detect any object within 

the inner sphere. Consider a coordinate transformation that expands the shell region 

between the spheres (the “cloak”) in Fig. 1.4(a) to the entire blue sphere in Fig. 1.4(b). 

The invariance of macroscopic Maxwell Equations allows considering the same 
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electromagnetic problem, formulated in the new coordinate system with scaled fields and 

material parameters, in the virtual space of Fig. 1.4(b). Since the inner sphere has been 

(a)                                                     (b)
 

  Fig. 1.4 (a) Real space with warped phase fronts. (b) Virtual space with parallel phase  

  fronts. Reprinted from Ref. [33] with permission from Macmillan Publishers Ltd. 

 

reduced to a point, the cloaking requirement of the shell (the entire blue sphere in the 

virtual space) is satisfied by a homogeneous isotropic medium with ε’=μ’=1 for any 

incident field. An inverse transformation of these parameters back to the real space in Fig. 

1.4(a) therefore yields the required distribution of ε and μ tensors. Since this 

transformation of material parameters is determined only by the coordinate 

transformation, the cloaking requirement is also satisfied for an arbitrary incident field in 

real space. 
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1. 6    Prior Experimental Demonstrations of Metamaterials  

In 2000, Smith et al. [37] fabricated a periodic metal dielectric composite consisting of 

wires and SRRs, and observed transmission consistent with a homogeneous medium with 

simultaneously negative ε and μ at microwave frequencies. In a subsequent experiment 

[38], a right-angled prism (Fig. 1.5(a)) composed of a similar composite was mounted in 

the experimental setup shown in Fig. 1.5(b), where the incident electromagnetic wave 

was normally incident on the bottom of the prism from a waveguide, and refracted at its 

hypotenuse. The refractive index was determined using Snell’s law from the detected 

direction of the outgoing beam and was shown to be negative. The observed negative 

index was also fit to a model of dispersive negative ε and μ. These composites are now 

known as negative index metamaterials (NIMs). 

 

 

(a)                                                                                  (b)  

Fig. 1.5 (a) The negative index metamaterial (NIM) prism. (b) Schematic of the 

experimental setup. Reprinted from Ref. [38] with permission from AAAS. 
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Controversies, however, ensued on the interpretation of this experiment, in particular 

on the strong absorption [39] by the NIM and the possible near-field effect due to the 

proximity of the detector to the prism [40]. The physical effect of negative refraction was 

nevertheless confirmed by similar prism experiments [41, 42], where the measurement 

was performed in the far field on less lossy NIMs. These experiments were considered 

decisive evidence for the existence of materials with negative ε and μ [43]. 

Negative refraction has also been observed in periodic dielectric photonic crystals [44]. 

Although there is not a clear distinction between the two types of periodic structures, it is 

common to differentiate them conceptually [28, 38]: negative refraction by photonic 

crystals is due to Bragg diffraction, whereas NIMs are effective media. 

(a)                                                           (b)  

Fig. 1.6  Schematics and electron micrographs of near-infrared NIM structures.  

(a) A double fishnet. Reprinted from Ref. [45] with permission from the 

American Physical Society. (b) Coupled nanorods. Reprinted from Ref. [46] with 

permission from the Optical Society of America.  
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    In 2005, two metal dielectric NIM structures operating at near infrared frequencies 

were fabricated: a double fishnet (Fig. 1.6(a)) [45] and coupled nanorods (Fig. 1.6(b)) 

[46]. Direct [46] or indirect [45] phase measurements indicate negative phase advance 

through a single layer of these structures at the wavelength of λ=1.5µm and 2µm, 

respectively. These NIMs, however, have at least one dimension that is approaching half 

of the operating wavelength.    

    In 2006, the first two-dimensional cloaking device consisting of spatially varying 

magnetic metamaterial unit cells (Fig. 1.7(a)) was fabricated [47]. It was used to partly 

conceal a copper cylinder placed at its center in a microwave scattering experiment. Fig. 

1.7(b) shows the EMT predicted scattering pattern, while the experimentally measured 

field map is shown in Fig. 1.7(c). Recent literature on cloaking can be found in Ref. [33]. 

(a) (b)

(c)

 

Fig. 1.7 (a) An electromagnetic cloak consisting of spatially varying magnetic 

metamaterial unit cells. (b) EMT predicted scattering pattern. (c) Experimental 

mapping of the electric field. Reprinted from Ref. [47] with permission from 

AAAS. 
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1. 7    Outstanding Questions and Thesis Overview 

Although there has been an enormous volume of prior work [18, 28-31], the following 

questions on NIMs are left outstanding: 

1.  What is the refractive index of an arbitrary NIM?  

2.  What is the maximum unit cell size for a NIM?   

3. Is there a fundamental difference between NIMs and photonic crystals that exhibit 

negative refraction? 

4.  Is it possible to engineer an optical NIM with a subwavelength periodicity?   

5.  Can the concept of a “perfect lens” be theoretically justified? 

This dissertation aims to answer these questions with an emphasis on the physical 

behavior of NIMs. Since almost all NIMs in the literature are periodic, and aperiodic 

NIMs are unlikely to provide advantage in fabrication or performance, we focus here on 

periodic NIMs. In Chapter 2, we first derive a maximum unit cell size and a general 

relationship between the bulk negative index of an arbitrary NIM and its photonic band 

structure in the zero-loss limit. This is extended to the case of finite loss based on a 

generalized phase matching condition, and we provide a unified explanation of negative 

refraction observed in both lossless photonic crystals and lossy metal-dielectric NIMs. In 

Chapter 3, a subwavelength near-infrared NIM is fabricated using electron beam 

lithography, and its dimensions are characterized. A negative phase advance through this 

NIM is also observed through interferometry, and compared with its bulk negative index. 

In Chapter 4, a model NIM based on Mie resonances in cylinders with positive ε and µ is 
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designed. After homogenization, we show that the material exhibits ε=µ=-1. EMT is 

found to significantly overestimate the range of evanescent waves that can be recovered 

by a flat NIM lens due to neglect of its microstructure. The implications of this result on 

constructing a perfect lens are discussed, and the necessity for using microscopic models 

is emphasized. In Chapter 5, we summarize the results. Chapter 2 has been published in 

Refs. [48, 49], Chapter 3 has been published in Refs. [50-52], and Chapter 4 has been 

submitted for publication [53] (Copyrights: 2007, IEEE/LEOS; 2008, American Physical 

Society; 2009, American Institute of Physics; 2010, Optical Society of America).  
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CHAPTER 2 

 

Photonic Band Theory of Negative Index Metamaterials 

 

The standard model for describing negative index metamaterials (NIMs) is effective 

medium theory (EMT). For example, the refractive indices of NIMs operating at near-

infrared or higher optical frequencies [31] have been typically characterized using a 

homogenization approach, such as the scattering (S) parameter method [54].  By 

assuming that the NIM slab, actually composed of discrete elements, is equivalent to a 

homogeneous NIM, the S-parameter method calculates the permittivity, ε, and 

permeability, μ, from its complex transmittance and reflectance, and the refractive index 

is obtained as n εµ= − . However, the S-parameter method is known to yield anomalies 

such as non-physical negative imaginary parts of ε  or µ  [55]. In addition, the 

assumption of a homogeneous medium is questionable, especially in the optical domain, 

since optical NIMs thus far involve unit cell sizes close to half of the wavelength in at 

least one dimension [56]. Moreover, a negative refractive index should be a bulk property 

and consistent with Snell's Law. The negative index obtained with the S-parameter 

method may change with an increasing number of layers of NIM unit cells [57] and in 
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particular, may reverse its sign [58]. This index also lacks the physical meaning of 

refraction [59] if it is not verified by Snell's Law. With the possible exception of work on 

surface plasmon polaritons in a waveguide [60], to our knowledge no refraction 

experiment or rigorous first-principles calculations on a fabricated structure has 

confirmed the existence of a negative refractive index for bulk optical metamaterials.    

    At microwave frequencies, however, negative refraction has been observed in two  

experiments [41, 61], which are considered evidence of NIMs [43]. These experiments 

employ prisms composed of one-dimensional (1D) NIM unit cells that exhibit a negative 

phase index in a particular direction. In those experiments, the incident electromagnetic 

wave propagates within the prism along this direction, such that anisotropy of the unit 

cell does not play a role. The electromagnetic wave is obliquely incident on the 

hypotenuse from within the prism, and the refracted beam is detected in the far field. 

Negative refraction occurs due to the negative phase index, i.e. anti-parallel energy 

velocity and wave vector, rather than anisotropy of the material, accompanied by a 

positive phase index [62]. In Ref. [41], the index determined by the S-parameter method 

was shown to agree with Snell’s Law. In Ref. [61], refractive indices measured on two 

different prisms (i.e. at two different incidence angles) consisting of the same unit cells 

were shown to be equal. 

In this chapter, we use photonic band theory for periodic composites to predict the bulk 

refractive index of NIMs, and describe their negative refraction as diffraction at a 

periodic boundary. We introduce a near-infrared NIM structure with a subwavelength 

periodicity. Using this NIM structure as a prototype, we derive in the zero-loss limit a 

general relationship between the band structure of an arbitrary NIM unit cell and its bulk 
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refractive index. In addition, we determine the maximum unit cell size that defines the 

"metamaterial regime" [D. R. Smith et al., Phys. Rev. E, 71, 036617 (2005)]. Finally, 

using a generalized phase matching condition for the case of finite loss, we provide a 

unified explanation of negative refraction observed in both lossless photonic crystals and 

lossy metal-dielectric NIMs. 

     

2. 1    Bulk Negative Index of a Subwavelength Near-Infrared NIM   

    The NIM unit cell is shown in the inset of Fig. 2.1(a). It consists of 20-nm thick by 

100-nm wide Au strips, separated from a 20-nm thick central continuous Au layer [63] by 

15-nm thick polymer dielectric spacers. The unit cell extends infinitely along the z  

direction, and is replicated in both the x  and y  directions with a period of 150 nm. 

These dimensions are consistent with a fabricated structure [50] that will be described in 

Chapter 3. For transverse magnetic (TM)-polarized electromagnetic wave propagating 

along x  in the x-y plane, i.e., H=Hz z , the unit cell is a resonator supporting even- and 

odd-Hz modes with respect to the central plane. Currents flow in opposite (same) 

directions along the strips in even (odd) resonance, which is associated with an magnetic 

(electric) dipole response that is weakly (strongly) dependent on the presence of the 

central metallic layer [63]. 

    Normal incidence plane wave scattering simulations are performed on a single layer of 

unit cells to calculate the effective refractive index with the S-parameter method [54]. 

The refractive index of the polymer dielectric is nd = 1.56 (corresponding to that of  
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            Fig. 2.1 Bloch bands for zero (dashes) and non-zero dissipation (circles and 
squares) Au layers, and (a) imaginary and (b) real parts of the effective 
propagation constant kx,eff from single-layer scattering simulations (continuous 
line). In (b), the part of lossless band structure with a positive group velocity 

gv >0 is marked by arrows. Inset in (a): the unit cell. Lattice constants Lx = Ly= 

150nm, Au strip and central layer thicknesses t=tc=20nm, strip width W=100nm, 
and spacer thickness h=15nm. Au strips and central layer are embedded in a 
polymer dielectric. 

