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ABSTRACT

Measurement of Z → ee transverse momentum distribution in proton-proton
collisions at

√
s = 7 TeV in the ATLAS detector

by

Hao Liu

Chair: Jianming Qian

The normalized distribution of Z/γ∗ → ee transverse momentum1, 1
σ

dσ

dpZT
, is mea-

sured in proton-proton collisions at center-of-mass energy
√
s = 7 TeV with the A

Toroid LHC ApparatuS (ATLAS) detector. The results are based on a dataset cor-

responding to an integrated luminosity of 35 pb−1 collected in 2010. The major

background to Z → ee is from Quantum ChromoDynamics (QCD) processes and is

studied by data-driven methods. A bin-by-bin unfolding method is used to correct

for the detector acceptance and efficiency which is cross-checked with a regularized

matrix unfolding method. A complete analysis of both theoretical and experimen-

tal uncertainties is also presented. The theoretical uncertainties arise from Quantum

Electroweak Dynamics (QED) and QCD corrections, which are estimated using Monte

Carlo (MC) simulations. The experimental uncertainties arise from multiple sources

with dominant ones being the electron identification, electron energy scale, and energy

resolution. The measurement is compared to predictions of various MC event gen-

erators. The prediction of re-summed QCD combined with fixed order Perturbative

1In the following, Z stands for Z/γ∗, i.e. Z including small γ∗ and γ∗ −Z interference contribu-
tions.
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Quantum ChromoDynamics (pQCD) calculations is found to be in good agreement

with data.

xviii



CHAPTER I

Introduction

At the Large Hadron Collider (LHC), the Z boson, one of the propagators of the

electroweak interaction with the mass mZ = 91.2 GeV, is produced abundantly in

proton-proton collisions at
√
s = 7 TeV at an approximate rate of 1000 Z per pb−1

integrated luminosity. Of these, 3.36% decay to an electron-positron pair. The large

dataset of Z bosons in the electron decay channel enables precise measurements of

the transverse momentum spectrum, pZT . In the high transverse momentum regime

with pZT values larger than half of the mass of the Z boson, mZ/2, the production is

dominated by the radiation of additional hard partons prior to the Z boson decay and

can be calculated by pQCD theory. However, in the low transverse momentum regime

with pZT values less than 5 GeV, the production is dominated by soft real and virtual

gluon emissions. The calculation is not perturbative, and a soft-gluon resummation

is mandated [4, 5].

The Z boson transverse momentum study allows the validation of both resummed

and perturbative QCD calculations. A precise knowledge of the Z boson transverse

momentum is also crucial for precision electroweak measurements, such as the mea-

surement of the W boson mass [6].

This thesis presents a measurement of the normalized Z → ee transverse momen-

tum (pZT ) distribution in proton-proton collisions at
√
s = 7 TeV with a dataset cor-
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responding to an integrated luminosity of 35 pb−1 collected by the ATLAS detector.

The normalized transverse momentum distribution is independent of the luminosity

and many systematic uncertainties cancel.

The structure of the thesis is as follows: Chapter 2 is a brief review of the Stan-

dard Model and Z boson production in proton-proton collisions; Chapter 3 gives an

overview of the LHC machine and describes the ATLAS detector in detail; Chapter

4 summarizes algorithms of electron reconstruction, identification and trigger and

measurements of the electron efficiency and energy in 2010; Chapter 5 presents the

collected data, Monte Carlo simulations and distributions of the di-electron trans-

verse momentum (peeT ); Chapter 6 studies backgrounds of the Z → ee process after

the final selection; Chapter 7 presents strategies and results of the extraction of pZT

from peeT ; Chapter 8 evaluates potential uncertainties of pZT measurements; Chapter

9 is the summary of measurements of pZT .
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CHAPTER II

Standard Model

The Standard Model of particle physics has been very successful in describing

fundamental particles and their interactions. This chapter introduces the Standard

Model and Z boson production in proton-proton collisions. Section 2.1 begins with

the summary of particles and interactions in the Standard Model. Section 2.2 starts

with the electromagnetic theory which is the first complete theory of the interaction

of electric charges. Then theories of electroweak, Higgs mechanism and strong inter-

actions are discussed in Section 2.3, 2.4 and 2.5, respectively. Section 2.6 presents the

Z boson production in the LHC. Section 2.7 summarizes the Monte Carlo generators

used in this thesis to study pZT .

2.1 Particles and Interactions in the Standard Model

There are four fundamental interactions in nature: gravitational, electromagnetic,

weak, and the strong interactions. The latter three interactions are successfully de-

scribed by the Standard Model. The electromagnetic and weak interactions are unified

into an electroweak theory in the Standard Model.

There are two kinds of fundamental particles in the Standard Model: fermions

and bosons. Fermions are spin 1/2 particles and obey Fermi-Dirac statistics. They

are the constituents of matter. Bosons have integer spins and obey Bose-Einstein

3



statistics. They are responsible for mediating forces between particles. The quantum

field theory is used to formulates the behavior of fermions and bosons. Matter and

antimatter are mostly treated equally within the Standard Model except for some

rare particle decays [7].

The fermions in the Standard Model are categorized as leptons and quarks based

on whether they participate in the strong interaction. Leptons and quarks are grouped

into three generations or families. Leptons only respond to the electroweak interac-

tion, with the spin of 1/2 and the charge of 01 or −1. Quarks have both electroweak

and strong interactions with the spin of 1/2 and the charge of −1/3 or 2/3. The

nature of the strong force is that the quarks are confined to form hadrons instead of

isolated particles. There are two categories of hadrons according to the number of

their constituent quarks: mesons (qq̄, where q represents a quark and q̄ an anti-quark)

and baryons (qqq or q̄q̄q̄). In the QCD theory, each quark carries three different col-

ors. However, the leptons and hadrons are colorless. Fermions can also be categorized

into left-handed and right-handed components according to their helicities. The he-

licity of a particle is the direction of its spin relative to its momentum; particles with

spin in the same direction as their momentum are called right-handed, and otherwise

they are called left-handed. All the fermions have both left-handed and right-handed

partners except for neutrinos. The right-handed neutrinos are not yet discovered so

far. Each fermion has an anti-particle partner which has the same quantum numbers

except for the opposite charge.

There are three types of bosons with the spin of 1 in the Standard Model, cor-

responding to three different interactions. The photon is the massless mediator for

the electromagnetic interaction. W+,W− and Z bosons are massive mediators in the

weak interaction with the charge of +1, −1 and 0, respectively. The 8 massless gluons

are mediators of the strong interaction which carry different colors and form an octet

1Without specification, the charge unit in this thesis is e.
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of vector bosons.

The quantum numbers of fermions and bosons are summarized in Table 2.1.

Fermions Spin Charge
Leptons νe νµ ντ 1/2 0

e µ τ 1/2 -1
Quarks u c t 1/2 2/3

d s b 1/2 -1/3

Bosons Spin Charge
Electromagnetic γ 1 0

Weak W±, Z 1 ±1, 0
Strong 8 gluons 1 0

Table 2.1: The quantum numbers of leptons, quarks and mediating bosons in the Standard
Model.

In the Standard Model, the particle interaction equations are obtained from the

gauge invariance principle: the Lagrangian must be invariant under a local (gauge)

transformation from the symmetry group

SU(3)C ⊗ SU(2)L ⊗ U(1)Y . (2.1)

The SU(2)L ⊗ U(1)Y group is the symmetry generator for both electromagnetic

and weak interaction which are unified as the electroweak interaction in the Glashow-

Salam-Weinberg model [8]. The conserved quantum numbers in the electroweak

interaction are the isospin (I3) and hypercharge (Y ). Their combinations lead to

electromagnetic charges (q). Only left-handed (L) fermions attend the weak interac-

tion. The SU(3)C is the symmetry generator for the strong interaction. Its conserved

quantum number is the color charge (C) which is equivalent to the electromagnetic

charge.
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2.2 The Electromagnetic Interaction

The electromagnetic theory describes interactions of fermion and photon fields.

The Lagrangian of a spin 1/2 fermion field ψ can be written with a kinematic term

and a mass term

LD = iψ̄γµ∂µψ −mψ̄ψ (2.2)

where m is the fermion mass, γµ is the Dirac gamma matrices [8] and ψψ̄ is the spinor

field for the fermion

ψ =

 ψR

ψL

 . (2.3)

The Lagrangian term for the photon field Aµ is

Lγ = −1

4
F µνFµν (2.4)

where the Fµν = ∂µAν − ∂νAµ is the tensor field. Thus, the free Lagrangian for a

fermion and photon field is

LD + Lγ = iψ̄γµ∂µψ −mψ̄ψ −
1

4
F µνFµν . (2.5)

Equation 2.5 has no coupling between the fermion field ψ and photon field Aµ. To

obtain the missing interaction term, local gauge invariance is imposed, which requires

the Lagrangian to be invariant under the transformation

ψ → ψ′ = eiqθ(x)ψ (2.6)

where θ(x) is an arbitrary space-time (x) dependent function. For 0 ≤ θ < 2π,

transformations of U = eiqθ(x) form the U(1) symmetry group. So the electromagnetic
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theory is a theory with U(1) symmetry.

To satisfy local gauge invariance, the derivative operator can be redefined as

Dµ = ∂µ + iqAµ (2.7)

where q is the electromagnetic charge of the fermion, which can be interpreted as

the strength of electromagnetic coupling; Dµ is named as the convariant derivative

operator. Substituting the usual derivative operator by the convariant derivative, the

electromagnetic Lagrangian is

LQED = iψ̄γµ∂µψ −mψ̄ψ −
1

4
F µνFµν − qψ̄γµAµψ. (2.8)

The fourth term of the electromagnetic Lagrangian represents the electromagnetic

interaction between the fermion and photon fields

LQED,int = −qψ̄γµAµψ ≡ −JµAµ (2.9)

where Jµ is the charge current, which is the probability of the particle current mul-

tiplied by its charge.

2.3 The Electroweak Interaction

The symmetry group of electroweak interactions is SU(2)L⊗U(1)Y , in which only

left-handed fermions are transformed under the SU(2) symmetry and both left- and

right-handed fermions are transformed under the U(1)Y symmetry. The eigenvectors

of the SU(2)L and U(1)Y symmetries are re-combined into the eigenvectors of the

weak and electromagnetic interactions. Therefore, the gauge fields are not the physical

fields in the electroweak theory.

The SU(2)L symmetry group is generated by the Pauli matrices [8]. The third
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eigenvalue of three Pauli matrices is used as one quantum number in the electroweak

theory, I3. In each family, there are two left-handed weak-isospin doublets, one for

leptons and the other for quarks. They are

 +1/2

−1/2


I3

:

 νe

e−


L

,

 νµ

µ−


L

,

 ντ

τ−


L

,

 u

d


L

,

 c

s


L

,

 t

b


L

.