 

cyclotene), and dielectric constants of Au are taken from the literature [64]. The index is 

converted to an effective propagation constant using 0,,, / kncnk effxeffxeffx ⋅=⋅= ω , and is 

plotted in Figs. 2.1(a) and (b). Here, ω is the angular frequency, c is the speed of light, 

and k0 is the wave number in free space. These propagation constants coincide with those 

derived from Bloch-band calculations (circles and squares) within the first Brillouin zone 

[65]. Despite the existence of two bands within the same wavelength range, only the least 

lossy mode (circles, with the smallest Im(kx)) participates in light propagation in the 

crystal [66]. This coincidence shows that for a beam traversing a slab containing a 
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sufficiently large number of layers of the structure, the phase delay due to the slab 

thickness of d can be asymptotically written as dkndk effxeffx 0,, )Re()Re( = , since phase 

changes due to the surfaces and possible truncation of the surface unit cells are bounded 

and hence can be omitted, and multiple reflection amplitudes are negligibly small for any 

finite )Im( ,effxk . This index is independent of d, and is therefore indeed a bulk property.  

It will be further validated in Sec. 2.2 through its consistency with Snell’s Law.     

    The Bloch band diagram for the unit cell assuming lossless Au (i.e. with zero 

imaginary permittivity) is also plotted in Figs. 2.1(a) and (b) as dashed lines.  The band 

shown by squares has even less contribution to light propagation than in the lossy case 

due to its large imaginary part, and is therefore omitted. The Bloch wavevector is real 

between λ=0.93 and 1.5 µm, a range in which the dimensions of the unit cell are 

subwavelength (~λ/7). Note that this hypothetical NIM possesses both positive and 

negative index bands. 

 

2. 2    Refractive Index and Maximum Unit Cell Size in Zero-Loss Limit 

2. 2. 1    General Relationship between Effective Index and Band Structure 

In Fig. 2.1(b), the discontinuity in Re(kx,eff) at λ ≈ 1µm leads to a discontinuity in 

Re(nx,eff). The negative and positive index bands separated by this discontinuity 

correspond to negative and positive refraction, respectively [41, 61]. Consider a two-

dimensional semi-infinite metamaterial crystal in the x-y plane composed of these unit 

cells, as shown in Fig. 2.2(a). The unit cells are made from dielectric and lossless metal, 
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such that the energy and group velocities of propagating Bloch modes are equal [67]. 

Furthermore, we assume a TM polarized Bloch mode propagating along x̂ , with 

wavevector k


 in the first Brillouin zone obliquely incident at the metamaterial-air 

interface. These modes therefore correspond to the region of the dispersion curves with a 

positive group velocity, as shown in Fig. 2.1(b). Due to the finite size of the unit cell, the 

metamaterial-air interface is stepped, with angle )1/1arcsin()/arcsin( 2mda +==θ .  

    

Fig. 2.2 (a) A Bloch wave propagates in the positive x  direction and is obliquely 
incident upon the semi-infinite metamaterial crystal's interface with air. Only a 
small number of unit cells near the interface are shown. Here, a is the lattice 

constant, d is the interface periodicity. k


and gv are first Brillouin zone 

wavevector and group velocity of the incident Bloch wave. 0k


 is the free space 

wavevector of the refracted light. θ  and 0θ are incidence and refraction angles, 

respectively. (b) Graphical solutions to dklka lt=⋅+ π2 . Radii of circles I and 

II are  π2+ka  (for 0<<− kaπ ) and π , respectively.  
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Here a is the NIM lattice constant, amd 21+=  is the interface periodicity, and there 

are one and m unit cells along x̂  and ŷ  per step, respectively, as previously [41, 61, 68]. 

The resulting interface grating diffracts the incident Bloch wave into the transmitted 

waves.  

Far from the interface the scattered optical field can be written as a sum of plane waves 

following )exp()( rkiarH
l

ll
 ∑ ⋅= , where H is the magnetic field, lk


 is the free space 

wavevector ( λπ /2=lk ), and al is the coefficient for the lth term. The component of lk


 

parallel to the interface is related to that of the incident Bloch wavevector, k


, through  

                                                          Glkk tlt ⋅+= ,                                                  (2.1) 

where θsinkkt = , and dG /2π=  is the magnitude of the surface reciprocal lattice 

vector. When l=0, θθ sinsin 000 kkk t == , which is equivalent to Snell's Law, 

θθ sinsin 0 effn= ,  where 0θ  is the refraction angle.  The effective refractive index of the 

metamaterial is therefore related to the Bloch wavevector via 0/ kkneff = , independent of 

the incidence angle θ (or m), as in Ref. [61]. This also shows that higher orders that 

correspond to non-zero l do not give rise to an effective index that satisfies such a 

condition. Accounting for both positive and negative index bands, the effective index can 

be written as 

                              )
)Re(

sgn()/()sgn()/(/ 000 k
kkvkkkvkvn gggeff ∂

∂
===

ω               (2.2)                  
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Fig. 2.1(b) therefore shows that a sufficiently large prism consisting of our (lossless) 

NIM will undergo negative refraction in the negative index band of 0.93µm < λ < 

1.03µm.  

Equation 2.2 connects the first Brillouin-zone band structure of a 1D lossless 

subwavelength unit cell to its effective index exhibited in a prism refraction experiment.  

Although its derivation is for TM polarization and the unit cell of Fig. 2.1(a), we 

emphasize that it is general since it utilizes only the discrete translational symmetry 

along the metamaterial-air interface. The generalization of the analysis to arbitrary 

polarization and a 3D subwavelength unit cell is straightforward provided that it has a 

dominant Bloch band in the incidence direction.  

 

2. 2. 2    Maximum Unit Cell Size 

   Equation 2.1 is equivalent to dklka lt=⋅+ π2 , with graphical solutions shown in Fig. 

2.2(b). Each solution of  ltk  represents a propagating order in the air. In Sec. 2.2.1, we 

have shown that the 0th order corresponds to experimentally observed negative refraction, 

with a negative refractive index that is independent of the incidence angle θ or m. For 

well-defined negative refraction to occur, however, there must be at most one far-field 

beam. Higher orders in Eq. 2.1 that correspond to non-zero l must therefore be absent in 

the far field. Inspection of Fig. 2.2(b) shows for 0<<− kaπ , the maximum d that 

satisfies this condition is given by the radius of circle I, or λπλ <+= )2/1( kadc , which 

also restricts m and θ to those allowed by d<dc. Circle II indicates that 2/minλ=< sdd  
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constitutes a sufficient condition across the entire negative index band, of which λmin is 

the minimum wavelength. 

    The justification for applying effective medium theory to metamaterials in the 

literature is that the unit cell size is much smaller than the wavelength. However, for most 

NIMs fabricated to date, typically a/λ < 12 [56]. At the same time, while effective 

medium theory only applies in the limit of 0→ka , for practical metamaterials ka ~ 1, a 

scale that Smith, et al.  refer to as the "metamaterial regime" [69]. Hence, cd and sd are 

quantitative limits that define such a metamaterial regime for NIMs in refraction 

experiments based on physical equivalence. These limits and Eq. 2.2 serve as criteria for 

the design of NIM unit cells.   

 

2. 2. 3    Numerical Simulation of Prism Refraction  

A practical structure must be low-loss, for which the above results are also expected to 

apply. Indeed, the small differences in Figs. 2.1(a) and (b) between the band structure of 

the lossless and the realistic NIM imply that Eq. 2.2 is still true for the latter. To confirm 

this, we performed full-wave simulations of wedges composed of the unit cells in Fig. 

2.1(a), with the bottom illuminated by a normally incident TM plane wave. The main 

lobe of the time-averaged power flow of the transmitted wave determines the direction of 

the refracted beam, which is used to calculate the effective refractive index based on 

Snell's law. Wedges defined by m=2 and 3 were simulated, corresponding to incidence 

angles of 26o and 18o, respectively, as in Ref [61], which also used square unit cells. Both 
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geometries satisfy the condition that d<dc throughout the simulated frequency range. A 

representative field plot on the logarithmic scale is shown in the inset of Fig. 2.3. In the 

negative index band, refraction and diffraction coexist, consistent with experiments in the 

microwave domain [68]. We will explain the diffracted beam almost bound to the 

hypotenuse with full account of loss in Sec. 2.3. Apart from the main lobe, in most 

situations two weak side lobes are also apparent. The width of the illuminated part is four 

steps for both m=2 and 3 wedges, suggesting that the weak side lobes are similar to 

secondary maxima observed in multiple-slit diffraction experiments. Both features were 

also observed in microwave frequency simulations of a homogeneous NIM prism [68]. A 

sufficiently large prism eliminates side lobes, and the refracted beam would emerge 

uniformly along the hypotenuse.  

 

 

Fig. 2.3 Comparison of effective indices extracted from numerical simulations 
and band calculations. Inset: Time averaged power flow on the logarithmic scale 
for an m=3 wedge at wavelength λ=950nm. A negatively refracted beam, a 
diffraction order, and two weak side lobes are observed.  
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Between λ=0.91µm and 1.5µm, refractive indices extracted from the full-wave 

simulations and band structure are plotted in Fig. 2.3, which are consistent with each 

other. The saturation of the m=2 wedge index (triangles) at n= 2±  for 0.96µm < λ < 

1.2µm results since the Bloch-band derived index in this range exceeds the condition for 

total internal reflection defined by maxn =1/sin(26o)=2.2. Note that in a recently 

published refraction experiment [70] using the fishnet structure at a wavelength of 1.5µm, 

the relation between the band structure and the measured effective index is also 

consistent with Eq. 2.2.  

 

2. 2. 4    Role of Transverse Unit Cell Size 

A homogeneous NIM prism gives rise to no more than one propagating order in air at 

all incidence angles. To justify the characterization of a NIM structure with a negative 

index,  the refractive behavior of a composite NIM prism made of such unit cells should 

be consistent with that of a homogeneous NIM prism within the negative index band in 

an incidence angle range as large as possible, which was shown to be limited by cd and 

sd . Optical NIMs demonstrated to date typically have lateral dimensions close to 

λ/2 [31]. In particular, the lateral unit cell sizes for fishnet structures are constrained by 

its high magnetic resonance frequency [56, 71]. The longitudinal period of a fishnet 

structure can be very small compared to λ  [57], and the incidence angle can be varied 

almost continuously by changing the number of unit cells in this direction. However, 
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given that the negative index is necessarily strongly dispersive and ka  is often on the 

order of unity [69], the maximum incidence angle for a fishnet structure is restricted by 

its large transverse dimensions. Our unit cell has a much more subwavelength size in the 

transverse direction, and this restriction is therefore considerably loosened.  

 

 

2. 3    Generalized Phase Matching Condition with Finite Loss 

    In Sec. 2.2, we used Eq. 2.1 to consider diffraction of a real Bloch wave by the prism 

hypotenuse in the zero-loss limit, and derived a general relation (Eq. 2.2) between the 

effective index and real band structure. Equation 2.1 is the scalar form of a phase 

matching condition across an interface of periodicity d, B m
t t m= +k k G . Here, 

= 2 / dπG is the magnitude of the interface reciprocal lattice vector, m is an integer for 

denoting different diffraction orders, and Bk  and mk  are real wave vectors of a Bloch 

and a plane wave, respectively. This phase matching condition is a corollary of Bloch's 

Theorem [72], and connects the transverse components (denoted by subscript, t) of Bk  

and mk . It has also been used for describing the diffraction of quantum mechanical Bloch 

waves into free space in angle resolved photoemission spectroscopy experiments [73] 

that probe the electronic band structure of a solid.  

We applied Eq. 2.2 approximately to the full complex band structure of the NIM unit 

cell in Sec. 2.1, and achieved reasonable agreement between the effective index and full-

wave simulations of prism refraction (Fig. 2.3). However, substantial differences persist, 
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particularly near the boundary of the Brillouin zone. The appearance of the nearly grazing  

beam in Fig. 2.3 was also not explained. In addition, derivation of Eq. 2.1 implicitly 

assumes that the Bloch wave vector is either parallel or anti-parallel to the group velocity, 

which is not necessarily true in the more general case of unit cells with anisotropy [74]. 

Moreover, it is not clear whether the neglect of loss is always justified. Indeed, the issue 

of how lossy materials might influence experimental interpretation has been controversial 

[39] since the first demonstration of negative refraction by NIMs at microwave 

frequencies [38].  

    The deviations in Fig. 2.3 may be due to neglect of losses. To extend Eq. 2.2 to the 

more general case of lossy periodic media, one needs to account for the imaginary 

component of the wave vector. Although complex band structure of metamaterials has 

been routinely calculated, refraction experiments [38, 41, 42] that demonstrate negative 

refraction by NIM prisms are interpreted using EMT. To our knowledge, diffraction of 

complex Bloch waves by periodic photonic structures has not been generally treated. 

In this section, we generalize treatment of NIM refraction in Sec. 2.2 by including the 

effect of losses and possible anisotropy. Based on a generalized phase matching condition 

with a complex transverse wave vector for periodic media, we describe the diffraction of 

a complex Bloch wave propagating within a composite prism, and show that the detected 

light is an inhomogeneous plane wave due to losses in the prism.  

 

2. 3. 1    Diffraction of a Complex Bloch Wave 

    Figure 2.4 shows a schematic of a NIM negative refraction experiment, which is similar to 

Fig. 2.2(a) but takes loss into account. A plane wave is normally incident along x̂'  on the 
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bottom of the prism composed of cubic unit cells of size a, and excites complex Bloch modes 

within the prsim, where ẑ  is normal to the plane of incidence. We assume a sufficiently 

large but finite prism, such that multiple reflections within the prism and diffraction by its 

corners can be neglected. The wave vector of the Bloch mode in the first Brillouin zone must 

be along x̂' , due to conservation of its transverse component. The complex dispersion  

 

Fig. 2.4. A homogeneous plane wave is normally incident along x̂'  in the x’-y’ 
plane on a composite prism consisting of subwavelength unit cells and excites a 
complex Bloch wave that is diffracted by the interface grating at the hypotenuse. 
The diffracted light is detected in the far field. Constant and exponentially 
decaying wave amplitudes of phase fronts represent the incident homogeneous 
and detected inhomogeneous plane waves, respectively. Here, θ  and 0θ are 
incidence and refraction angles, a is the unit cell size, d is the interface 
periodicity, Bk is the first Brillouin zone wave vector of the Bloch mode, and 

mk and B( )mk  are the complex wave vector of the mth transmitted diffraction order 
and reflected Bloch wave in the extended Brillouin zone scheme, respectively. 
Subscripts r and i denote real and imaginary parts, and G = 2 / dπ  is the 
magnitude of the surface reciprocal lattice vector.       
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relation of this Bloch mode, B B ( )k k ω= , can be calculated [75]. Here, ω is the (real) 

angular frequency, B BRe( )rk k= , and B BIm( )ik k= . This choice of real frequency and 

complex wave vector is consistent with typical experiments that are conducted in the 

frequency domain with near monochromatic illumination [41]. The electric and magnetic 

field of this Bloch mode are B B
0( ) ( ) exp( ' ')r iik x k x= −E r' E r'  and 

B B
0( ') ( ') exp( ' ')r iik x k x= −H r H r , respectively. Here, ( ', ', ')x y z=r' , and 0 ( )E r'  and 

0 ( ')H r  are both functions periodic on the cubic lattice. The 'x  component of the time 

averaged power flow of this Bloch mode per unit cell is given by the surface integral of 

the Poynting vector *
0 0( ) ( )×E r' H r'  (proportional to momentum density), i.e., 

                                  
'

B

'

' *

( )

2 '*
0 0
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= × ⋅

= × ⋅

∫

∫

E r' H r' x'

E r' H r' x' 
,               (2.3)

where ( ')S x  is the cross section of a single unit cell at 'x  in the ' 'y z−  plane. Therefore, 

' ' B( ) ( ) exp( 2 )iP x a P x k a+ = − , and has no 'y  or 'z  dependence, due to the periodicity of 

0 ( )E r'  and 0 ( ')H r . Since power must flow away from the surface, B 0ik > , 

corresponding to decay of '( )P x  along x̂'  due to dissipation within the composite, 

although in general the local Poynting vector and wave vector may not be in the same 

direction [76]. Similar considerations of 'y  and 'z  components of the power flow per 

unit cell show that they are periodic, but do not decay, along their respective axes. These 

components are not necessarily zero, due to the possible anisotropy of the unit cell [74]. 
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Therefore, we do not assume a total power flow along x̂' , although typical unit cells [38, 

41, 42] are, by design, approximately symmetric with respect to the ' 'z x−  plane. 

      For a sufficiently large prism, only the complex Bloch mode with the lowest loss 

(corresponding to the smallest positive B
ik ) contributes to wave propagation within the 

bulk of the composite [66, 77]. Modes with B 0rk <  correspond to an anti-parallel phase 

velocity and power flow along x̂' . The figure of merit (FOM) used for gauging the loss 

of the unit cell is the inverse of the loss tangent, B B/r ik k . Typical low-loss NIM unit 

cells at microwave frequencies [41] are characterized by a high FOM~100 and a narrow 

negative index band in the first Brillouin zone. This band has opposite phase and group 

velocities [78] (i.e. B B( / ) 0r rk kω∂ ∂ < ), which is consistent with the Bloch mode in Fig. 

2.4 with B Bsgn( ) 0r ik k < , since the direction of the 'x  component of group velocity, 

B/ rkω∂ ∂ , is also along that of the power flow ( Bsgn( )ik ) in the limit of zero loss [79].           

      The hypotenuse of the prism is stepped, with prism angle 

2arcsin( / ) arcsin(1/ 1 )a d lθ = = + . Here, 21d l a= +  is the interface periodicity, and 

there are one and l unit cells along x̂'  and ŷ'  per step, respectively. The Bloch wave is 

impingent on the hypotenuse directed along ŷ  at an apparent incidence angle, θ , and 

excites reflected Bloch waves and transmitted plane waves. Obtaining transmission and 

reflection coefficients requires matching of these waves along the stepped hypotenuse 

with boundary conditions. Independent of details of a period on the interface, Bloch’s 

Theorem dictates [72] the phase matching condition  

  
B m
t t m= +k k G ,                                                        (2.4)     
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where ˆ= (2 / d)πG y , and m
tk  is the complex transverse wave vector of the mth 

transmitted diffraction order and reflected Bloch wave in the extended Brillouin zone 

scheme, as shown in Fig. 2.4. Since Bloch’s Theorem does not require B
tk  to be real [80], 

this equation applies even when B 0ik > , i.e. in the presence of loss within the prism. In 

scalar form, this generalized phase matching condition can be written as:  

                                                   
B

B

[ ] [ ] (2 / )

[ ] [ ]

m
r y r y

m
i y i y

k k m d

k k

π = +


=
,                                         (2.5) 

where the subscript y denotes the scalar component along ŷ . Both B
rk  and B

ik  are along 

x̂'  also as a result of this phase matching condition. Since Bloch’s Theorem derives from 

the discrete translational symmetry of the physical structure, Eq. 2.5 is independent of the 

possible nonzero power flow of the Bloch mode transverse to Bk  due to anisotropy [74]. 

Equation 2.5 is also independent of the types of waves involved and may apply to other 

periodic media.  

      In the far field, the propagating wave is a solution to the Helmholtz Equation with 

translational symmetry associated with phase factor, exp( )m
tik y . This eigenmode in a 

lossless medium must be an inhomogeneous plane wave [81] with orthogonal planes of 

constant phase and amplitude. Its wave vector has both real and imaginary components 

along the normal to these two planes, as indicated by 0
rk  and 0

ik , respectively, in Fig. 

2.4. The inhomogeneous plane wave amplitude diverges at y → ∞ , but in physical 

systems the wave is always bounded by a finite aperture. Declercq et al. [82] found that a 

single inhomogeneous plane wave component dominates the behavior of the bounded 
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wave. Indeed, the time-averaged power flow of a single inhomogeneous plane wave is 

predicted to be along the real wave (ray) vector 0
rk  [81]. Such predictions, including 

those based on Eq. 2.5, have been experimentally verified at acoustical frequencies 

extensively [83-85].  

      The dispersion relation of an inhomogeneous plane wave is [81] 

                                                       
2 2 2

0
m m
r i k− =k k ,                                                     (2.6)                             

where k0=2π/λ is the vacuum wave number. For m=0, solutions of 0k r  to Eqs. 2.5 and 2.6 

are:                   
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.                       (2.7) 

In the lossless case, B 0ik = , and Eq. 2.7 reduces to 0
0rk k=  or 0 B sinr rk k θ= . The former 

solution corresponds to a homogeneous plane wave ( 0 0ik = ) when B
0 sinrk k θ> , while 

the latter corresponds to an evanescent wave propagating along the surface in the 

presence of total internal reflection when B
0 sinrk k θ≤ . When B 0ik > , both 2

0k  and 

B 2( sin )rk θ  are between the two solutions in Eq. 2.7, and the smaller (negative) solution 

is discarded, since Eq. 2.6 requires that 0
0rk k≥ . Higher order waves corresponding to 

m≠0 can also be excited. Given that typically [38] d~λ/2 and, therefore, 0~ 2G k , Eq. 2.6 

shows 0
m m
r ik k k≈   for m≠0. The imaginary component of Eq. 2.5 therefore implies that 

the corresponding rays will be at near-grazing angles and bound to the interface, as 
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indicated by 1
r
−k  and 1

rk  in Fig. 2.4. This explains the existence of such beams in the 

numerical simulations in Fig. 2.3. 

 
 

2. 3. 2    Comparison of Theory to NIM Refraction Experiments 

    Equation 2.5 implies that the real part of the effective index follows Snell’s Law, viz:  

                                             B 0 B
0sin / sin ( / )sgn( )r r r in k k kθ θ= = ,                                (2.8) 

where 0θ  is the refraction angle for m=0. This index corresponds to the far-field power 

flow direction and is used for explaining experimental results. In the lossless case, Eq. 2.8 

gives:  
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where the sgn function ensures that the group velocity is along x̂' , consistent with Eq. 

2.2. Assuming parameters (θ, λ/a, and FOM) typical of experimental unit cells [38, 41, 

48, 61, 70], we calculate nr as a function of B
rk , with results shown in Fig. 2.5.  FOM=3 

typical of unit cells in the optical domain [48, 70] leads to a deviation of nr from Eq. 2.9 

that is dependent on both θ and B
rk , particularly toward the edge of the Brillouin zone. 

These observations are qualitatively consistent with steady state full-wave simulations of 

18  and 26  prisms (Fig. 2.3) consisting of the near-infrared frequency NIM in Sec 2.2. 

Quantitative experimental confirmations on the effect of imaginary transverse wave 

vector on the direction of diffracted inhomogeneous plane wave can be found in Refs. 

[83-85]. 
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Fig. 2.5 Observed effective index nr calculated using Eqs. 2.7 and 2.8 in text. The 
parameters used in the calculation are: 18θ =   (Refs. [38, 48, 61]), 26  (Refs. 
[48, 61]);  λ/a=6 (Refs. [38, 48, 61]); FOM=100 (Ref. [41]), 3 (Refs. [48, 70]). 
The frequency dispersion of the vacuum wave number, 0k , is neglected due to 
the narrow bandwidth of the negative index band. The lossless case (Eq. 2.8 in 
text) is nearly identical to that for FOM=100. Also, TIRn  is the onset of total 
internal reflection in the lossless case for 26θ =  . 

 

     In contrast, the lossless case is nearly identical to the case for FOM=100, which is 

often observed at microwave frequencies [41]. This suggests that loss can be neglected 

for typical microwave NIM structures in refraction experiments. We calculated band 

structures of the unit cells in Refs. [41, 42] and derived the effective indices using Eq. 