(2.10)

The right-handed neutrinos are not discovered so far, so the symmetry of parity

is broken in electroweak interactions [8].

Similar to U(1) symmetry, the doublet will be transformed under the local SU(2)L

gauge as  νe

e−


L

→

 νe

e−


′

L

= e
−i
2
~α(x)·~τ

 νe

e−


L

(2.11)

where e− and νe are field functions for the electron and corresponding neutrino; L

indicates the fermion is left-handed; ~τ is the vector of Pauli matrices; ~α(x) is a real

vector which depends on space-time x.

Similar to Equation 2.6, the field function ψ of a left-handed or right-handed

fermion is transformed under the local U(1) gauge. Similarly, the quantum number

of the U(1)Y symmetry is named as the hypercharge Y . The hypercharge is different

for the left-handed fermion (YL) and its right-handed partner (YR).

SU(2)L ⊗ U(1)Y symmetry requires the presence of 4 gauge fields: 3 gauge fields

from the SU(2)L doublet interaction and 1 gauge field from the U(1)Y singlet interac-

tion. Similar to the electromagnetic theory, the covariant derivative operator is used

in the electroweak Lagrangian

Dµ = ∂µ + ig2
~τ

2
· ~Wµ + ig1

Y

2
Bµ (2.12)
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where ~Wµ = (W1,W2,W3)µ is the gauge field with three components for the SU(2)L

symmetry, Bµ is the gauge field for the U(1)Y symmetry, g1 and g2 are parameters of

the interaction strength for SU(2)L and U(1)Y transformations.

After substituting the usual derivative by the covariant derivative and omitting

the mass term, which will be discussed in the next section, the Lagrangian for the

fermion and boson fields are

Lfermion =
∑
f

iψ̄γµDµψ, (2.13)

Lboson = −1

4
W µν
i W i

µν −
1

4
BµνBµν . (2.14)

Therefore, the electroweak Lagrangian is

LEW = Lfermion + Lboson =
∑
f

iψ̄γµDµψ −
1

4
W µν
i W i

µν −
1

4
BµνBµν . (2.15)

After expanding Equation 2.15 and comparing it to dynamic terms of the electro-

magnetic Lagrangian (Equation 2.8), the four physical fields for the W±, Z bosons

and the photon are defined by recombining the gauge fields ~W and B as

W±
µ =

1√
2

(W 1
µ ∓W 2

µ), (2.16)

Zµ = cos θwW
3
µ − sin θwBµ, (2.17)

Aµ = cos θwBµ + sin θwW
3
µ . (2.18)

In the electroweak theory, the Weinberg angle θw is defined as

sin θw =
g1√
g2

2 + g2
1

. (2.19)
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Particle Isospin (I3) Hypercharge (Y )
Fermion

(νe− , e
−)L (1/2, -1/2) (-1, -1)

e−R 0 -2
(u, d)L (1/2, -1/2) (1/3, 1/3)
(u, d)R (0, 0) (4/3, -2/3)

Boson
(W+,W−) (1, -1) (0, 0)

Z 0 0
γ 0 0

Table 2.2: Summary of the weak isospin and the hypercharge of fermions and bosons.

The g1 and g2 can be written in terms of θw and unit of the electromagnetic charge

e as

g1 =
e

cos θw
, (2.20)

g2 =
e

sin θw
. (2.21)

Therefore, the electromagnetic charge (q) of a fermion can be defined by the

combination of its weak isospin (I3) and hypercharge (Y )

q = I3 + Y/2. (2.22)

The weak isospin and the hypercharge of fermions and bosons are summarized in

Table 2.2

2.4 The Higgs Mechanism and Symmetry Breaking

One more degree of complexity is needed in the electroweak theory, otherwise the

fermions and bosons are massless. Therefore, a Higgs field is introduced as an SU(2)

doublet
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Figure 2.1: The Higgs potential V (φ) = µ2φ†φ+ λ(φ†φ)2.

φ =

 φ+

φ0

 (2.23)

where φ+ and φ0 are both complex fields

φ+ =
φ1 + iφ2√

2
, (2.24)

φ0 =
φ3 + iφ4√

2
. (2.25)

The Higgs field has a potential [8]

V (φ) = µ2φ†φ+ λ(φ†φ)2 (2.26)

which has a shape of the Mexican hat as shown in Figure 2.1.

Combining the potential and the kinematic term, the Higgs field Lagrangian is

L = i(∂µφ)†(∂µφ)− µ2φ†φ− λ(φ†φ)2. (2.27)
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The potential V (φ) has a minimum for µ2 < 0 at

φ†φ =
−µ2

2λ
= v2/2 (2.28)

where v is the Vaccum Expectation Value (VEV) with v ≈ 246 GeV [8]. In the

SU(2) space, the Higgs field can be expanded around the minimum, φ = φ0 + ∆φ.

The appropriate choice is called vacuum φ0,

φ0 =
1√
2

 0

v

→ φ =
1√
2

 0

v +H

 . (2.29)

Note that the vacuum has no charge, q = 0 and the electromagnetic charge assign-

ment of Equation 2.23 corresponds to Y = 1. So I3 = −1/2 = (q−Y/2) for the Higgs

field φ. The Lagrangian of Equation 2.27 allows the Higgs boson decays into a pair

of W+ and W− in which neither the weak isospin nor hypercharge is conserved, oth-

erwise the Higgs boson should have I3 = Y = 0. Therefore, both SU(2)L and U(1)Y

symmetries are broken. However, the Lagrangian is invariant under a electromagnetic

transformation

φ→ φ′ = eiα(x)qφ = φ (2.30)

which means the Higgs field has a U ′(1) symmetry corresponding to the electromag-

netic charge conservation.

Substituting φ by Equation 2.29 and the ∂µ by the convariant derivative Dµ of

Equation 2.12 in Equation 2.27, the mass terms for bosons are

1

8
v2g2

2

(
(W 1

µ)2 + (W 2
µ)2 +

1

8
(g1Bµ − g2W

3
µ)2

)
. (2.31)
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The first term corresponds to the W boson mass term

(
1

2
vg2

)2

W+
µ W

−
µ ⇒MW =

vg2

2
(2.32)

and the second term to the mass term of the Z boson after comparing to Equation 2.18

MZ =
1

2
v
√
g2

1 + g2
2. (2.33)

To get the fermion masses, one adds the Yukawa coupling terms e.g. for leptons

and quarks in the first family,

Lint,lepton = ge(L̄φe
−
R + φ†ē−RL), (2.34)

Lint,quark = gdQ̄LφdR + guQ̄LφcuR + h.c. (2.35)

where L =

 νe

e−

, QL =

 uL

dL

, ge, gu, gd are interaction strengths between

fermions and the Higgs field, φc =

 −v+H√
2

0

 arisen from the right-handed u quark.

ge, gu, gd are free parameters in the Standard Model, therefore fermion masses me,

mu and md determined from them are free parameters as well.

2.5 The Strong Interaction

The strong interaction only exists between quarks and gluons with the symmetry

group SU(3). The quantum number from the SU(3) symmetry is the “color”, which

is a new degree of freedom and conserved under SU(3) transformations similar to

the isospin and hypercharge in the electroweak theory. There are 3 eigenstates in

the strong interaction, usually named as “red”(R), “green”(G) and “blue”(B). The

realistic quantum field theory for the strong interaction is Quantum Chromodynamics.
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After imposing the color index α = 1, 2, 3 (B,R,G) in Equation 2.2, the Lagrangian

term for the free quark takes the form

Lquark = iψ̄αγ
µDµψα −mψ̄αψα. (2.36)

The SU(3) symmetry requires the Lagrangian to be invariant under the transfor-

mation

ψα → ψ′α = e−
i
2
g3θa(x)λaψα (2.37)

where g3 is related to the coupling constant of the strong interaction

g3 =
√

4παs. (2.38)

λa are the eight generators of SU(3), known as Gell Mann matrices [8] with

structure constants fabc. The SU(3) group commutation rules are

[
λa
2
,
λb
2

]
= ifabc

λc
2
. (2.39)

The SU(3) convariant derivative takes the form

Dµ = ∂µ + i
g3

2
λaG

a
µ (2.40)

where Ga
µ are the 8 gluon fields. So the Lagrangian terms for quarks and gluons are

LQCD = iψ̄αγ
µ∂µψα −mψ̄αψα − ig3ψ̄αγ

µλaψ
αGa

µ −
1

4
Gµν
a G

a
µν , (2.41)

in which the electroweak and Higgs interaction terms are ignored and the gluon tensor

fields Gµν
a defined as

Ga
µν = ∂µG

a
ν − ∂νGa

µ − g3f
abcGµ,bGν,c. (2.42)
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The third term of Equation 2.42 means that the gluon fields can have a self-

interaction. This is due to the non-Abelian character of the SU(3) symmetry group.

The gluon self-interaction leads to one unique behavior of the strong interaction, that

is, no free color multiplet is observed and all stable states can only be color singlets.

This property is known as color confinement. In order to separate the color-charged

quarks in a hadron, one had to impose such a large energy that gluon fields would

get enough energy to produce quark-antiquark pairs in the intervening space. Thus,

all the quarks and gluons are confined to exist as the constituents of mesons and

baryons.

On the other hand, all the experiments show that in a sufficient high energy

process, the quarks inside a hadron behave as free particles. This property is known

as asymptotic freedom and it can be well explained by the renormalization of QCD

theory [9]. The renormalization theory takes into account the higher order corrections

in addition to the leading order (tree level) process. This happens because in nature

particles can not be separated from interactions even when they are propagating in

the “vacuum”. The physics Lagrangian always contains an interaction term. Thus, a

particle at any space-time point can produce virtual coupling that modifies the field

around the particle itself.

In the Abelian theory of QED, higher energy will cause the two particles closer

so that one can better experience the charge of the other. So the electromagnetic

coupling constant α increases as the collision energy. In the non-Abelian QCD theory,

a similar effect occurs, but the gluon self-coupling reverses the effect. Thus, the strong

coupling constant αs decreases as the collision energy.

The relation between αs and energy scale µ is given by

µ
∂αs(µ)

∂µ
= −

11− 2
3
nf

2π
α2
s(µ)−O(α3

s(µ)) (2.43)

where nf is the number of quark flavors with the mass mq < µ. So far, there are 6
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different quarks observed in the Standard Model, so the leading term in Equation 2.43

is always negative. At high energies, the small αs makes it possible to apply pertur-

bative calculations. On the other hand, at low energies such as the meson and baryon

states, the perturbative calculation is no longer valid. Instead, another theory called

Lattice Field Theory [10] has been developed to study bound states.

2.6 The Drell-Yan Process

In high energy collisions, such as pp collisions at the Large Hadron Collider (LHC),

quarks and antiquarks can produce plentiful Z/γ∗ bosons composed with real Z

bosons, off-shell photons and the interference between real Z and photons. The

dominant production channel is the Drell-Yan (DY) process

qq̄ → Z/γ∗ → ff̄ . (2.44)

Although the proton is a matter particle, the Drell-Yan process is possible in pp

collisions due to the parton “sea” in the proton, which consists of quarks, antiquarks

and gluons, each typically carrying a small fraction of the proton’s momentum and

being created and destroyed in the strong interaction. The fraction x of the proton

energy carried by the parton is called Bjorken scale [8]. The probability distribution

of x is called Parton Distribution Function (PDF) denoted as f(x,Q2). PDFs depend

on the square of the energy scale(Q); xf(x,Q2) increases as x decreases, which is

shown in Figure 2.2.

If the colliding partons carry the fractions x1 and x2 of the proton momenta, then

the invariant mass square of the colliding partons is

ŝ = x1x2s (2.45)

where s is the square of the center-mass-energy of colliding proton beams. During
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Figure 2.2: Parton density function as a function of Bjorken x with Q2 = m2
Z from the

CTEQ collaboration [1].

the year 2010 LHC operation,
√
s = 7 TeV. For on-shell Z production,

√
s ≈ mZ . So

the x values for the Z boson production are very small. Consequently, the Z boson

production rate is very high at the LHC.

The Z boson production is associated with soft gluon emissions, which give the Z

boson transverse momentum. If there is a hard gluon or quark radiated in the Z boson

production, an additional jet will be produced in the final state, which also passes

a large transverse momentum to the Z boson. Figure 2.3(a) and 2.3(b) show the

typical processes of Z+0 jet and Z+1 jet in the leptonic decay channel, respectively.

Similarly, the Z boson production can also associate with more than one hard parton

resulting in Z + n jets events.

At the parton level, the Leading Order (LO) cross-section can be calculated using

the electroweak theory without the QCD corrections since αs is small at the large

energy scale. The LO cross-section of the on-shell Z production [8] is

σ̂qq̄→Z(ŝ) =
2π
√

2

3
m2
ZGF [(cqLZ )2 + (cqRZ )2]δ(ŝ−m2

Z) (2.46)
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(a) (b)

Figure 2.3: Diagrams of (a) Z+0 jet and (b) Z+1 jet in proton-proton collisions. The Z
boson decays to a pair of lepton and anti-lepton.

Particle cZ
νL

1
2

`L −1
2

+ sin2 θw
uL

1
2
− 2

3
sin2 θw

dL −1
2

+ 1
3

sin2 θw
`R sin2 θw
uR −2

3
sin2 θw

dR
1
3

sin2 θw

Table 2.3: Couplings between fermions and Z bosons.

where the cZ are couplings between fermions and Z bosons summarized in Table 2.3.

Note that in Equation 2.46 neither the decay width of the Z(ΓZ) nor any the

photon terms is taken into account. The total Z production cross-section in pp

collisions is calculated with the higher order corrections convolved with the relevant

PDF set.

σpp→Z/γ∗ =
∑
q

∫
dx1dx2fq(x1, Q

2)fq̄(x2, Q
2) + fq(x2, Q

2)fq̄(x1, Q
2)σ̂qq̄→Z(x1x2s)

(2.47)

The contribution from γ∗(photon and |γZ| interference) is small under the reso-

nance Z mass peak. Its contribution is estimated to be less than 2% [11] in the mass

range (66, 116) GeV. However, it becomes important in the low mass region (< 60

18



Figure 2.4: The invariant mass distributions of the Drell-Yan process at
√
s = 10 TeV [2].

In low and large mass regions, the production cross section is dominated by
the pure photon contribution (dashed-dotted, blue curve). The real Z boson
resonance is shown with dashed red curve. The |γZ| interference contribu-
tion (dotted, black) is shown in absolute. The sum of photon, Z and |γZ|
contributions is shown as a solid red line.

GeV) and high mass range (> 200 GeV). Figure 2.4 shows the mass distributions of

real Z, photon and |γZ| interference [12].

In Equation 2.47, the choice of Q2 (or µF ) has no physics origin, but rather is

used for applying a perturbative QCD calculation for all orders. The dependence

can be reduced by including more higher-order terms in the LO cross-section calcu-

lation of Equation 2.46. When performing higher order cross-section calculation, the

strong coupling αs must be determined. However αs depends on the energy scale or

renormalization scale µ (or µR) as shown in Equation 2.43. Usually the µF and µR

are chosen to be m2
Z or s to calculate the Drell-Yan production cross-section. The

variance of the cross-section due to the different choices of µF and µR is one of the

systematic uncertainties.
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Generator Resummed pQCD PDF Parton Underlying
fixed order shower events

Pythia - LO MRST2007LO [22] Pythia Pythia
Alpgen - LO + N parton CTEQ6L1 [23] Herwig [24] Jimmy [25]
Sherpa - LO + N parton CTEQ6.6 [1] Herwig Jimmy
Mc@nlo - NLO CTEQ6.6 Herwig Jimmy
Powheg - NLO CTEQ6.6 Herwig Jimmy
Resbos NLL NLO CTEQ6.6 - -
Fewz - NNLO/NLO MSTW2008 [22] - -

Table 2.4: Summary of Monte Carlo generators used in this thesis.

2.7 MC Generators

The Z boson production is simulated by Monte Carlo generators with different

features. One feature is the highest order of the matrix element σ̂qq̄→Z(ŝ) with respect

to the strong coupling constant αs. In the resummed calculation, the matrix element

is ordered by O(log(αs)) while in the fixed order pQCD calculation, it is ordered by

O(αs).

Pythia [13] (Leading Order (LO)) and Mc@nlo [14, 15] (Next-to-Leading Order

(NLO)) are two generators implemented in the ATLAS standard framework [16] with

full simulation and reconstruction. Therefore, they are used as primary Monte Carlo

samples simulating the Z → ee process. Pythia is used for central value calculations,

while Mc@nlo is used for systematic studies. The final results are also compared to

predictions from other generators: Alpgen [17], Sherpa [18], Powheg [19], Res-

bos [20] and Fewz [21]. Among these generators, only Resbos uses the resummed

calculation up to the Next-to-Leading Logarithm (NLL) and only Fewz calculates

the fixed order pQCD up to Next-to-Next-to-Leading Order (NNLO). The matrix

element calculations, the PDF sets, the programs used to simulate the parton shower

and underlying events of these generators are summarized in Table 2.4.
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CHAPTER III

LHC and ATLAS

With its unprecedented high energy and luminosity, LHC will help physicists to

address many fundamental questions in the Standard Model as well as to search for

new physics beyond the Standard Model. In this chapter, Section 3.1 gives a general

introduction of the LHC machine and its four experiments. The ATLAS experiment

is one of the four experiments at the LHC with the largest detector in the world. It

is a general purpose detector with a wide physics potential [26]. Section 3.2 focuses

on the structure and performance of the ATLAS detector.

3.1 LHC

The Large Hadron Collider is a proton-proton synchrotron collider built at CERN,

European Organization for Nuclear Research. It uses the tunnel of the Large Electron-

Positron Collider (LEP) collider spanning the French-Swiss border with a circumfer-

ence of 27 km. The LHC is the highest energy collider in the world. The designed

proton beam energy is up to 7 TeV, with a center-mass-energy of 14 TeV. Since many

interesting physics processes happen rarely, the proton-proton beams are collided at

an extremely high rate. The designed instantaneous luminosity is 1034 cm−2s−1, re-

sulting in approximately one billion collisions per second. Besides the proton-proton

beams, heavy ions (lead) can also collide at the LHC. The designed heavy ion beam
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Figure 3.1: Layout of accelerators at CERN.

energy is 2.8 TeV per nucleon and the luminosity is 1027 cm−2s−1.

LHC uses high field magnets to keep the proton beams in orbit. The magnets are

made of superconductors with magnetic fields up to 8.4 T. There are two different

sets of magnets: the dipole and the quadrupole. The dipole is used to bend charged

particles and the quadrupole is used to focus the beam. The LHC consists of 1232

main dipoles and 392 quadruples. The cavities of the LHC, which accelerate protons,

are operated at a radiofrequency of 400 MHz. The pre-acceleration system for the

LHC are: the Linac, the Booster, the Proto Synchrotron (PS) and the Super Proton

Synchrotron (SPS). The proton beams are produced from an hydrogen source. The

Linac boosts the protons up to 50 MeV, then Booster, PS and SPS accelerate the

beams to 1.4, 25 and 450 GeV, respectively, before they are finally injected into the

LHC. The layout of these accelerators is shown in Figure 3.1.
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Figure 3.2: Overview of the LHC and its four experiments.

The luminosity for an hadron collider is given by

L =
γpfkBN

2
p

4εnβ∗
F (3.1)

where γp is the Lorentz factor of protons, f is the revolution frequency, kB is the

number of bunches, Np is the number of protons per bunch, εn is the normalized

transverse emittance, β∗ is the amplitude function [27] at the interaction point (IP)

and F is the reduction factor due to the crossing angle. Four experiments are located

at the interaction points: ATLAS (A Toroid LHC ApparatuS), CMS (Compact Muon

Solenoid), LHCb (Large Hadron Collider Beauty experiment) and ALICE(A Large

Ion Collider Experiment). ATLAS and CMS are two general purpose detectors with

different technologies so that the measured collision events are doubled and results

from two experiments can be cross-checked. LHCb is a single arm spectrometer

designed for b-physics studies. ALICE is a heavy ion collision detector to investigate

complex, strongly interacting systems and the quark-gluon plasma. The LHC and its

four experiments are shown in Figure 3.2.

In year 2010, LHC started to collide proton-proton beams at 3.5 TeV per beam.

The peak luminosity reached 2 × 1032 cm−2s−1 with an integrated luminosity of 47
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Figure 3.3: The integrated luminosity versus time delivered by the LHC and collected by
the ATLAS detector in 2010.

pb−1. The delivered and recorded integrated luminosity of the ATLAS experiment

versus time are shown in Figure 3.3.