2.9. These two experiments used the same NIM structure to fabricate prisms with 

different angles (θ), and the difference in working frequency is due to different 

absorption of the adhesives in unit cells used in two experiments [86, 87]. The agreement 

of the results with the experimental data is excellent, as shown in Fig. 2.6.  
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Fig. 2.6. Effective indices derived via Eq. 2.9 from calculated band structures of 
Refs. [41, 42]. Both are consistent with the experimentally measured values for 
these metamaterials. Solid and dashed lines are guide to the eye. 

 

2. 4    Unified Explanation of Negative Refraction by NIMs and Photonic 

Crystals 

In addition to NIMs, negative refraction has also been observed in lossless dielectric 

photonic crystals [44, 74]. These observations have been well understood as diffraction 

using the equi-frequency contour (EFC) approach, which is based on the same phase 

matching condition (Eqs. 2.1 and 2.4) as employed in Sec 2.3. Negative refraction 

typically occurs in dielectric photonic crystals at the ratio of unit cell size to wavelength 

of approximately 1/3 [44], compared to that of 1/6 for a metal-dielectric NIM [38]. 

Despite the lack of a clear distinction between the two types of periodic structures, 

negative refraction by NIMs has been suggested [88] to have a different origin than that 

observed in photonic crystals, which is due to Bragg diffraction.  

NIMs refraction experiments [38, 41, 42] have been interpreted in EMT, assuming a 

homogeneous NIM, whose optical properties are due to a superposition of the negative ε  
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of metal wires [15] and the negative µ  of the split ring resonators [25] that comprise the 

prism. The general treatment in Sec. 2.3 explicitly accounts for the inhomogeneity of the 

unit cell through a complex Bloch wave, but requires no assumptions about ε  and µ . 

We have therefore provided a completely general explanation of negative refraction 

observed in both lossy NIMs and lossless photonic crystals.  Indeed, band structures [78] 

calculated for the first reported NIM structure exhibiting negative refraction are also 

consistent with the experimentally measured indices [38] using 

B B
0( / )sgn( / )r r rn k k kω= ∂ ∂ , and are characterized by a dispersion relation 

B B( / ) 0r rk kω∂ ∂ <  within the first Brillouin zone. This “backward” Bloch band also 

accounts for negative refraction in lossless dielectric photonic crystals [44]. 

Although both EMT and the phase matching condition (Eq. 2.4) can describe NIM 

refraction experiments, their predictions may differ under certain circumstances. For 

example, Eq. 2.4 suggests that more than one far-field beam may be excited by the Bloch 

wave when the unit cell size is sufficiently large but still subwavelength, as is the case for 

some NIM unit cells. In past experiments [61, 68], such phenomena have been observed 

and explained as the diffraction by the stepped interface grating between air and a 

homogeneous NIM, which is equivalent to interpreting the Bloch wave vector Bk  in Eq. 

2.4 to be that of a plane wave. If the stepped interface is linearized by using partial unit 

cells, EMT predicts the transmission of a plane wave through the planar interface 

between two homogeneous media, where the additional far-field beam disappears. 

However, the interpretation in terms of Bloch waves suggests that this beam is still 

present, since Eq. 2.4 derives from the translational symmetry of the periodic interface 
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only, independent of the details of a period. The observation of two propagating orders 

from a photonic crystal prism with a linear hypotenuse has been previously reported [89], 

where the angular positions of the far-field beams are consistent with Eq. 2.4. This 

difference is evidence for spatial dispersion, the deviation of the behavior of the NIM 

from its approximate local effective medium model.  

     The results presented here may also suggest the existence of a minimum unit cell size 

of optical NIMs. The maximum ratio of wavelength to periodicity currently achieved for 

optical NIMs is about 7, as will be discussed in Chapter 3. Tsukerman [90] has derived a 

minimum unit cell size imposed by a backward Bloch band for photonic crystals 

consisting of non-dispersive dielectrics. Since negative refraction by metamaterials is 

shown to be governed by the same Bloch band in the zero-loss limit, whether the 

minimum periodicity for NIMs containing dispersive metals at optical frequencies is 

restricted by a similar fundamental limit (apart from technological constraints) remains 

an open question.   

 

2. 5    Summary 

The general condition that must be met to observe negative refraction on a prism 

composed of subwavelength low-loss NIM unit cells is a dominant Bloch band that 

exhibits an oppositely directed wavevector and group velocity within the first Brillouin 

zone. The effective index is given by ))Re(/sgn()/( 0 kkkneff ∂∂= ω . In addition, a near-

infrared NIM design is presented with realistic material parameters. The geometrical 

parameters are compatible with a layer-by-layer approach for building a bulk 
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metamaterial [91]. Furthermore, based on a generalized phase matching condition, we 

have shown that the negative refractive behavior of lossless dielectric photonic crystals 

and lossy metal-dielectric periodic NIMs can be given a unified explanation. We have 

also discussed its implications for the effective medium model of NIMs as well as the 

possible existence of a minimum unit cell size for optical NIMs. 
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CHAPTER 3 

 

Experimental Study of a Subwavelength Near-Infrared  

 Negative Index Material  
 

    Optical negative index metamaterials (NIMs) [45, 46, 70] typically have a large unit 

cell size that is approximately half of the wavelength of operation in at least one 

dimension, unlike their microwave counterparts that are substantially subwavelength. 

This large periodicity makes the application of the effective medium theory (EMT) 

problematic [56, 92]. Moreover, while there have been a number of reports of optical 

NIMs [31], including a recent prism refraction experiment at a wavelength of λ=1.5μm 

[70], interferometric measurements of the phase advance of light at optical frequencies 

[93] have been rare. In the few reports of such experiments [46, 94], the relationship 

between the measured phase advance through samples consisting of only a single layer of 

unit cells and that expected from transmission through hypothetical multi-layer bulk 

NIMs was not investigated.  

In this chapter, we describe the fabrication of a layer of the subwavelength near-

infrared NIM structure introduced in Sec. 2.1, characterize its optical transmission, and 

measure the negative phase advance using a polarization interferometer. We also examine 
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the influence of losses and fabrication uncertainties on its potential bulk negative index 

properties using numerical simulations. 

3. 1    NIM Fabrication and Transmission Spectra 

The unit cell of the near-infrared NIM structure, subwavelength (~λ/7) in both the x  

and y  directions and extending infinitely along the z  direction, is shown in Fig. 3.1(a). 

The submicron features of the single layer NIM were patterned on a glass substrate with a 

Raith150 electron-beam writer. Several 100×100µm2 patterns were written with varying 

Au strip widths ranging from 70 nm to 120 nm. Fiducial marks for alignment were 

defined in the first strip layer photoresist (poly-(methyl methacrylate) 495K, MicroChem, 

Corp.) step. To mitigate the charging effects due to the non-conductive substrate, a 

charge-dissipation polymer (Espacer 300Z, Showa Denko) was spun over the resist prior 

to exposure. 

Following the deposition of the first layer of 20 nm thick Au at 5Å/s and lift-off of the 

photoresist in acetone, an approximately 40-nm thick layer of Benzocyclobutene (BCB, 

Cyclotene 3022-25, The Dow Chemical Company) diluted in mesitylene was spun onto 

the sample surface and cured in a nitrogen oven at 250oC for one hour. The root mean 

square roughness of the polymer surface was measured with an atomic-force microscope 

to be <5nm, as shown in Fig. 3.1(b). The dielectric layer was then etched in a CF4:O2 

plasma to attain a thickness of 10-20nm. Optical lithography was used to define 

100×100µm2 Ti(2nm)/Au(20nm) patches that covered the grating patterns, corresponding 

to the central metallic layer. Here the Ti layer enhances the adhesion of the Au to the 
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dielectric. Next, a second 40 nm thick dielectric layer was spun on and etched as above. 

The top strip layer consisting of 20 nm thick Au was similarly defined with electron-  
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Fig. 3.1 (a) The unit cell. Lattice constants Lx = Ly= 150nm, Au strip and central 
layer thicknesses t=tc=20nm, strip width W=100nm, and spacer thickness 
h=15nm. Gold strips and the central metallic layer are embedded in a polymer 
dielectric (cyclotene). (b) Atomic force microscope profile after planarization by 
the cured polymer on top of the Au grating pattern. The peak-to-valley roughness 
is 4.3 nm.  Inset: The atomic force microscope image of the grating covered by 
the cured polymer, where the white line transverse to strips shows the cross 
section analyzed, and the marks correspond to their positions in (b). (c) Scanning 
electron microscope image of a completed structure. Inset: Top strips on top of 
the bottom strips at the edge of the pattern showing the alignment between them, 
where the central metallic layer is absent.  
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beam lithography as the bottom strip layer, followed by a second metal lift-off step. 

Scanning electron microscope (SEM) images of samples shown in the inset of Fig. 3.1(c) 

indicate that alignment to within 20 nm between top and bottom strip layers was achieved. 

The completed structure is shown in Fig. 3.1(c).  

Photonic Crystal 
Fiber

CCD 
Camera

Sample

To CCD
SpectrometerPolarizer

Nd:YAG
λ=1064nm

 

Fig. 3.2  Experimental setup for transmission spectra measurement. The array of 
the NIM sample blocks fabricated on a glass substrate is shown as the CCD 
camera image. The bright spot on the sample is the focused white light beam. 

 

Fig. 3.2 shows the schematic of the transmittance spectra measurement setup, where 

the square patterns were illuminated with a ~20-µm-diameter, broadband supercontinuum 

laser beam obtained by coupling the output of a Nd-YAG pulsed laser into a photonic 

crystal fiber. The transmitted beam was analyzed with a spectrometer. Low-numerical 

aperture and visible/near-infrared achromatic objectives with long working distances 

were used for collimating and focusing the broad-band light. Spectra (relative to 

transmission through glass) for two patterns with an SEM-estimated strip width of 100nm 

are shown in Figs. 3.3(a)-(b). Also shown is the transmittance calculated using the Au  
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(a) (b)

(c) (d)

(e) (f)

 

Fig. 3.3 (a)-(b) Transmission spectra for the NIM layers in Fig. 3.1. Continuous 
lines are experimental data; open circles are simulated results for structures with 
metal layer thicknesses t=tc=22nm, top and bottom spacer thicknesses htop=15nm 
and hbot=9nm, respectively. Strip widths: (a) W = 105nm; (b) W=110nm. (c)-(f) 
Calculated band structure of the dominant Bloch mode assuming the geometrical 
parameters of (a)-(b), respectively. Transmission spectra and band structure of 
the same geometrical parameters are in the same column.  

 

dielectric constant [64], and the metal and dielectric layer thicknesses and strip widths 

measured for the samples studied. The refractive index for the dielectric layers was 1.56 

from ellipsometry, and 1.45 for the glass substrate. The thicknesses of metal and 

dielectric layers and strip widths were adjusted within reasonable limits to yield 

quantitatively good fits to the measured transmission spectra in Figs. 3.3(a)-(b). That is, 

we used Au strip and central layer thicknesses of t=tc=22nm, htop=15nm and hbot=9nm 
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for the top and bottom dielectric spacer layers, and strip widths W =105 and 110nm, 

respectively. These dimensions are compiled in Table I along with calculated errors, 

which are defined as the ratio of the maximum absolute deviation to the nominal value.  

Table I.  Nominal and experimentally determined dimensions of the negative 
index material structure in Fig. 3.1. Relative fabrication errors of the various 
dimensions are shown.  