3.2 ATLAS

ATLAS is a general purpose detector at the LHC. It is designed for physics studies

both within and beyond the Standard Model. The principle physics aims of ATLAS

can be divided into four categories: Standard Model Physics, Higgs Physics, searches

for physics beyond the Standard Model and heavy ion physics. To detect and measure

different types of particles varying from few MeV to few TeV, the ATLAS design

principles are

• Fast, radiation-hard electronics and sensors with a high granularity;

• Good momentum resolution, detector efficiency and vertex identification(e.g.

secondary vertex reconstruction from b and τ decay);

• Electromagnetic (EM) calorimeter for electron and photon measurements and

full coverage hadronic calorimeter for jet and missing transverse energy (Emiss
T )

measurements;
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η coverage
Sub-detector Required Resolution Measurement L1 Trigger

Tracking
σpT
pT

= 0.05%pT ⊕ 1% ±2.5 -

EM Calorimeter σE
E

= 10%√
E
⊕ 0.7% ±4.9 ±2.5

Hadronic Calorimeter

barrel and endcap σE
E

= 50%√
E
⊕ 3% ±3.2 ±3.2

forward σE
E

= 100%√
E
⊕ 10% 3.1 < |η| < 4.9 3.1 < |η| < 4.9

Muon Spectrometer
σpT
pT

= 10% ±2.7 ±2.4

Table 3.1: ATLAS design performance requirements. The muon spectrometer performance
is quoted for a muon with pT = 1 TeV, measured in the standalone mode,
independently of the inner detector [3].

• Muon identification and measurement over a wide range of energies;

• High efficiency triggers with excellent background rejection, capable of working

with low thresholds in a high multiplicity environment.

The designed energy/momentum resolution for the sub-detectors are summarized

in Table 3.1.

A common set of coordinates is used throughout the ATLAS detectors. The z

direction is defined to be aligned with the beam pipe, with the origin located at the

center of the detector. The horizontal x axis is defined to point towards the center

of the LHC ring and the y axis vertically. The polar (θ) and azimuthal (φ) angles

are defined with respect to this right-handed (x, y, z) system. Instead of θ, it is more

convenient to use the pseudorapidity (η) to describe the polar angle as the difference

in η between two massless particles, ∆η, is invariant under the Lorentz boost along

the beam direction. η is defined as

η = − ln tan(θ/2). (3.2)

Radial distance is denoted by R =
√
x2 + y2, while the transverse momentum

is pT =
√
p2 − p2

z = p/ cosh η. Similarly, the transverse energy is defined as ET =
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Figure 3.4: Schematic view of the ATLAS detector.

E/ cosh η. Since the particles are very energetic (> 1 GeV) in the TeV scale proton-

proton collisions, the electrons and muons masses are usually ignored so that ET ≈ pT .

A schematic view of ATLAS detector is shown in Figure 3.4. It consists of an

inner detector, an electromagnetic calorimeter, a hadronic calorimeter, a muon spec-

trometer and a three-level trigger system, which will be introduced in the following

sections.

3.2.1 The Inner Detector

The Inner Detector (ID) is responsible for the track and vertex reconstructions of

charged particles. Due to the high charged particle density from the LHC collisions,

the ID uses a high granularity design. It consists of three tracking technologies:

the Pixel Detector (Pixel), the Semi-Conductor Tracker (SCT) and the Transition

Radiation Tracker (TRT). These three sub-systems are each divided into one barrel

and two endcap sections with the coverage region up to |ηtrack| < 2.5 and ptrack
T > 0.5

GeV . The ID is immersed in a 2 T magnetic field provided by a superconducting
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Figure 3.5: Schematic view of the ATLAS inner detector. It consists of three main com-
ponents: the pixel detector, SCT and TRT.

solenoid which is located at the inner face of the electromagnetic calorimeter. The

ID structure is shown in Figure 3.5.

One of the most important parameters of the ID is the amount of material it

contains. The materials will cause multiple scattering, bremsstrahlung and photon

conversion, which deteriorate the track reconstruction quality and momentum mea-

surement [26]. The magnitude of these effects is determined by the number of radi-

ation lengths [28] traversed by a particle passing through the ID, which is shown in

Figure 3.6 as a function of |η|. The gap between barrel and endcaps can be seen at

|η| ≈ 1.5.

A successful ID alignment is crucial for a precise track measurement. To calibrate

the ID alignment during normal runs, a daily selection of approximate one million

tracks is used for monitoring studies. This should be sufficient to determine the silicon
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Figure 3.6: Accumulative materials traversed within the inner detector envelope by an
infinite momentum track as a function of |η|. The material depth is measured
in units of radiation length X0.

module positions with a precision of 10 µm.

In addition to the material and alignment, the magnetic field calibration inside

the ID volume is also important. This is achieved by using MC simulation and a

movable array of Hall probes before the ID installation, with the barrel and endcap

calorimeters installed [26]. The bending uncertainty of the magnetic field varies from

2% to (12×10−4)% for tracks with pT from a few hundred MeV to a few TeV, mostly

satisfying the requirement for a precise W mass measurement.

3.2.1.1 The Pixel Detector

The pixel detector lies closest to the interaction point. When a particle passes

through the pixel element, it induces an electrical signal by the creation of an electron-

hole pair. The signal is amplified and compared to a set threshold to give a binary

output.

The granularity size of the pixel element, which is made of silicon, is 50×400 µm.

There are three concentric layers and five additional disks in each endcap side with

the high pseudorapidity. Over 1,500 modules, segmented in R − φ and z, provide

approximately 80.4 M readout channels.
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The pixel detector is also responsible for the measurements of impact parameters

and vertex reconstructions. The position resolution of the pixel detector is down to

10 µm in R−φ and 115 µm in z(R) in the barrel(endcap), which is crucial for finding

secondary vertices of c, b and τ decays.

To protect the pixels and other ATLAS components from misdirected proton

beams, an instrument called the Beam Conditions Monitor (BCM) is installed very

close to the beam line. The BCM consists of two diamond sensors, placed less than

6 cm from the beam at |z| = 1.9 m. So the time difference between nominal proton-

proton collisions and beam gas collisions will be ∆z/c = 12.5 ns, which can be used

to trigger an LHC beam abort. In addition to the protection feature, the BCM is also

used as a signal trigger and for a bunch-by-bunch luminosity estimation, complemen-

tary to LUminosity measurement using a Cherenkov Integrating Detector (LUCID),

which is the principal instrument for the luminosity measurement.

3.2.1.2 The Semi-Conductor Tracker

The working principle of the SCT is very similar to that of the pixel detector but

with a coarser position resolution. The SCT consists of 4 concentric barrels and 9

disks of endcaps on each side. Silicon microstrips are glued into back-to-back pairs

with a stereo angle of 40 mrad between them, which is designed to reduce ambiguities

to acceptable levels. The SCT usually provides four space points for each track within

the acceptance. In the barrel, one set of strips is aligned along the z direction; and

in the endcaps, one set is aligned along the R direction, which is used for a precision

measurement of φ. The R− φ resolution is up to 17 µm. The resolution of the z (R)

direction in the barrel (endcaps) is worse, around 580 µm, due to the small stereo

angle.

29



3.2.1.3 The Transition Radiation Tracker

The TRT is the outer-most layer of the ID, which provide a large number of

hits per track, typically 36. It also provides the particle identification through the

detection of transition radiation. The TRT consists of drift tubes of diameter 4 mm

and length 144 cm lying parallelly (radially) to the beam line in the barrel (endcaps).

Charged particles will ionize the gas inside the tubes and thus cause an electrical signal

along an anode wire in the middle of the tube. When ultra-relativistic particles, e.g.

electrons pass through the tubes, they can produce low energy transition radiation

photons which then ionize the xenon gas mixture and induce high threshold hits [26].

The measured probability for such hits increases as a function of E/m, thus the TRT

can provide the identification of electrons and pions.

3.2.2 The Electromagnetic Calorimeter

The Electromagnetic (EM) calorimeter is designed for two purposes: firstly it pro-

vides the precise measurement and identification of electrons and photons; secondly it

complements to the hadronic calorimeter to measure the energy deposit of jets within

its acceptance. The ATLAS calorimeter covers the region up to |η| = 4.9. It consists

of five parts: one barrel, two endcaps and two forward calorimeters. A schematic

view of the EM calorimeters is shown in Figure 3.7.

Liquid argon is used as the ionization medium for the EM calorimeter. Liquid ar-

gon fills the gaps between the accordion-shaped lead absorbers and kapton electrodes.

A slice of EM calorimeter is shown in Figure 3.8. In the φ direction, the accordion-

shaped calorimeter has a uniform coverage, while in the η direction, the folding angle,

absorber thickness and wave amplitude are tuned to optimize the linearity and reso-

lution. As shown in Figure 3.8, the EM calorimeter consists of several layers. Within

|η| < 2.5, which is also covered by the ID, there are three layers. The first layer is

finely segmented in η. It provides a precise measurement in η. The second layer is
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Figure 3.7: An schematic view of the ATLAS electromagnetic (yellow) and hadronic (blue)
calorimeters. The electromagnetic calorimeter consists of five components: one
barrel, two endcaps and two forward calorimeters. The hadronic calorimeter
has two additional forward components (FCal).
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Figure 3.8: A slice of the ATLAS EM calorimeter showing the accordion structure as well
as the different granularity in each layer and trigger tower.

the thickest, so most of the electromagnetic energy is deposited in it. The third layer,

in front of the hadronic calorimeter, is used to measure the possible energy leakage

from EM shower. Within the range |η| < 1.8, there is an additional layer before the

first layer of the EM calorimeter. It is called pre-sampler, which estimates the en-

ergy loss of electrons and photons before reaching the EM calorimeter. In the region

2.5 < |η| < 3.2. the design is similar, but with a coarser granularity and only two

longitudinal layers. In the region |η| > 3.2, a different set of liquid argon calorimeters

measure both electromagnetic and hadronic showers, which will be discussed in the

next section.

3.2.3 The Hadronic Calorimeter

The hadronic calorimeter measures hadronic showers from a jet, a collimated flow

of particles, resulting from an energetic quark or gluon of hard interactions. It covers

the region |η| < 4.9. It completely stops and absorbs all strongly interacting particles

and avoids particles punching through into the muon spectrometers. So the depth of

the hadronic calorimeter is designed to be at least 10 interaction lengths over almost
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Figure 3.9: Accumulative depth of the hadronic calorimeter. The depth is in unit of inter-
action of length λ.

full η region. Figure 3.9 shows the depth of the hadronic calorimeter in the |η|.

The hadronic calorimeter consists of at least three layers over its full region. In

the region |η| < 1.7, a sampling calorimeter called Tile Calorimeter (TileCal) is used.

It is made of steel absorbers and scintillating tiles arranged as shown in Figure 3.10.