 Au layer 

thicknesses (nm) 

Au strip 

widths(nm) 

Top  spacer 

thickness(nm) 

Bottom spacer 

thickness (nm) 

Nominal 20 100                            15 

Pattern 1 22 105 15 9 

Pattern 2 22 110 15 9 

Relative error 10% 10% 40% 

 

We have shown in Sec. 2.2 that for an arbitrary low loss unit cell, the bulk effective 

refractive index, neff, that is consistent with Snell's Law is given by the result of photonic 

band calculations following: ))Re(/sgn()/( 0 kkkneff ∂∂= ω , provided that a single Bloch 

band dominates, the losses are small, and the unit cell is small compared to the vacuum 

wavelength. Here, k is the wavevector of the dominant band in the first Brillouin zone, k0 

is the free-space wave number, and ω is the angular frequency. The dispersion relation of 

the dominant Bloch band [65] for the unit cells corresponding to pattern 1 and 2 in Table 

I are shown in Figs. 3.3(c)-(f). In both cases, a low-loss negative index band at 

wavelengths λ>1μm, characterized by 0))Re(/( <∂∂⋅ kk ω , is apparent. The slight red 
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shift of this band relative to the calculations in Sec. 2.2 is due to the fabrication errors. 

Accordingly, the existence of the low-loss band, together with the subwavelength feature 

size, provides a sufficient condition for negative refraction to occur.          

3. 2    Interferometric Measurement of Negative Phase Advance 

    In this section, we present experimental evidence for negative phase advance through 

the NIM sample using a polarization interferometer. Numerical scattering simulations 

further suggest that the negative phase advance through the sample is consistent with that 

exhibited by a bulk, multi-layer material.   

3. 2. 1    Experimental Setup  

A schematic of the NIM sample with dimensions corresponding to pattern 1 in Table I 

is shown in Fig. 3.4. Note that the top and bottom capping dielectric layers in a complete 

NIM unit cell are not present in the NIM structure fabricated on a glass substrate.  
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Fig. 3.4 Profile of the NIM sample fabricated on a glass substrate. Period 
Ly=L=150nm, Au strip and central layer thicknesses t=22nm, strip width W 
=105nm, ht=15nm and hb=9nm for the top and bottom polymer dielectric 
(cyclotene) spacer layers. 
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    Our approach to experimentally characterize the negative phase advance of the TM-

polarized light is to interfere it with the TE-polarized light propagating through the same 

sample, and then to measure the relative phase advance ( TM TEϕ ϕ ϕ∆ ≡ − ) using a 

polarization interferometer. The TE polarization is cut off inside the metamaterial, which 

serves as a wire grid polarizer. However, transmission of the TE polarization [95] is 

sufficient for our interferometry experiments. There are two features of this approach. 

First, both polarizations propagate through the same sample, so there is no need to 

account for their geometrical path difference. Second, it can be analytically shown (see 

below) that, because of the cutoff nature of the TE mode, 0TEϕ < . Therefore, TMϕ  is 

negative whenever 0.ϕ∆ <  

A polarization interferometer (Fig. 3.5) is used to measure the phase shift between 

orthogonally polarized states of light following a technique similar to that in [96]. We 

employ a tunable Ti:Sapphire ultrafast oscillator (~150-fs duration pulses at a repetition 

rate of 80 MHz) to perform measurements from λ=700 nm to 980 nm.  

The laser beam is passed through polarizer P1, oriented at 45o relative to the vertical. 

The polarization after P1 is the vector sum of horizontal and vertical components with 

identical phase. A microscope objective focuses this beam to a ~10μm diameter spot 

centered on the sample block. The sample is oriented such that vertically (TM) polarized 

light is expected to undergo a negative phase advance. Transmitted light is re-collimated 

by a second microscope objective. The two co-propagating polarization states then pass  
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(45o)   +substrate                          (45o)
 

Fig. 3.5. Schematic of the polarization interferometer (top view). The light 
propagates from left to right. P1 and P2 are parallel oriented polarizers positioned 
45○ to the vertical, LC PM is a liquid crystal phase modulator, and PD is a 
photodiode. The two orthogonal polarization states (TE indicated by the arrows 
and TM indicated by dots) are in phase after polarizer P1, and experience 
different phase advances through the NIM sample and the liquid crystal phase 
modulator, as represented schematically by different positions of their phase 
fronts along the beam path.   

 
through a liquid crystal variable phase retarder (LC) that introduces a controllable phase 

shift between the two polarizations. A compensator plate bonded to one window of the 

LC ensures this shift passes through zero at sufficiently high LC drive voltages. The light 

then passes through a second polarizer, P2, oriented parallel to P1, and is finally incident 

on a Si photodiode. 

The photodiode voltage is proportional to the induced photocurrent and the incident 

optical power. Taking a time average over the period of optical oscillations, the measured 

photodiode voltage, pdV , can be written as:  

                                      
2 2

0cos( ),
2

TM TE
pd TM TE LC

E EV E E ϕ ϕ+
= + +                           (2.1) 

since all voltage measurements have the same constant of proportionality relative to the 

electric field amplitudes. Here, positive constants TME  and TEE  are the electric field 

amplitude of the two polarization states at the photodiode, LCϕ  is the relative phase shift 
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ϕ  introduced by the liquid crystal, and 0ϕ  results from other unintentional phase shifts 

between the two states, due either to residual birefringence in the sample or polarization 

rotation introduced by the optics. 

    The extrema voltages of the photodiode are given by:  

                                             

2 2

max min, .
2

TM TEpd pd TM TE
E EV V E E+

∝ ±                           (2.2)
 

Using Eqs. 3.1-2, 

                                               
0 1cos( ) ( ),pd cLC V V

V
ϕ ϕ+ = −

∆
                          (2.3) 

where max min( ) / 2c pd pdV V V= + , max min( ) / 2pd pdV V V∆ = − , and Vpd is a function of the 

variable phase advance between the two polarization states. 

Figure 3.6(a) plots the photodiode voltage as a function of the LC drive voltage. These 

data are taken at a given wavelength for a reference sample consisting of an unstructured 

gold layer on the same substrate as the NIM. Using Eq. 3.3, we plot the wrapped phase 

( 0arccos( )LCϕ ϕ+ ) as a function of LC drive voltage in Fig. 3.6(b). The periodicity of the 

cosine function introduces ambiguity in extracting the phase advance. However, the LC 

phase shift monotonically decreases with increasing drive voltage. Since 0ϕ  is within the 

domain (-π, π), this is sufficient to accurately determine the phase advance, obtaining the 

calibration result in Fig. 3.6(c). As the LC phase advance is wavelength dependent, it is 

necessary to obtain calibration data for every wavelength of interest.  
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Fig. 3.6 (a) Photodiode voltage Vpd as a function of the liquid crystal (LC) drive 
voltage at λ=886nm for an unstructured gold sample block used as a reference. 
(b) The wrapped phase as a function of LC drive voltage for the reference. (c) 
The unwrapped phase as a function of LC drive voltage for the reference.  (d) Vpd 
as a function of the LC drive voltage for a NIM sample block.  

 

Equation 3.1 shows that the maximum photodiode voltage occurs when the phase shift 

due to the NIM is the additive inverse of the LC applied phase, which may be obtained 

from the calibration curve in Fig. 3.6(c). We thus obtain the relative phase shift due to the  

NIM by finding the LC drive voltage that produces the maximum of the photodiode 

voltage in Fig. 3.6(d). Note that the relative phase shift is determined only up to an 

additive constant of 2m π×  (m is an integer). As was shown in Sec. 2.2, the effective 

index of sufficiently thin samples determined for m=0 corresponds to the photonic band 
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structure of the unit cell within the first Brillouin zone, which is consistent with Snell’s 

Law in a refraction experiment.  

 

3. 2. 2    Phase Measurement Results  

Numerically simulated TMϕ , TEϕ , and ϕ∆  between the two polarization states using 

the sample dimensions in Fig. 3.3 are plotted as continuous lines in Fig. 3.7(a), where the 

TM phase advance dominates the relative phase shift, as expected [63]. In these 

simulations, plane electromagnetic waves are assumed to be normally incident on, and 

scattered by the sample. The measured relative phase advances obtained for two sample 

blocks on the same substrate, are also plotted in Fig. 3.7(a) (open symbols). The random 

error in the photodiode voltage is <1%, as determined by repeated measurements. The 

uncertainty in LC drive voltage that corresponds to the maximum photodiode voltage is 

more significant due to the zero slope of the data at this point, resulting in an error of 

approximately 0.2rad in phase retrieval. Finally, the uncertainty in the actual sample 

dimensions may also be a significant source of error, as indicated by the differences 

between data taken on different sample blocks with identically designed structures.  

To examine whether the negative TM phase advance exhibited by a single layer is 

consistent with the properties of a bulk medium with multiple layers of similar unit cells, 

the band structure xk  was calculated [65] for TM polarized electromagnetic modes    

propagating in the x̂ -direction, assuming a periodic array of complete square unit cells  

(inset of Fig. 3.7(b)) capped with polymer dielectric layers with the same parameters as 

the fabricated sample in Fig. 3.4. When the number of layers is sufficiently large, the 
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Fig. 3.7 (a) Measured relative phase shift TM TEϕ ϕ ϕ∆ = −  for two sample blocks 
fabricated on the same substrate with identically designed structure (open 
symbols). Calculated TMϕ , TEϕ , and ϕ∆ , obtained from normal incidence plane 
wave scattering simulations assuming the sample in Fig. 3.4, are also plotted 
(lines). (b) Phase advance per unit cell for TM electromagnetic waves derived 
from the band structure using Re( )TM xk Lϕ = , as well as those from scattering 
simulations. Here, ϕ  is the phase advance per unit cell, xk  is the wave vector in 
the x̂ -direction.  Inset: the complete unit cell with structural parameters in Fig. 
3.4 and additional capping dielectric layers, whose periods Lx=Ly=L=150nm. 

 
 

propagating electromagnetic wave is a Bloch mode, and the phase advance per unit cell, 

Re( )TM xk Lϕ = , is a bulk property, as is shown in Fig. 3.7(b). The negative TMϕ  between 

λ=880nm and 1100nm, therefore, indicates a negative index band for light transmitted 

through a similarly structured periodic bulk medium. The negative index band of the bulk 

NIM (black line in Fig. 3.7(b)) resembles that simulated for a single layer (blue line in 

Fig. 3.7(a)). As will be further discussed in Sec. 3.3.2, this is due to the single cell 

resonance that is responsible for the negative index band and the weak inter-layer 

interaction, which is necessary for inferring the bulk optical properties from single layer 

measurements. There is, however, a substantial shift between the TM phase advances 

from scattering simulations in Fig. 3.7(a) and the calculated band structure in Fig. 3.7(b). 
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In particular, the node and discontinuity on the frequency axis that delimit the negative 

index band are shifted.  

To understand the shift of the node, we exclude the influence of the substrate by 

numerically simulating the phase advance by a single layer of the complete unit cells, as 

shown in Fig. 3.7(b). It is significantly different from the phase advance derived from 

band structure due to surface effects of the single layer. Indeed, the simulated phase 

advance per unit cell by ten stacked, repeating layers is almost identical with that 

obtained from the band structure.  

The discontinuity in the phase advance at λ=1100nm for both the single layer and ten 

stacked layers in Fig. 3.7(b) agrees with that of the band structure. The experimental 

sample in Fig. 3.4 is on top of glass substrate but without the capping polymer dielectric 

layers. To ascertain whether the shifted discontinuity at λ=970nm of the TM phase 

advance in Fig. 3.7(a) is due to the presence of the glass substrate or the absent capping 

polymer dielectric layers, we simulated the phase advance using a complete unit cell on a 

substrate. In this case, the discontinuity remains at around λ=1100nm. Hence, we infer 

that the frequency shift of the discontinuity in Fig. 3.7(a) is due to the missing capping 

dielectric layers in the fabricated sample. 