The scintillation light in the tiles is read out through wavelength shifting fibers, by

photomultiplier tubes behind each calorimeter module. In the region 1.5 < |η| < 3.2,

the hadronic endcap Hadronic Endcap Calorimeter (HEC) uses a liquid argon tech-

nology due to the intense radiation environment. It is similar to the EM calorimeter

but with copper absorbers to provide the necessary density of material. The forward

calorimeter covers the region 3.2 < |η| < 4.9. It also uses liquid argon as the active

medium. The Forward Calorimeter (FCal) has a high density design with high gran-

ularity output to accommodate the high particle density in this region. It consists of

three longitudinal modules. The first module uses copper absorbers for the measure-

ment of the electromagnetic shower. The other two modules have tungsten absorbers

for the measurement of the hadronic shower [29].
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Figure 3.10: Schematics of a TileCal module, showing the optical readout from the scin-
tillating tiles.

3.2.4 The Muon Spectrometer

The muon spectrometer is designed to measure the curvature of muons in the

toroidal magnetic field, independently of the ID. It is the largest sub-detector in

ATLAS. Besides neutrinos, muons are the only particles that can penetrate the EM

and hadronic calorimeters. The muon spectrometer consists of two precision measure-

ment sub-systems: Monitored Drift Tubes (MDT) in the central region with |η| < 2.4

and Cathode Strip Chambers (CSC) in the forward region with 2.4 < |η| < 2.7.

The muon trigger systems consist of Resistive Plate Chambers (RPC), Thin Gap

Chambers (TGC) and CSC, which cover the region with |η| < 1.05, 1.05 < |η| < 2.4

and 2.4 < |η| < 2.7, respectively. A schematic view of the muon spectrometer is

shown in Figure 3.11.

There are three stations for the muon spectrometer in both barrel and endcap

regions. The chambers are aligned projectively from the interactive point. Muons

bend in the η direction in the toroid field, which are measured by the MDT and CSC
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Figure 3.11: Schematic view of the muon spectrometer.

in the central and forward regions, respectively. The trigger chambers are arranged

between the precision chambers. They provide a fast signal for the level-one trigger

decision as well as the bunch crossing identification information. In addition, they

also measure the muon bending in the φ direction.

The modules must be aligned to a high precision due to the stringent design

requirement. The expected sagitta of a muon track with pT = 1 TeV is only ≈ 0.5 mm

within the muon spectrometer. Thus, the muon spectrometer alignment uncertainty

must be significantly smaller than this. To calibrate the muon chambers, a complex

optical alignment system is installed to achieve a precision of around 30 µm on sagitta

measurements [26].

3.2.5 The Trigger System

The designed LHC bunching crossing rate is 40 MHz. On one hand, it is not feasi-

ble to permanently record every event to disk. On the other hand, only a small fraction
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Figure 3.12: The ATLAS three-level trigger system.

of collision events contain interesting physics signatures. Thus, the ATLAS trigger

system is designed to reduce the event rate to ≈ 200 Hz while keep high efficiency

for interesting signal events. The ATLAS trigger has three levels: a Level One (L1)

trigger based on hardware, a Level Two (L2) trigger mostly based on firmware and an

Event Filter (EF) based on software. The L2 trigger and EF are usually collectively

called as the High Level Trigger (HLT). Each level improves on the previous levels

decision by running increasingly sophisticated algorithms, at the cost of increased ex-

ecution time. The three-level triggers are applied sequentially: if the event is rejected

at certain level, it will not enter the next level, thus it will not be recorded. The

trigger information is based on Region Of Interest (ROI), which describe the position

and threshold of the fired trigger. A schematic view of the ATLAS trigger system is

shown in Figure 3.12.

During the earlier stages of running (L < 1033 cm−2s−1 ), the event acceptance

rate at each level is maintained as a constant with less stringent criteria. In addition
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to less severe selection criteria, early triggers may run one or more levels in pass-

through mode, meaning that the event is passed to the next level without further

selection.

At high luminosities, some loose triggers will continue to run for monitoring pur-

poses, but they will be heavily pre-scaled. This means that only a small, randomly

selected subset of events passing the trigger selection will be fed into the next level.

The L1 trigger reduces the event recording rate from 40 MHz to 75 kHz. If an event

passes an L1 trigger, the information of the ROI will be sent to the L2 trigger. The

L2 trigger makes a decision in ≈ 10 ms using both ROI and additional information

related to the ROI, and the output rate is reduced to ≈ 3.5 kHz. The EF algorithm is

similar to L2 but more sophisticated, thus the processing time is even longer (≈ 1s).

The EF output rate is 200 Hz and events passing the EF will be recorded to mass

storage.

For example, the L1 trigger of the Egamma stream uses the ROI from the EM

calorimeter to make a decision. The information comes from the trigger “tower”,

∆η × ∆φ = 0.1 × 0.1 segments in the EM and hadronic calorimeters. Then L2

and EF triggers apply additional requirements on the shower shape as well as inner

detector information of tracks which match to the ROI to make further decisions.

The details of the electron trigger will be presented in the next chapter.
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CHAPTER IV

Electrons in ATLAS

The electron identification and measurement are crucial for the Z → ee differential

cross-section measurement. In this chapter, the ATLAS standard electron reconstruc-

tion and identification algorithms are introduced in Section 4.1. The electron trigger

algorithms are discussed in Section 4.2. Section 4.3 presents the “tag-and-probe”

method which is used to measure the electron identification and trigger efficiencies

from data. The electron energy scale and resolution are calibrated using the well

known Z boson line-shape. Studies of the electron energy scale and resolution are

presented in Section 4.4.

4.1 Electron Reconstruction and Identification

4.1.1 Reconstruction

The electron is seeded from an electromagnetic tower with transverse energy above

3 GeV taken from the EM calorimeter. Then a track is searched to match the tower

among all reconstructed tracks which do not belong to a photon-conversion pair recon-

structed in the inner detector. The track, after extrapolation to the EM calorimeter,

is required to match the cluster within a broad ∆η×∆φ window of 0.05× 0.10. The

ratio, E/p, of the energy of the cluster to the momentum of the track is required to be

lower than 10. Approximately 93% of true isolated electrons [26], with ET > 20 GeV
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and |η| < 2.5, are selected as electron candidates. The inefficiency is mainly due to

the large amount of material in the inner detector [30] and is therefore η-dependent.

4.1.2 Identification

Standard identification of high pT electrons is based on many cuts which are

applied independently. These cuts have been optimized in up to 10 bins in η and

up to 11 bins in ET . Three different electron identification criteria are defined:

loose, medium and tight, which provides flexibility in different analyses. In the Z →

ee analysis, “medium” electrons are used since the study is not subjected to large

backgrounds from jets misidentified as electrons (fakes).

The variables used to select loose, medium and tight electrons are

• Loose Electron:

– Electron transverse energy and pseudorapidity, ET and η;

– Ratio in η of cell energies in 3× 7 versus 7× 7 cells, Rη;

– Ratio in φ of cell energies in 3× 3 versus 7× 7 cells, Rφ;

– Lateral width of the shower.

• Medium Electron:

– Difference between energy associated with the second largest energy de-

posit and energy associated with the minimal value between the first and

second maxima, ∆Es;

– Second largest energy deposit normalized to the cluster energy, Rmax2;

– Total shower width, wstot;

– Number of hits in the pixel detector;

– Number of hits in the pixels and SCT;
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– Transverse impact parameter, d0;

– ∆η between the cluster and the track;

– Ratio of the cluster energy to the track momentum, E/p;

– Total number of hits in the TRT;

– Ratio of the number of high-threshold hits to the total number of hits in

the TRT.

• Tight Electron:

– Number of B layer (first layer of the pixel detector) hits;

– Same as TRT cuts above, but with tighter values corresponding to about

90% efficiency for isolated electrons.

4.1.3 Object Quality

During the course of the data taking, some regions of the EM calorimeter were

disabled due to the dead Optical Transmitter (OTX), a part of the Front-End Board

(FEB). The OTX cleaning removes events with electron candidates that fall into these

regions to suppress electrons for which significant parts of the energy deposition are

not measured.

The dead FEBs are in three layers of the EM calorimeter: pre-sampler, the first

layer and second layer. The number of dead FEBs increased with time. The latest

dead FEB maps are shown in the Figure 4.1(a), 4.1(b), 4.1(c). The electrons in

this analysis are required not to be in any of dead FEB regions. The OTX cleaning

efficiency is about 94% per electron.
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(a)

(b)

(c)

Figure 4.1: The dead FEBs (red) in the EM calorimeter: (a) pre-sampler (b) first layer (c)
second layer.
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4.2 The Electron Trigger

4.2.1 Level One

The electron L1 trigger ROI is an electromagnetic or hadronic calorimeter tower

with dimensions ∆η×∆φ = 0.1×0.1. In this region all readout cells are summed over

the full depth of either the electromagnetic or hadronic calorimeter. The L1 selection

algorithm for electromagnetic clusters is based on a sliding 4 × 4 window of trigger

towers which searches for the local maximum.

The trigger object is considered to contain an electron or photon candidate if the

following requirements are satisfied:

• The central 2× 2 “core” cluster consisting of both EM and hadronic towers is a

local ET maximum. This requirement prevents double counting of clusters by

overlapping windows;

• The most energetic of the four combinations of two neighboring EM towers

passes the electromagnetic cluster threshold;

• EEM
isol : The total ET in the 12 EM towers surrounding the 2× 2 core cluster is

less than the electromagnetic isolation threshold;

• EHAD
core : The total ET in the 4 towers of the hadronic calorimeter behind the

2 × 2 core cluster of the electromagnetic calorimeter is less than the hadronic

core threshold;

• EHAD
isol : The total ET in the 12 towers surrounding the 2× 2 core cluster in the

hadronic calorimeter is less than the hadronic isolation threshold.

4.2.2 Level Two

The L2 trigger is seeded from the L1 ROI. Thus, L2 receives the reconstructed L1

object with the η and φ positions and the transverse energy thresholds passed. L2

42



accesses a sub-sample of the detector data around the given η and φ position (∆η ×

∆φ = 0.4×0.4) and applies trigger specific reconstruction algorithms characterized for

their speed and robustness. The transverse cluster energy and various shower shape

variables calculated in the different layers of the EM calorimeter are used to identify

electron and photon candidates. Tracks are reconstructed in the inner detector and

matched to the calorimeter energy clusters at the L2 level. Thus, track finding and

track-cluster matching variables can be used for the L2 trigger decision.

The L2 electron calorimeter algorithm selects events base on the following quan-

tities:

• The transverse energy of the EM cluster;

• The transverse energy in the first layer of the hadronic calorimeter EHAD
T ;

• The shower shape in η direction in the second EM sampling;

• The second maximum in the first EM sampling.

4.2.3 Event Filter

At the EF trigger level, offline reconstruction algorithms and tools are used as

much as possible. An important difference, however, between the offline and the EF

reconstruction is that the offline reconstruction is run once per event accessing the

whole detector, while the EF uses a seeded approach. It runs several times per event,

once for each ROI given by L2, accessing only the corresponding sub-sample of the

detector(∆η ×∆φ = 0.4× 0.4).