Note that the phase advance for the tunneling TE mode is also negative. This phase 

advance occurs at the entrance and exit interfaces, and is a consequence [97] of the sub-

barrier tunneling amplitude across a barrier of thickness D which presents a purely 

imaginary refractive index n i= Γ  to the tunneling wave:  

                                      
0 02 2
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(1 ) (1 )Dk Dk

it
i e i eΓ −Γ
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+ Γ − − Γ
                                         (2.4)  
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where 0k  is the vacuum wave number. In the weak-tunneling limit of 1Γ >>  and 

0 1DkΓ >> , the approximate expression for the tunneling amplitude is  

     04 / exp( / 2 2 / ).t i i Dkπ≈ Γ − + Γ − Γ                                       (2.5) 

That the negative phase advance is a purely interfacial effect is clear from its 

independence of the layer’s thickness.  

 
3. 3    Losses and Fabrication Uncertainties 

Using numerical simulations that include artificially low metallic losses, here we 

confirm that the negative effective index exhibited by this structure is not the result of 

high losses at optical frequencies [98]. Moreover, we show that the fabrication 

inaccuracies in the dielectric spacer thickness that are likely to be introduced in a prism 

composed of multiple layers of this structure are within a range that preserves its negative 

refractive behavior. 

 

 

3. 3. 1    Role of Losses 

    It is understood that that the origin of the negative index of many optical NIMs is due 

to absorption, and their effective permittivity and permeability are not simultaneously 

negative [31]. For our NIM structure, even assuming a much reduced Au absorption from 

its actual value (e.g. 10% of the imaginary part of its actual permittivity), the calculated 

phase advance per unit cell (green line in Fig. 3.7(b)) still indicates a persistent negative 

index band, although it is narrower than that calculated taking into account the actual loss 
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of the Au strips (black line). In fact, the unit cell structure in Fig. 3.7(b) with two 

different spacings between the central continuous film and the metallic strips can be 

described as a bi-anisotropic medium, due to its lack of inversion symmetry [99]. Still 

assuming 10% of the imaginary part of Au permittivity and using the approach in Ref. 

[97] for extracting effective parameters from a reciprocal [99] bi-anisotropic medium, we 

calculated the effective index (nx), permittivity (εy), permeability (μz), and 

magnetoelectric coupling coefficient (ξ0) for our structure. The results are shown in Fig. 

3.8. The sign of Re(nx) is determined by requiring Im(nx)>0. In the (shaded) majority of 

the negative index band extending from λ=1000nm to 1070nm, the imaginary parts of all 

of the effective parameters are negligible compared with their real parts. Within this low- 
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Fig. 3.8. Effective (a) index (nx)  (b) magnetoelectric coupling coefficient (ξ0)  (c) 
permittivity (εy)  (d) permeability (μz) calculated for our structure assuming 10% 
Au loss. The shaded region corresponds to the negative index band. 
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loss region, the dispersion relation of a propagating mode in a bi-anisotropic NIM [97], 

2
0x y zn ε µ ξ= − − , requires simultaneously negative real parts of both the effective 

permittivity and permeability, regardless of the sign of  Re(ξ0). Indeed, Re(εy) and Re(μz) 

are both negative in this wavelength region. We caution, however, that these local 

homogeneous material parameters are approximate, and predictions based on their values 

may deviate from the macroscopic electromagnetic behavior of the composite, as we 

have discussed in Sec. 2.4. 

 

3. 3. 2    Effect of Fabrication Uncertainties  

We established in Sec. 3.1 the negative index for a potential bulk NIM through band 

calculations using the dimensions in Table I. Although we measured the negative phase 

advance through the single NIM layer consistent with this negative index (see Sec. 3.2), a 

bulk NIM fabricated with a layer-by-layer process [91] nevertheless inevitably has 

random fabrication uncertainties, which may shift or even eliminate the negative index 

band. It is, therefore, of interest to examine how the negative refractive behavior of the 

bulk will be affected by this randomness. Table I in Sec. 3.1 shows that of all the 

fabrication errors, the thicknesses of the dielectric spacer layers have the largest relative 

deviation due to their small dimensions and inaccuracies in the plasma etching process. 

We have, therefore, simulated a 3D prism composed of the unit cells of Fig. 3.1(a), where 

the angle of the hypotenuse is 18o. The dielectric spacer thickness (and hence the vertical 

position of each metal strip layer) is subject to a fabrication error that is simulated by a 

random variable in the range of [-7.5, 7.5] nm. Other sources of fabrication errors are  
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Fig. 3.9 (a) Time averaged power flow for a prism at an incident wavelength of 
λ=970nm. The dark background corresponds to nearly zero power flow. Disorder 
is introduced into the metal strip positions in the prism. Two far-field beams (1 
and 2) are observed. (b)  Comparison of effective indices extracted from 
numerical simulations and band structure calculations.  Circles: Index calculated 
from the band structure of unit cell in Fig. 3.1(a). Squares: negative refraction. 
Triangles: diffraction. The horizontal line represents the angular position parallel 
to the hypotenuse. Inset: Amplitude of the magnetic field, Hz, of the Bloch mode 
of the unit cell in Fig. 3.1(a) at a wavelength of λ=1µm. Darker shade represents 
a larger field. 
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neglected since they are considerably smaller in relative magnitude. In the simulation, the 

TEM00 mode of a parallel metal plate waveguide is normally incident upon the bottom of 

the prism. 

    A representative field plot at λ=970nm is shown in Fig. 3.9(a). In most situations, there 

are two far-field beams. The angular positions of the transmitted beams are used to 

determine the refractive indices, which are plotted in Fig. 3.9(b), together with the index 

of refraction calculated from the band structure of the unit cell of Fig. 3.1(a). The 

different frequency dependences of the two beams reveal their respective physical origins: 

Beam 1 (Fig. 3.9(a)) corresponds to the refracted beam, with its angular position 

consistent with predictions from Snell’s Law. This indicates that the negative refractive 

behavior is relatively insensitive to fabrication errors in the strip position and spacing. 

This insensitivity can be understood by inspection of the field profile of the plasmonic 

resonance, with its magnetic field concentrated between the two metal strips, as shown in 

the inset of Fig. 3.9(b). This resonance is responsible for the increased transmission in the 

negative index band. The resonances in neighboring unit cells are weakly coupled, and 

therefore insensitive to the disorder. Beam 2 is a diffraction order that lies nearly parallel 

to the hypotenuse due to loss, as has been explained in Sec. 2.3.  

 

3. 4    Summary  

A single layer of a subwavelength near-infrared NIM structure was fabricated, which 

has a ratio of wavelength to periodicity of approximately 7. To our knowledge, this ratio 

is the highest among all experimental NIMs working at optical frequencies. The phase 



 

62 

 

advance by this NIM sample has been measured, and is consistent with numerical 

simulations of the bulk properties of an infinite medium composed of the NIM unit cells. 

Apart from fabrication and experimental uncertainties, the disagreement between 

experiment and the predictions of phase advance from the band structure model is likely 

due to surface effects introduced by employing only a single-layer unit cell sample 

lacking capping dielectric layers. Its fabrication errors and uncertainties are shown 

through numerical simulations to be within a range that preserves the negative index 

properties of the layers if employed in a bulk NIM.  
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CHAPTER 4 

 

Microscopic Theory of Perfect Lensing 

 

    In 2000, Pendry postulated [27] that it may be possible to synthesize composite media 

with a negative refractive index. Modeling these composites as effective media and using 

negative permittivity (ε) and permeability (µ) in macroscopic Maxwell equations, he  

predicted  negative refraction, consistent with Veselago’s earlier results [6]. Pendry 

further used the effective medium theory (EMT) to calculate transmission (T) of plane 

waves through an imaging system consisting of a flat slab made of these composites. The 

predicted limit of T when both ε and µ approach -1 is unity, independent of the transverse 

wave-vector of the incident radiation. This suggests that such a slab would result in a 

perfect (i.e., diffraction-free) image of a point light source, since it would restore all 

Fourier components of the optical field of an object, including evanescent waves. Ref. 

[27], therefore, lays out a road map for constructing a superior optical imaging device 

using negative refraction. The flat lens made of ε=µ=-1 materials (the Veselago-Pendry 

lens) is therefore named the “perfect lens” or “superlens”.  
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    Negative refraction governed by Snell’s law with a negative index (n) was 

subsequently observed [38, 41, 42] in metal-dielectric periodic composites with a 

subwavelength unit cell size, which are now known as negative index metamaterials 

(NIMs). Interpretations of these experiments invoke a homogenization procedure that 

computes the effective permittivity (εeff) and permeability (µeff) of the NIM by 

approximating it as a local, homogeneous material. The obtained negative εeff and µeff are 

further explained as the consequences of electric and magnetic resonances, respectively, 

and used in EMT to interpret the observed negative refraction, where eff effn ε µ= − .  

Veselago-Pendry lenses require an object-image distance twice the thickness of the 

ε=µ=-1 NIM slab. Recent experiments on such structures have been performed at 

microwave frequencies using NIMs comprised of transmission line (TL) networks [100, 

101]. Experiments that do not satisfy these conditions have also been performed on other 

periodic material systems [102, 103]. For example, a NIM sample [102] consisting of 3 

layers of unit cells provides the best resolution at 3.74 GHz among all such experiments, 

but its index of n=-1.8 in EMT would not allow focusing [104]. The resolutions 

demonstrated by these experiments (whether or not satisfying the above conditions), 

however, do not match those of available sub-diffraction-limit optical imaging techniques, 

such as scattering near-field scanning optical microscopes [105], with resolutions of 

10nm at visible or longer wavelengths. 

4. 1    Prior EMT Models on Perfect Lensing 

    Absorption has been found to prevent NIMs from acting as perfect lenses [106-110]. 

Therefore, superconducting elements have been proposed [108] to reduce absorption in 
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the lossy metal components of NIMs. More recently, experiments on all-dielectric [111] 

and gain-assisted [112] NIMs have demonstrated the possibility of reducing or 

eliminating absorption. In the latter case, the dominant limiting factor may be the 

inherent microstructure of composites.  

Previous models [106-110, 113] that discuss the performance of perfect lensing have 

not quantitatively investigated the effect of NIM microstructure, since its existence is 

incompatible with EMT as employed in these studies. Alternative approaches include the 

use of an equivalent circuit model based on electromagnetic fields on the periodic lattice 

in TL NIM networks [114].  Some of these works [108, 113, 114] recognize that the 

resolution is limited by periodicity of the NIM slab.  

    Microscopic theories provide an alternative to modeling composites. Rather than 

assuming a single constitutive relation for the entire composite using εeff and µeff obtained 

from a homogenization approximation, these models use the respective ε and µ for each 

constituent, thereby preserving the physics of the microstructure. Examples of such 

theories are scattering and eigen-mode calculations based on the "microscopic" 

Maxwell’s Equations. In contrast, the macroscopic approach of EMT neglects the effect 

of internal structure of a composite. Typical unit cell sizes (dc) of NIMs [38, 41, 42] are 

between 1/10 and 1/6 of the wavelength (λ). Currently, the smallest dc/λ achieved at 

optical frequencies is approximately 1/7, which was discussed in Chapter 3. Given the 

practical and possibly fundamental constraints [90] on reducing the NIM unit cell size to 

yet smaller scales, EMT with εeff and µeff may not adequately approximate the unusual 

effects associated with metamaterials [115, 116]. For example, the recent comparison 
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[117] of a microscopic model and EMT on chiral metamaterials has shown that the 

microstructure effects nearly reverse the repulsive Casimir forces predicted from EMT 

[118]. It is therefore of interest to compare T in a microscopic model with the result in 

Ref. [27].  

Here, we design a model εeff =µeff =-1 NIM based on Mie resonances in cylinders with 

positive permittivity and permeability. The transmission through such a NIM slab is 

determined using both EMT and a microscopic model, and is used to predict the image 

profile of a point source. We then compare both results with full wave simulations of 

“imaging” of a point light source by the NIM lens, and find that EMT significantly 

overestimates the range of evanescent waves that can be recovered. We finally discuss 

the implications of our results.  

 

4. 2    NIM Design and Homogenization 

    The model metamaterial structure is based on localized Mie resonances in circular rods 

[111, 119, 120]. Here we adopt the photonics crystal convention, where vacuum 

permittivity, permeability, and light velocity are dimensionless and equal to unity, and 

electromagnetic properties of the composite constituents are assumed to be frequency 

independent. This separates the effect of the unit cell microstructure from dispersion of 

the constituent materials at the frequency of interest.  

The cross section of the hexagonal unit cell of the NIM in the x-y plane is shown in Fig. 

4.1, consisting of a cylinder embedded in air. The structure is infinitely long in the z 
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direction (perpendicular to the plane of the diagram). The total cross sectional area of the 

unit cell is 1 (hexagon side length d=0.6204), and the core radius, rs=0.081. The core 

permittivity (εs=600) has been used in simulations of a NIM made of Ba0.5Sr0.5TiO3 [111].   

Its permeability (µs=12) is an isotropic approximation to single-crystal yttrium-iron 

garnet that is used in Ref. [121] for NIM simulations. Since the Wigner-Seitz cell that 

defines the first Brillouin zone is also a hexagon, two different directions in the reciprocal 

space, Γ-X and Γ-M, are also shown in Fig. 4.1.     

x
y

d

sr

Γ
X

M

 

Fig. 4.1 The hexagonal NIM unit cell with side length, d=0.6204, and core radius, 
rs=0.081. Two different directions (Γ-X and Γ-M) in reciprocal space are also 
shown.  

    We consider transverse electric (TE, ˆEz=E ) polarized electromagnetic waves 

propagating in the x-y plane. The rods support Mie resonant modes of different orders, 

the first two of which correspond to the electric and magnetic responses of the composite 

[111, 119], respectively. Due to the inversion and six-fold rotational symmetries of the 

NIM unit cell, its constitutive relations in the local effective medium model are free of 

magneto-dielectric coupling [122], the relevant permittivity tensor component is εzz=εeff, 

and the permeability tensor must be diagonal and uniaxial [3] with µxx=µyy=µeff. We 
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determine εeff and µeff as functions of frequency (f=1/λ) using a homogenization theory 

which is based on the principle that a composite embedded in a homogeneous medium 

with its own εeff and µeff should be free of scattering, and is therefore the electromagnetic 

analogue to the coherent potential approximation (CPA) in condensed matter physics 

[123]. This theory was first used by Lewin [124] to homogenize dielectric spheres, and 

has since been generalized and applied in a number of works [125-128], including the 

treatment of acoustic metamaterials with both negative bulk modulus and mass density 

[129]. For our 2D NIM, εeff and µeff are obtained [130] using:  
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Here, k0=2πf is the free space wave number, r0=π-1/2, J is the Bessel function of the first 

kind, Y is the Neumann function, and D0 and D1 are Mie scattering coefficients of the first 

two orders given by: 
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Here ks= k0 (εsµs)1/2 is the wave number in the core of the unit cell, and H(1) is the Hankel 

function of the first kind. For real εs and µs, both εeff and µeff are correspondingly real 
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[130]. Furthermore, εeff and µeff correspond to the electric and magnetic dipole densities in 

the long wavelength limit [119], respectively. 

    Both εeff and µeff have been calculated for 0<f<0.12, and are plotted in Fig. 4.2(a), 

where one magnetic and two electric resonances are apparent. In EMT, the frequency 

region with εeff and µeff of the same sign corresponds to a real refractive index, or a pass 

band. The dispersion relation is therefore predicted using 2 eff effk fπ ε µ= , where k is the 

wave vector.  The dispersion is plotted in Fig. 4.2(b) together with the band structure 
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Fig. 4.2 (a). εeff and µeff of the model NIM calculated from the homogenization 
theory. (b) The dispersion relation predicted from effective medium theory (EMT) 
and the numerically calculated band structure. (c-d) Details of the narrow 
negative index band with the calculated band structure in both the Γ-X and Γ-M 
directions. (e). Circular equi-frequency contours of the negative index band 
showing the isotropic nature of the model NIM. 
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numerically calculated using a finite-element solver (COMSOL, Inc.). Details of the 

narrow negative index band at approximately f=0.082 are shown in Figs. 4.2(c)-4.2(d), 

with numerically calculated band structure in both the Γ-X and Γ-M reciprocal lattice 

directions. In both Figs. 4.2(b) and 4.2(d), the agreement of the results from the two types 

of calculations is excellent, except at large k that is far from the center of the first 

Brillouin zone. In Fig. 4.2(d), the nearly flat band (dots) immediately above this negative 

index band is due to symmetry degeneracy not captured by the homogenization theory 

[119], and has no effect on the electromagnetic properties of the NIM at the frequency of 

interest in Sec. 4.3. The numerically calculated equi-frequency contour of the negative 

index band (Fig. 4.2(e)) further exhibits the isotropic dispersion relation in the kx-ky plane 

for our model NIM.  

4. 3    Transmission and Image Profile 

    At the wavelength of interest, λ=12.226, corresponding to f=0.08179, which is near 

the crossing point of the NIM dispersion relation and the light line in Fig. 4.2(d), then 

εeff=-0.9880, and µeff=-0.9983, or very close to the desired εeff=µeff=-1. The ratio of 

wavelength-to-unit cell size is approximately 12, which is comparable to the 

experimentally demonstrated all-dielectric NIM [111], and twice that of a typical metal 

dielectric NIM [38]. Note that (εeff, µeff) may be adjusted arbitrarily close to (-1, -1) by 

varying rs and f, but at a certain point the transmission through the NIM lens in both 

models will remain unchanged for transverse wave-vectors within the first surface 

Brillouin zone (SBZ). We focus our attention to the first SBZ, since previous work [114, 
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131] has indicated that the restoration of evanescent waves by the NIM slab will not be 

present beyond its boundary.  

We consider a plane wave, exp( ( ))x yi k x k y+ , incident on an infinitely wide 5-layer 

NIM lens as shown in Fig. 4.3(a), where kx and ky are x- and y-components of the wave 

vector, k


. The ratio of the slab thickness-to-wavelength is comparable to experiments 

[100, 101]. The surface (a) and longitudinal (b) periods, are 1.0746 and 1.8612, 

respectively. The boundary of the first SBZ is therefore at 0/ 5.69xk a kπ= = . 
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Fig. 4.3 (a). A plane wave incident on an infinitely wide 5-layer NIM lens with 
lattice constants a =1.0746, and b=1.8612. Here, kx and ky are x- and y-

components of the wave vector, k


. mk


 is the wave vector the mth transmitted 

order, and  ˆ(2 / )G a xπ=


 is reciprocal surface unit mesh vector. Note that wave 
vectors of higher orders here are only illustrative, which in fact have substantial 
imaginary y-components (not shown) that correspond to their rapid decay in the 
y-direction. (b). The geometry used to calculate the transmission coefficient using 
a single period of the lens. The object-to-image distance is twice lens thickness. 
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In EMT, the transmission coefficient (T) of the incident wave is calculated using the 

result of Ref. [27] for εeff and µeff. In the microscopic model, the entire material system 

has discrete translational symmetry along the x-axis, and the wave vectors of the 

transmitted plane waves are therefore related by mk k mG= +
  

, where m is an integer that 

denotes the order of diffraction, and ˆ(2 / )G a xπ=


 is the surface mesh reciprocal lattice 

vector. Since the NIM unit cell is significantly smaller than λ, coupling to higher orders 

that decay more rapidly in the y-direction in this case is weak [131]. We therefore 

consider the transmitted wave entirely due to the 0th order (plane wave), which will be 

further confirmed by its consistency with full-wave simulations. We then make use of the 

x-periodicity to calculate the transmission coefficient with only a single period in 

COMSOL using scattering simulations. The geometry is shown in Fig. 4.3(b), where 

periodic boundary conditions enforce the lateral phase shift per period, exp( )xik a . The 

image and object planes are symmetrically separated at twice the slab thickness, and are 
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Fig. 4.4 (a) Amplitude and (b) phase of the transmission coefficient calculated for 
a 5-layer NIM lens using both the microscopic and macroscopic approaches.  
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governed by scattering boundary conditions that permit passage of plane waves without 

scattering. We perform the calculations using the scattered-field formulation in 

COMSOL, which allows for the separation of the incident and scattered fields. The 

transmission, T, is therefore given by the ratio of the total field at the image plane to the 

incident field at the object plane. Results of the amplitude and phase of T from both EMT 

and the microscopic model are plotted in Figs. 4.4(a) and (b), where the dashed lines 

separate propagating (kx<k0) from evanescent waves (kx>k0).  

     

(a) (b) (c)
 

Fig. 4.5 Numerical scattering simulations of propagating waves through a 9-layer 
NIM slab at (a). sinθ=0. (a). sinθ=0.3. (c). sinθ=0.707. Here, θ is the incidence 
angle to the NIM slab surface. A 5-layer NIM slab has the same behavior. 
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For propagating waves (kx<k0), the two models are remarkably consistent, except near 

kx=k0, implying that the NIM is likely to exhibit nearly zero reflection and complete 

transmission of propagating waves, as predicted by EMT. This is confirmed by full-wave 

scattering simulations at different incident angles, as shown in Figs. 4.5(a)-4.5(c). The 

slabs are 9 layers thick to clearly show the phase evolution in the NIM, although 5 layer 

thick slabs have the same behavior. 

In contrast, strong deviations between EMT and the microscopic model are found 

throughout the range of kx for evanescent waves (kx>k0). The apparent transmission peak 

for EMT in Fig. 4.4(a) is due to resonant excitation of the slab plasmon polaritons of the 

flat lens [108]. These modes result from coupling between the surface plasmon polaritons 

at the two interfaces of the NIM slab [132]. Similar resonant excitation by a point source 

has also been studied in the context of conventional optical waveguides and are 

associated with Purcell effect [133]. Figures 4.4(a) and 4.4(b) show that in EMT, the 

NIM lens is capable of transmitting evanescent waves up to kx of approximately 3k0 

without a change in amplitude or phase. This should result in a subwavelength image of a 

point light source, and the deviation of T from unity for other Fourier components 

corresponds to aberrations.  

    In the microscopic model, the peaks in the evanescent wave transmission spectrum 

also correspond to resonant excitation of slab plasmon polaritons, which have been 

studied in detail and referred to as “bound slab photon modes” in Ref. [131]. Figure 

4.4(a) shows that the NIM microstructure significantly modifies the dispersion relation of 

the plasmon polaritons. Multiple layers of the unit cell lead to an increase in the number 
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of polariton modes and therefore transmission resonances [131]. Moreover, the wave 

numbers that correspond to transmission resonances and the node on kx axis are shifted 

significantly toward zero, which implies that the range of recoverable evanescent waves 

is reduced. We therefore expect that EMT will underestimate the width of the central 

peak of the image, which can be interpreted as the resolution limit of the NIM lens. For 

those recoverable evanescent waves, a range of kx with unity transmission is absent in the 

microscopic model. The complicated structure in transmission and phase as shown in 

Figs. 4.4(a) and 4.4(b) is expected to result in a greater degree of image aberration 

compared to EMT prediction [134].  

    In both models, small transmission resonances are visible at k0 [108, 131, 134], 

which may be due to the opening of the evanescent wave channel for transmission to the 

image plane that is within the near field of the NIM lens. This type of effect is commonly 

known as a “threshold anomaly” [135]. Note also that all phase changes of π in Fig. 4.4(b) 

that accompany the resonant transmission of evanescent waves (Fig. 4.4(a)) are abrupt 

steps, since the system is free of loss in both models. This observation is consistent with 

previous work [134]. 