Electron identification in the EF is very similar to the offline. Calorimeter shower

shapes, leakage into the hadronic calorimeter and the ET of the EM cluster are used

for the calorimeter based selection for electrons. Compared to L2 more shower shape

variables are used. Together with improved calibrations, this results in a further

rate reduction. For electrons track-cluster matching variables, track quality cuts,
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transverse impact parameter and for high luminosity running potentially transition

radiation information could be used to further reduce the rate.

As an example, a loose electron EF selection will use the following selections: lon-

gitudinal leakage, shower shapes in the middle layer of the EM calorimeter, and very

loose track-cluster matching cuts. Tighter selections might also use the shower shapes

in the first EM calorimeter layer, information on the transverse impact parameter and

on the track quality (number of hits in the pixels, SCT and B layer).

The 2010 data are divided in periods from A to I, which correspond roughly to

periods of similar LHC operation conditions, i.e. beam intensities and number of

bunches. The trigger chains were chosen to have the lowest threshold un-prescaled

triggers which are stable in certain period. The EF became active since the period

E3. Therefore, at least one L1 trigger chain is needed before the period E3 and

one EF trigger chain for the remaining periods. Since medium electrons are used

in the analysis, the lowest threshold un-prescaled trigger chains are L1 EM14 and

EF e15 medium for periods A to E3 and E3 to I, respectively.

4.3 The Tag-and-probe Method

The tag-and-probe method is used to measure the electron identification and trig-

ger efficiency from data. It requires that the event should have two reconstructed

electron candidates, one “tag” and one “probe”, within the detector acceptance and

with the invariant mass around Z mass peak

• ET > 20 GeV;

• |η| < 2.47 and |η| /∈ (1.37, 1.52);

• 81 < mee < 101 GeV.

The tag is a tight electron to ensure a clean sample from the Z decay. Additional

isolation requirements are applied on tags to assess the systematic uncertainty. The
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Figure 4.2: The tag-and-probe method used to measure electron efficiencies.

identification (trigger) efficiency is defined by the frequency with which the probe

electron in this sample passes the relevant identification (trigger) selection. The tag

electron is also required to fire the electron trigger of the event to eliminate potential

bias. The tag-and-probe method is demonstrated in Figure 4.2.

It is possible that the probe electron satisfies the tag selection as well. In this

case, the roles of tag and probe may be swapped: the tag becoming the probe and

vice versa. Because the tag selection is at least as tight as the probe selection at every

stage, the new probe passes the trigger selection automatically. Thus, tag and probe

events fall into one of three categories:

• N1f events where only one electron passes the tag cuts and the probe fails the

probe selection.

• N1p events where only one electron passes the tag cut and the probe passes the

probe selection.

• N2p events where both electrons pass the tag selection.
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Counting these events, the measured efficiency may be expressed as

ε =
N1p + 2N2p

N1f +N1p + 2N2p

=
NP

NT

(4.1)

where NP and NT are defined by the equation.

The remaining background can be subtracted by the side-band method. Define

two side-bands and signal region as

• Side-band A: 61 < mee < 81 GeV;

• Signal region B: 81 < mee < 101 GeV;

• Side-band C: 101 < mee < 121 GeV.

So that the NP and NT after background subtraction are defined as

NP = NB
P −

NA
P +NC

P

2
NT = NB

T −
NA
T +NC

T

2
. (4.2)

Assuming the event number N obeys the Poisson distribution, the statistical un-

certainty on ε is

σ =
1

NT

√
[(1− 2ε)NP + ε2NT + (1− ε)2 · 2NP ]. (4.3)

The trigger efficiencies for a single electron versus the electron ET and η are

shown in Figure 4.3(a) and 4.3(b). The medium electron ID efficiencies are shown in

Figure 4.4(a) and 4.4(b).

The single electron trigger efficiency is very high and the discrepancy between

data and MC is very small, < 1%. There are two electrons from Z decays in which

either electron firing the trigger makes the event pass the trigger selection. Thus,

data and MC trigger discrepancy is further reduced. There is no need to make a

trigger efficiency correction in the MC. However, there is an about 3% difference in
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(a)

(b)

Figure 4.3: Electron trigger efficiencies versus ET (a) and |η| (b) measured by the tag-and-
probe method.

47



 [GeV] T E
15 20 25 30 35 40 45 50

 E
ffi

ci
en

ci
es

 [%
]  

84

86

88

90

92

94

96

98

100

Data Medium

MC Medium

(a)

(b)

Figure 4.4: Medium electron ID efficiency versus η and ET by the tag-and-probe method.
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η bin (−2.47,−2.01) (−2.01,−1.52) (−1.37,−0.8) (−0.8, 0.0)
data
MC

0.945± 0.017 0.988± 0.016 0.972± 0.016 0.974± 0.015
η bin (0.0, 0.8) (0.8, 1.37) (1.52, 2.01) (2.01, 2.47)
data
MC

0.972± 0.015 0.967± 0.015 0.995± 0.029 0.961± 0.017

Table 4.1: Efficiency scale factors for single medium electrons. The statistical and system-
atic uncertainties are combined in quadrature.

the medium electron identification efficiency between data and the MC. This is caused

by ID mis-alignment, mis-modeled electron shower shapes and additional materials

before the EM calorimeter. A correction must be applied to account for the electron

identification discrepancy. Therefore, a set of η dependent Scale Factors (SF) are

used on the MC. The scale factor for the electron identification efficiency is defined

as

SF =
Efficiency measured in data

Efficiency measured in the MC
. (4.4)

The scale factors applied in the analysis along with its systematic uncertainties

are listed in Table 4.1. The SF systematics arise mainly from different background

subtraction methods, efficiency variation from different Z mass windows and pileup

effects [30].

4.4 The Electron Energy Scale and Resolution

In the Z → ee process, one can extract the electron energy scale factor by

constraining the di-electron invariant mass distribution to the well known Z line-

shape [31]. The corrected energy is obtained by the following formula

Enew =
E

1 + α
(4.5)

where Enew is the electron energy after the correction, E is the electron energy before

the correction and α is the correction factor. α is determined in the barrel and endcaps
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by fitting the distribution of the di-electron invariant mass to a template made of a

Breit-Wigner distribution convoluted with a Crystal-Ball distribution [32].

Different source of systematic uncertainties were investigated: extra-material, pre-

sampler energy scale, event selection, pile-up, MC closure, dead OTX, non-nominal

high voltage, electronic non-linearity. The dominant ones are the uncertainties on the

knowledge of materials in front of the EM calorimeter and the pre-sampler energy

scale.

However, with the appropriate energy scale correction applied, the data still have a

broader invariant mass distribution than that of the MC. Thus, an additional energy

smearing is applied to the MC. There are two main parameters constraining the

electron energy resolution: sampling term and constant term. The relation between

the reconstructed electron energy and these two terms is

σ

E
=

S√
E
⊕ C (4.6)

where σ is the resolution of the electron energy; E is the reconstructed electron energy;

S is the sampling term and C is the constant term.

The discrepancy between data and the MC is mainly attributed to the constant

term because the MC reproduces reasonably well the invariant mass distribution in

J/ψ → ee events for central electrons whose energy resolution is dominated by the

sampling term [26]. So a larger smearing factor is applied to the constant term than

the sampling term.

In this analysis, the energy scale correction is applied to data and additional energy

smearing is applied to the MC. The electron energy scale and smearing uncertainties

are used to set the systematic uncertainties of pZT measurements. The electron energy

scale and smearing factors and their uncertainties are summarized in Table 4.2.

The invariant mass distributions of electron-positron pairs before and after the en-

ergy scale correction are shown in Figure 4.5(a),4.5(b),4.5(c)for barrel-barrel, barrel-
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|η| bin [0.0, 1.37] [1.52, 2.5]

α -0.0096 0.0189
α uncert. 1% 3%
Sampling term 0.1
Sampling term uncert. 20% 20%
Constant term 0.007
Constant term uncert. 100% 400%

Table 4.2: Parameters used in the electron energy correction.

endcap, endcap-endcap three regions respectively. Similarly, the comparisons of the

MC invariant mass distributions before and after the energy smearing are shown in

Figure 4.6. After the energy scale and smearing corrections are applied, data and

Z → ee MC have a reasonably good agreement.
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Figure 4.5: The invariant mass distributions before and after the energy scale correc-
tion in different regions: (a) barrel-barrel (b) barrel-endcap (c) endcap-
endcap. 52



 [GeV]eem

70 80 90 100 110

E
ve

nt
s 

/ 2
 G

eV

0

200

400

600

800

1000

1200

1400

Barrel-Barrel

scaleData with E

 ee MC→Z

smearMC with E

(a)

 [GeV]eem

70 80 90 100 110

E
ve

nt
s 

/ 2
 G

eV

0

100

200

300

400

500

600

700

800

Barrel-Endcap

scaleData with E

 ee MC→Z

smearMC with E

(b)

 [GeV]eem

70 80 90 100 110

E
ve

nt
s 

/ 2
 G

eV

0

20

40

60

80

100

120

140

160

180

200
Endcap-Endcap

scaleData with E

 ee MC→Z

smearMC with E

(c)

Figure 4.6: The invariant mass distributions before and after the energy smearing in
different regions: (a) barrel-barrel (b) barrel-endcap (c) endcap-endcap.
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CHAPTER V

peeT Distribution

This chapter presents the observed di-electron transverse momentum distribution

(peeT
1) from the Z → ee process. Section 5.1 and 5.2 summarize data and MC samples.

Section 5.3 presents event selections applied to select Z → ee events. The binning

of peeT is studied in Section 5.4.

5.1 Data

As introduced in the previous chapter, the 2010 data are divided by periods from

A to I corresponding to different LHC and ATLAS operating conditions. The lu-

minosity information for each run is summarized in Table 5.1, 5.2 and 5.3. The

lowest un-prescaled triggers are L1 EM14 for period A (152166) to E3 (160879), and

EF e15 medium for E4 (152347) to I (167776). The total recorded luminosity in

2010 is 35 pb−1 with a systematic uncertainty of 3.4% [33]. Since the normalized

pZT distribution is measured, the luminosity uncertainty only impacts the background

estimation, which will be studied in the next chapter.