We have numerically simulated imaging by a 5-layer thick NIM slab that is 47 surface 

periods wide (Fig. 4.6), in a geometry surrounded by absorbing perfectly matched layers 

(PMLs) that simulate infinite free space. The point electrical current source, ˆ( ) ( )I x y zδ δ=


, 

emits TE-polarized field, where the time harmonic phase factor has been dropped. The 

profile of the emitted field is a Hankel function of the second kind, which approximates a 

δ-function. The normalized field profile, 
2E , in the image plane is shown in Fig. 4.7(a). 
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The predictions of the image profile from T in both EMT and the microscopic model 

using the inverse Fourier transform: 

                                            exp( ) ( )x x xE ik x T k dk
∞

−∞
= ∫                                           (4.4) 

are also plotted. Both integrals are evaluated using a finite difference summation between  

kx=-5k0 and kx=5k0 with Δkx=k0/100.  

 

                     

Image plane

Point current source

EMT predicted image position

Object plane

 

Fig. 4.6 (a) The electric field map (
2E ) of full-wave simulations of imaging of 

a point current source by the 5-layer NIM lens, where the object and image 
planes are symmetrically placed at twice the lens thickness. The geometry is 
surrounded by absorbing perfectly matched layers (PMLs).  Note that there is no 
apparent image of the point source at the opposite location in the image plane. 
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Figure 4.7(a) shows that EMT underestimates the width of the central peak, as well as 

the relative amplitude of the side lobes. In contrast, the agreement of the microscopic 

model prediction with full-wave simulations is significantly improved.  For example, T 

from the microscopic model accurately predicts the profile of the central peak. Although  
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Fig. 4.7 (a) Normalized image profiles predicted by transmission calculated in 
both the microscopic and effective medium theory models, compared with the 
result from full-wave simulations. (b) Comparison of image profiles from full-
wave simulations of lenses with different widths. The different profiles are 
marked by lens width in number of surface periods. The horizontal axis 
corresponds to the dimensionless x-position along the lens width. 



 

78 

 

 

the microscopic model provides improved agreement for the side lobes compared with 

EMT in terms of both amplitude and periodicity, the difference is non-negligible. This 

may be attributed to the finite width of the lens. We have performed further full-wave 

simulations of the image profile using structured NIM lenses of varying widths, with the 

results shown in Fig. 4.7(b). For different lens widths, the profile of the central peak is 

reproduced accurately, or with only slight broadening. However, the side lobes, 

especially their relative amplitudes, strongly depend on the lens width. This dependence 

may be due to the different stationary waves that these slabs support [114]. The narrowest 

lens (31 surface periods wide) corresponds to particularly intense side lobes close to the 

central one, which indicates the presence of strong edge effects. 

 

4. 4    Implications on Perfect Lens and Modeling Metamaterials 

    The perfect lens was predicted based on EMT for the case of ε=µ=-1. However, it was 

also recognized that such materials do not exist in nature and “no scheme can be of much 

interest if the means of realizing it are not available” [27]. To partly overcome this 

difficulty, a superlens using Ag [136, 137] with only negative ε was devised in Ref. [27]. 

In the interpretation of subsequent NIM negative refraction experiments [38, 41, 42], 

assigning both negative εeff and µeff to the composites through homogenization is 

intuitively appealing and generally accepted to have bridged this logical gap [43]. 

Therefore the "double negativity" interpretation of these experiments and the EMT in Ref. 

[27] together constitute the theoretical basis for constructing a perfect lens.  
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    However, we showed in Sec. 2.4 that negative refraction observed from both periodic 

NIMs [38, 41, 42] and photonic crystals [44] can be given a unified, quantitative 

explanation based on a generalized phase matching condition, and the negative index, n, 

can be predicted from the complex Bloch band structure, without invoking either εeff or 

µeff for the composite. Hence one can use either a microscopic theory or EMT to describe 

the same electromagnetic interaction between a point light source and a NIM slab. The 

question concerning perfect lensing is whether the transmission through the “double 

negative” composite as a function of kx behaves as predicted from EMT [27]. The 

microscopic approach shows that EMT significantly overestimates the range of kx that 

can be restored, hence limiting the achievable resolution. The deviation of EMT predicted 

transmission in terms of both amplitude and phase also leads to an underestimate of the 

image aberration due to the appearance of the intense side lobe diffraction. Therefore, 

based on the accurate microscopic model, it is unclear whether NIMs will lead to a 

superior optical imaging device.  

The inadequacy of homogenization and EMT discussed here can be confusing, given 

the analogy between unit cells of metamaterial composites and molecules of conventional 

dielectrics in nature: ε and µ for natural dielectrics are also an approximate result of 

homogenization, but their macroscopic Maxwell’s Equations are considered exact. 

However, as was discussed in Sec. 1.1, these equations are only applicable in 

experiments that probe macroscopic electromagnetic fields. In other cases microscopic 

models such as X-ray diffraction theory are used. Moreover, ε and µ for conventional 

dielectrics are sufficiently accurate for predicting all macroscopic experimental 

observations.  
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In contrast, experiments on metamaterials often focus on a single effect, where the 

boundaries between the above different length scales also tend to be more ambiguous. 

The failure of the EMT prediction of perfect lensing can be understood as the result of 

applying a macroscopic model to an intrinsically microscopic effect, since the 

involvement of all evanescent waves in k space implies a lack of microscopic cutoff in 

real space.  

 

4. 5    Summary 

    We have shown that microstructure leads to an overestimate of the range of evanescent 

waves within the first SBZ that can be recovered by an idealized ε=µ=-1 model lossless 

metamaterial, when EMT is used to model a NIM slab. This is confirmed by observed 

broadening of the central peak in numerically simulated image profile of a point source. 

As such, perfect lensing [27] may not be experimentally possible using composite 

structures, even when the unit cell periodicity is significantly subwavelength.    
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CHAPTER 5 

 

Conclusions and Future of Metamaterials 

 

    This chapter summarizes the approaches and results in this dissertation to answer the 

five questions in Sec. 1.7.  We also reflect on homogenization and provide a view of our 

perspectives on the future of metamaterials research.  

 

5. 1    Summary of Thesis 

In Chapter 2, the design of a subwavelength near-infrared NIM using paired metallic 

strips is presented. A maximum unit cell size and a general relation between the bulk 

refractive index of an arbitrary NIM and its photonic band structure are derived in the 

zero-loss limit. The effective index is given by ))Re(/sgn()/( 0 kkkneff ∂∂= ω . Based on 

discrete translational symmetry, we generalize Bloch’s theorem to a phase matching 

condition with a complex transverse wavevector. Using the generalized phase matching 

condition, we provide a unified explanation of negative refraction observed in both 

lossless photonic crystals and lossy NIMs. The generality of this phase matching 

approach implies that it applies to wave phenomena other than electromagnetism, and the 

media on either side of the interface may be homogeneous or periodic. The analytical 
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results are then tested in a number of ways, including numerical simulations of NIM 

prisms, optical and microwave frequency NIM refraction experiments, as well as 

quantum mechanical and acoustics experiments in the literature.  

In Chapter 3, the subwavelength near-infrared NIM introduced in Chapter 2 is 

fabricated using electron beam lithography. The NIM has a ratio of wavelength to 

periodicity of 7, the highest among known experimental optical NIMs. The NIM is then 

characterized by scanning electron and atomic force microscopies and optical 

transmission measurements. A negative phase advance through this NIM is observed 

through interferometry. All these measurements are consistent with a bulk negative index 

calculated from the photonic band structure of the NIM.   

In Chapter 4, we design a model NIM based on localized Mie resonances in cylinders 

with a positive ε and µ. After homogenization, the composite is shown to be a material 

exhibiting ε=µ=-1 in the effective medium theory (EMT). Transmission of plane waves 

through such a flat NIM lens is calculated using both EMT and a microscopic model that 

preserves the NIM's internal structure, and further used to predict the image profile of a 

point light source. By comparing both results with full-wave simulations, we find that 

EMT substantially overestimates the range of recoverable evanescent waves due to 

neglect of the microstructure. This implies that perfect lensing may not be experimentally 

attainable, even if the NIMs are significantly subwavelength.  

 

5. 2    Reflections on Homogenization and Future of Metamaterials Research 

In research on metamaterials, the model of effective medium has been successful in 

explaining many observations, and its predictions have been instrumental in 
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hypothesizing possible applications of composites. These predictions, however, often 

involve mathematical singularities, as well as ε and µ that are extreme and uncommon 

[27, 35]. Nevertheless, considerable effort has been devoted to developing a unified 

homogenization theory to assign εeff and µeff to an arbitrary composite, so that EMT 

predictions of the performance of a macroscopic device are generally effective. It is, 

therefore, often assumed that metamaterials with subwavelength unit cells can be 

homogenized and described by εeff and µeff.  

Our work in Chapter 4 has shown that this assumption may not apply to metamaterials, 

and the use of EMT may lead to significant deviations from observation due to the 

neglect of microstructure, at least for some effects of particular interest. Indeed, we 

derived in Sec. 2.2 a maximum periodicity, below which a NIM behaves as a 

homogeneous medium in refraction experiments in the zero-loss limit. A NIM with a 

more relaxed periodicity may still have subwavelength unit cells, but it behaves as a 

grating with multiple diffraction orders in the far field. Such phenomena have been 

observed in experiments [61, 68]. Apparently, any homogenization theory applied to such 

NIMs leads to an inaccurate description in εeff and µeff.  

A related, long-standing question on metamaterials that is of significant interest to 

experimentalists is how small a unit cell is small enough, which has led to varying 

speculations since as early as Lewin’s homogenization work in 1947 [5, 59, 124, 128]. A 

more definitive version of this question is whether it is possible to derive a general 

maximum unit cell size for EMT to be effective for every effect on an arbitrary 

metamaterial. A homogenization theory applied with such a criterion may still be 

considered general. If such a size exists, experimentalists may therefore choose any unit 
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cells with the required εeff and µeff below this maximum size for ease of implementation. 

This general maximum unit cell size, however, may not exist. We illustrate this point 

with the diagram in Fig. 5.1, where three circles correspond to the different sets of 

metamaterials for which the three types of experimental observations are possible: far-

field scattering parameter measurements, negative refraction, and perfect lensing. Since 

far-field transmission and reflection can always be measured for any material, every 

composite is in the corresponding circle, which is also implied by its dashed boundary. 

For negative refraction, the maximum unit cell size in Sec. 2.2 sets a limit for zero-loss 

NIMs, hence the corresponding circle includes only some composites. Finally, our work 

in Chapter 4 and all experimental work so far indicate that it is still unknown whether any 

physical material is in the central circle and can be used to make a perfect lens. This 

diagram shows that different effects correspond to different critical length scales, even if 

these critical scales can be defined.  

scattering parameter    
measurements
(any composite)

negative refraction
(below maximum 
periodicity)

superlens
(?)   

 

Fig. 5.1 Circles that correspond to maximum metamaterial unit cell sizes for 
different phenomena.   
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    Therefore it is unlikely that there exists a universal homogenization theory, nor a 

general maximum unit cell size. Unlike macroscopic Maxwell’s equations that can 

replace experiments to a great extent in antenna research, homogenization and EMT are 

not a substitute for experimental study of metamaterial composites. There does not seem 

to be a shortcut for solving this fundamental problem, which is dictated by the empirical 

nature of Maxwell’s equations, as discussed in Sec. 1.1. 

 It is therefore important to ensure that the particular physical behavior of the 

metamaterial is consistent with predictions from EMT. Microscopic models, as an 

intermediate step between EMT and experimental implementations, may serve as a sanity 

check and answer practical questions such as whether reducing loss is sufficient for 

achieving a specific application. Although experimental study and microscopic modeling 

have not dominated the literature, they are expected to be the central theme of 

metametarials research in the ensuing years.  
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