1In the following, pZT stands for the Z boson transverse momentum at the truth level; peeT stands
for the Z boson transverse momentum at the reconstruction level.
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RunNumber Good Bad LDelivered LLiveFrac LPrescale LiveFrac Prescale Period
LBs LBs (nb−1) (nb−1) (nb−1) %

152166 95 0 0.01 0.01 0.01 99.94 1 A
152214 43 0 0.00 0.00 0.00 99.93 1 A
152221 163 0 0.02 0.02 0.02 99.93 1 A
152345 80 0 0.02 0.02 0.02 99.95 1 A
152409 590 0 0.08 0.08 0.08 99.84 1 A
152441 360 0 0.07 0.07 0.07 99.71 1 A
152508 66 0 0.01 0.01 0.01 99.94 1 A
152777 250 0 0.05 0.05 0.05 99.82 1 A
152844 56 0 0.01 0.01 0.01 99.93 1 A
152845 239 0 0.03 0.03 0.03 99.94 1 A
152878 115 0 0.02 0.02 0.02 99.85 1 A
152933 129 0 0.02 0.02 0.02 99.92 1 A
152994 60 0 0.01 0.01 0.01 99.92 1 A
153030 83 0 0.02 0.02 0.02 99.94 1 A
153134 43 0 0.01 0.01 0.01 99.57 1 A
153136 21 0 0.00 0.00 0.00 99.96 1 A
153159 90 0 0.01 0.01 0.01 99.86 1 A
153200 36 0 0.01 0.01 0.01 99.94 1 A
153565 893 0 0.77 0.76 0.76 99.85 1 B
154810 62 0 0.16 0.15 0.15 98.39 1 B
154813 128 0 0.27 0.26 0.26 98.73 1 B
154815 30 0 0.07 0.06 0.06 93.28 1 B
154817 279 0 0.54 0.53 0.53 99.28 1 B
155073 323 0 1.18 1.17 1.17 98.74 1 B
155112 474 0 3.47 3.41 3.41 98.43 1 B
155116 83 0 0.51 0.50 0.50 97.99 1 B
155160 263 0 1.33 1.33 1.33 99.57 1 B
155228 16 0 0.04 0.04 0.04 99.89 1 C
155280 16 0 0.15 0.03 0.03 18.47 1 C
155569 240 0 1.01 0.99 0.99 98.17 1 C
155634 186 0 1.05 1.05 1.05 99.57 1 C
155669 54 0 0.47 0.44 0.44 94.03 1 C
155678 68 0 1.20 1.19 1.19 99.31 1 C
155697 240 0 3.48 3.42 3.42 98.23 1 C
156682 105 0 1.30 1.30 1.30 99.84 1 C
158045 61 0 0.73 0.72 0.72 98.75 1 D
158116 413 0 14.50 14.44 14.44 99.60 1 D
158269 75 0 3.47 3.43 3.43 99.04 1 D
158299 71 0 1.34 1.34 1.34 99.73 1 D
158392 212 0 7.72 7.60 7.60 98.52 1 D
158443 22 0 1.11 1.09 1.09 98.15 1 D

Table 5.1: Run-number and luminosity information for 2010 data collected by the ATLAS
detector.
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RunNumber Good Bad LDelivered LLiveFrac LPrescale LiveFrac Prescale Period
LBs LBs (nb−1) (nb−1) (nb−1) %

158466 16 0 1.62 1.62 1.62 99.94 1 D
158545 23 0 1.34 1.33 1.33 99.56 1 D
158548 196 0 10.88 10.08 10.08 92.67 1 D
158549 85 0 3.41 3.18 3.18 93.33 1 D
158582 307 0 16.13 16.09 16.09 99.70 1 D
158632 110 0 5.52 5.50 5.50 99.77 1 D
158801 177 0 7.18 7.16 7.16 99.83 1 D
158975 219 0 20.60 20.51 20.51 99.59 1 D
159041 259 0 25.72 25.64 25.64 99.71 1 D
159086 404 0 54.19 54.05 54.05 99.73 1 D
159113 256 0 28.10 28.04 28.04 99.77 1 D
159179 108 0 15.10 15.02 15.02 99.44 1 D
159202 81 0 9.88 9.80 9.80 99.15 1 D
159203 79 0 8.30 8.29 8.29 99.93 1 D
159224 539 0 64.79 64.30 64.30 99.24 1 D
160387 235 0 58.64 58.43 58.43 99.64 1 E
160472 366 0 76.84 76.34 76.34 99.35 1 E
160479 25 0 4.70 4.70 4.70 99.88 1 E
160530 424 0 96.22 92.45 92.45 96.09 1 E
160613 189 0 48.56 48.03 48.03 98.90 1 E
160736 59 0 17.38 17.16 17.16 98.71 1 E
160800 61 1 18.69 16.13 16.13 86.29 1 E
160801 370 0 79.22 75.79 75.79 95.66 1 E
160879 409 0 81.25 80.62 80.62 99.22 1 E
160899 15 0 4.81 4.81 4.81 99.86 1 E
160953 53 0 21.87 19.41 19.41 88.74 1 E
160954 62 1 17.08 16.63 16.63 97.36 1 E
160958 195 0 41.41 40.63 40.63 98.12 1 E
160963 13 0 2.34 2.33 2.33 99.88 1 E
160975 22 0 6.89 4.48 4.48 64.98 1 E
160980 30 0 8.99 8.99 8.99 99.90 1 E
161118 97 0 34.08 34.04 34.04 99.90 1 E
161379 357 0 96.09 95.89 95.89 99.79 1 E
161407 102 0 40.43 40.39 40.39 99.92 1 E
161520 351 0 113.95 113.86 113.86 99.92 1 E
161562 221 0 72.78 72.33 72.33 99.37 1 E
161948 352 0 90.50 89.08 89.08 98.43 1 E
162347 408 0 219.21 216.75 216.75 98.88 1 F
162526 360 0 253.51 252.41 252.41 99.56 1 F
162576 48 0 39.78 38.16 38.16 95.95 1 F

Table 5.2: Run-number and luminosity information for 2010 data collected by the ATLAS
detector.
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RunNumber Good Bad LDelivered LLiveFrac LPrescale LiveFrac Prescale Period
LBs LBs (nb−1) (nb−1) (nb−1) %

162577 9 0 6.49 6.42 6.42 98.92 1 F
162620 66 0 70.33 67.14 67.14 95.46 1 F
162623 322 0 240.47 234.77 234.77 97.63 1 F
162690 349 0 323.02 321.43 321.43 99.51 1 F
162764 77 0 83.54 79.78 79.78 95.50 1 F
162843 379 0 307.55 306.28 306.28 99.59 1 F
162882 321 0 294.43 293.15 293.15 99.57 1 F
165591 366 2 148.82 147.94 147.54 99.41 1 G
165632 367 0 584.45 534.57 534.57 91.47 1 G
165703 42 0 87.85 87.52 87.52 99.62 1 G
165732 360 0 911.96 902.98 902.98 99.02 1 G
165767 329 0 936.79 922.98 922.98 98.53 1 G
165815 42 0 168.14 165.07 165.07 98.18 1 G
165817 2 2 9.67 5.63 0.22 58.19 1 G
165818 79 0 277.43 220.71 220.71 79.56 1 G
165821 73 0 228.72 214.15 214.15 93.63 1 G
165954 36 0 186.01 151.72 151.72 81.56 1 G
165956 18 0 92.82 90.65 90.65 97.67 1 G
166097 48 0 233.37 231.13 231.13 99.04 1 G
166142 140 0 688.46 671.78 671.78 97.58 1 G
166143 58 0 264.03 258.60 258.60 97.94 1 G
166198 351 0 1288.56 1213.71 1213.71 94.19 1 G
166305 23 0 180.50 179.73 179.73 99.58 1 G
166383 136 0 962.37 949.89 949.89 98.70 1 G
166466 156 0 1343.89 1307.19 1307.20 97.27 1 H
166658 250 0 2034.53 1952.75 1952.75 95.98 1 H
166786 233 0 1872.66 1863.33 1863.33 99.50 1 H
166850 157 2 6.79 6.46 6.46 95.07 1 H
166856 19 0 297.91 293.83 293.83 98.63 1 H
166924 150 0 1223.42 1218.51 1218.51 99.60 1 H
166927 89 2 557.83 556.05 544.93 99.68 1 H
166964 11 0 153.98 147.43 147.43 95.74 1 H
167575 8 0 73.38 37.72 37.72 51.40 1 I
167576 269 0 3524.18 3504.65 3504.65 99.45 1 I
167607 313 0 5228.70 5000.80 5000.80 95.64 1 I
167661 65 0 1327.27 1283.98 1283.98 96.74 1 I
167680 223 0 3647.86 3518.54 3518.53 96.45 1 I
167776 408 0 5866.40 5806.87 5806.87 98.99 1 I

Table 5.3: Run-number and luminosity information for 2010 data collected by the ATLAS
detector.
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Generator Dataset ID Process Pileup σ (nb)
Signal

Pythia 106046 Z → ee LO x 0.99
Pythia 106046 Z → ee LO, Extra-material x 0.99
Mc@nlo 106087 Z → ee LO+NLO - 0.99

Backgrounds
Pythia 105802 Dijet, pT,j > 15 GeV LO x 9.8 · 104

Pythia 106043 W → eν LO x 10.46
Pythia 106052 Z → ττ LO x 0.99
Pythia 107054 W → τν LO x 0.99
Mc@nlo 105200 tt̄ LO+NLO x 0.16

Table 5.4: MC samples used for the Z → ee study. “x” means the pileup effect is im-
plemented in the simulation, while “-” means the sample is generated without
pileup effect.

5.2 Monte Carlo

A set of MC samples is used to simulate the signal and backgrounds. MC samples

are overlaid with minimum bias interactions to account for multiple interactions per

bunch crossing. The MC events were generated with Pythia, Mc@nlo and passed

through the full Geant4-based [34] detector simulation. Table 5.4 summarizes the

datasets for the signal and background processes.

MC events are generated with one pile-up configuration with in-time pile-up cor-

responding to an average of two interactions. However, the pile-up situations are

different in each data taking period. So the distribution of the MC primary ver-

tex multiplicity is reweighted to data in each period after trigger and Good Runs

List (GRL) selections. The luminosity-dependent average weight is applied to the

MC event weight. The primary vertex multiplicity and pile-up weight for each period

are shown in Figure 5.1(a) and 5.1(b).

5.3 Event Selections

In order to select events from stable proton-proton collisions with the detector

functioning nominally, a set of event level cuts are applied: GRL, primary vertex,
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Figure 5.1: (a) Primary vertex multiplicity distributions for each period and the Pythia
MC. (b) Pile-up weight for each period.
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N PV A-D E F G H I Average
1 3.8991± 0.0113 3.3976± 0.0102 2.8065± 0.0107 1.9503± 0.0063 1.8599± 0.0060 1.1745± 0.0036 1.6317± 0.0026
2 1.0689± 0.0023 1.1743± 0.0027 1.2253± 0.0041 1.2193± 0.0030 1.1911± 0.0029 1.0347± 0.0023 1.1134± 0.0015
3 0.3226± 0.0008 0.4311± 0.0012 0.5816± 0.0026 0.8006± 0.0021 0.8195± 0.0022 0.9529± 0.0022 0.8575± 0.0013
4 0.1047± 0.0004 0.1662± 0.0008 0.2950± 0.0023 0.5460± 0.0020 0.5929± 0.0022 0.9124± 0.0027 0.7197± 0.0015
5 0.0374± 0.0003 0.0687± 0.0007 0.1598± 0.0024 0.3966± 0.0024 0.4611± 0.0027 0.9066± 0.0040 0.6523± 0.0022
6 0.0143± 0.0003 0.0305± 0.0007 0.0922± 0.0031 0.2966± 0.0034 0.3845± 0.0040 0.9467± 0.0070 0.6345± 0.0038
7 0.0063± 0.0004 0.0133± 0.0009 0.0600± 0.0046 0.2217± 0.0051 0.3270± 0.0066 0.9881± 0.0135 0.6284± 0.0073
8 0.0031± 0.0006 0.0067± 0.0013 0.0422± 0.0081 0.2102± 0.0104 0.3628± 0.0150 1.2008± 0.0340 0.7438± 0.0182
9 0.0021± 0.0009 0.0064± 0.0026 0.0250± 0.0126 0.1805± 0.0192 0.3594± 0.0303 1.2329± 0.0709 0.7534± 0.0378
10 0.0129± 0.0060 0.0201± 0.0119 0.0394± 0.0398 0.4436± 0.0883 0.7037± 0.1250 2.6213± 0.3638 1.6006± 0.1929

Table 5.5: The pileup weight as a function of the number of primary vertex (NPV) for each
period and the average weight applied on the MC.

trigger, and OTX cleaning. Then, the electron quality, the di-electron charge and

invariant mass cuts are applied to select final Z → ee candidates.

• Collision event selections:

– Stable, colliding beams; solenoid, toroid, calorimeters, and inner detector

were fully operational (GRL);

– At least one primary vertex;

– The primary vertex with largest
∑

trk pT has at least three tracks;

– Trigger requirement(period dependent):

∗ L1 EM14 for period A to E3;

∗ EF e15 medium for period E to I.

– OTX cleaning.

• Electron selections (for both electrons):

– the electron is found by the sliding window algorithm (electron author is

1 or 3);

– The transverse energy of the electron measured by the calorimeter: Ecluster
T >

20 GeV;

– The pseudo rapidity measured by the calorimeter |ηcluster| < 2.4 and not

in [1.37, 1.52];
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Selection Data Z → ee Backgrounds
Trigger 13350533 28206± 33 1293680512± 409289
Author 6147198 21144± 28 594139776± 277393
|η| < 2.4 5588117 18772± 26 542553728± 265078

OTX Clean 329812 11387± 20 5325860± 26251
Medium Electron 10251 9436± 19 890± 317
mee ∈ [66, 116] GeV 9281 9160± 19 296± 183

Opposite Charge 8916 8905± 19 158± 129

Table 5.6: Cutflow comparison between data and Monte Carlo simulations. The number
of events from the data are approximately equal to the sum of the simulated
Z → ee and backgrounds.

Selection Dijet tt̄ W → eν Z → ττ
Trigger 1391687168± 440429 3109± 4 354430± 134 33600± 24
Author 639253504± 298498 3065± 4 69298± 59 11667± 14
|η| < 2.4 583752448± 285246 3039± 4 61477± 56 10391± 13

OTX Clean 5724755± 28248 1090± 2 4189± 15 587± 3
Medium Electron 836± 341 36± 0 50± 2 27± 1
mee ∈ [66, 116] GeV 279± 197 13± 0 17± 1 7± 0

Opposite Charge 139± 139 12± 0 10± 1 6± 0

Table 5.7: Cutflow of Z → ee backgrounds estimated by Monte Carlo simulations.

– The electrons is at least “medium”.

• Z → ee selection:

– Exactly two such electrons and no additional medium electrons;

– The electrons are oppositely charged;

– The invariant mass of the electron-positron pair is with the Z mass window

66 < mee < 116 GeV.

The distributions of the leading electron transverse energy and invariant mass of

electron-positron pairs after the final selection are shown in Figure 5.2.
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Figure 5.2: Distributions of electron-positron pairs after the final selection: (a) the lead-
ing electron transverse momentum ET,e1 (b) the invariant mass mee (c) the
transverse momentum peeT
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5.4 The Binning of peeT

For candidates passing the final selection, the reconstructed peeT and true Z boson

transverse momentum pZT are different due to the detector resolution. The bin purity

is used to study this effect, which is defined as the probability of an event remaining

in the same bin after reconstruction

Purity of bin i =
Reconstructed and true pT in bin i

True pT in bin i
. (5.1)

On one hand, the bin size should be compatible with the electron energy reso-

lution otherwise the measurement would suffer a large systematic uncertainty from

simulating the migration effect. On the other hand, the bin size is also constrained by

the statistical uncertainty. Thus, a binning set with 19 bins between 0 and 350 GeV

is used in this analysis: (0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 42, 48, 54, 60, 80, 100,

180, 350) GeV. The purity of each bin is always over 60% as shown in the Figure 5.3.

The bin purities from Pythia and Mc@nlo have a very good agreement.

Table 5.8 summarizes data candidates in each bin with different electron energy

scale corrections as introduced in Section 4.4. Events with peeT beyond 350 GeV are

ignored in this analysis. Among all Z → ee candidates in data, there is only one

event with peeT > 350 (= 358) GeV.

The peeT distribution shown in Figure 5.2(c) is re-calculated with the chosen binning

set, as shown in Figure 5.4.
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Figure 5.3: The purity of each bin for pZT measurements. Pythia and Mc@nlo Z → ee
samples predict consistent bin purities.

pT Data + + -
( GeV) stat. energy correction scale uncertainty scale uncertainty
0 − 3 829 29 837 846 809
3 − 6 1525 39 1514 1508 1508
6 − 9 1286 36 1280 1298 1269
9 − 12 969 31 964 966 989
12 − 15 813 29 815 800 798
15 − 18 577 24 570 569 595
18 − 21 463 22 458 449 463
21 − 24 347 19 360 356 365
24 − 27 290 17 285 274 293
27 − 30 263 16 271 258 269
30 − 36 378 19 381 377 390
36 − 42 265 16 257 249 277
42 − 48 195 14 191 196 194
48 − 54 162 13 168 156 165
54 − 60 113 11 113 107 123
60 − 80 206 14 210 199 219
80 −100 104 10 100 98 107
100−180 125 11 129 122 130
180−350 12 3.5 12 11 12

Table 5.8: Number of data candidates in each bin with different corrections of electron
energy scales.
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Figure 5.4: peeT distribution after the final selection with the bin width correction applied.
The background estimations are presented in detail in the next chapter.
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CHAPTER VI

Backgrounds

Backgrounds for Z → ee are loosely divided into two categories. The first category

is usually named as the “electroweak” background, which contains at least one real

high ET electron from W or Z boson decays. Section 6.1 presents the estimation of

electroweak backgrounds. The second category is “QCD” background which arises

mostly from misidentification of jets as good quality electrons in the pp → jj (di-

jet) process. The cross-section of the QCD process is huge and suffers significant

uncertainties. Therefore, the estimation of QCD background requires data-driven

methods.

For the measurement of the pZT distribution, not only the total number (or the

normalization) but also the shape of the QCD background must be extracted. Sec-

tion 6.2 presents two data-driven methods to extract the normalization of the QCD

background, while Section 6.3 presents the shape estimation in the same bin set

defined in Section 5.4. Finally, the QCD background along with electroweak back-

grounds are summarized in Section 6.4.

6.1 Electroweak Backgrounds

Dominant electroweak backgrounds are from W → eν and Z → ττ processes,

as well as the top pair (tt̄) production in which either one or both W bosons decay
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into electrons. These backgrounds are estimated using MC samples as introduced

in Section 5.2. Their uncertainties are mainly from limited statistics in each bin

and theoretical cross-section uncertainties. As studied in the inclusive W/Z cross-

section measurement [11], the cross-section uncertainties for W , Z and tt̄ processes

are 5%, 6% and 7%, respectively. The luminosity uncertainty of 3.4% is also added

in quadrature to cross-section uncertainties.

6.2 The QCD Background Normalization

The QCD process has different di-electron invariant mass and electron isolation

distributions from those of the Z → ee process. Therefore, the first data-driven

method uses the invariant mass distribution to estimate the QCD background nor-

malization, while the second one uses the isolation distribution.

6.2.1 Fit mee

In principle, one can directly fit the well-known Z boson line-shape to extract the

QCD background in the signal region. However, it does not give a reliable result due

to the low statistics of the QCD background in the signal region. The first data-driven

method selects a control sample by loosening the electron identification so that the

QCD contribution is enhanced. Then, Z → ee and QCD background invariant mass

templates are made to fit the data distribution to extract the QCD contribution,

(N ctrl.
QCD). In the end, a scale factor (SF ) is applied to extrapolate the number of QCD

events from the control region to the signal region (N est.sig.
QCD )

N est.sig.
QCD = N ctrl.

QCD × SF. (6.1)

The extrapolation scale factor, SF can be estimated from another control region

made of events with only one medium electron and a small missing transverse mo-
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mentum, Emiss
T < 15 GeV. Due to the Emiss

T cut, events from the W → eν process

with an escaping neutrino are reduced. Therefore, events from the QCD process with

one misidentified electron dominate this control region.

6.2.1.1 Electrons with Different Qualities

In this section, electron pairs with different qualities are used in the QCD back-

ground estimation:

• cand-cand: two reconstructed electrons without relaxing any identification re-

quirement;

• cand-loose: one electron is at least loose;

• cand-medium: one electron is at least medium;

• loose-medium: one electron is medium and the other electron is at least loose;

• medium-medium: both electrons are medium;

• tight-tight: both electrons are tight;

• medium-non-medium: one electron is medium and the other electron is not

medium.

The variables used to estimate the QCD normalization in the signal regions are

• εmedium
loose,QCD: the probability of one loose electron passing the medium selection in

the QCD process;

• N loose−loose
QCD : the number of QCD events with two loose electrons in which the

loose electron could also be medium;

• N loose−medium
QCD or N ctrl.

QCD: the number of QCD events with one loose and one

medium electrons, in which the loose electron could also be medium;
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• Nmedium−medium
QCD or N est.sig.

QCD : the number of QCD events with two medium elec-

trons.

Then εmedium
loose,QCD, N loose−loose

QCD , N loose−medium
QCD and Nmedium−medium

QCD will satisfy the fol-

lowing equations

N loose−loose
QCD × 2εmedium

loose,QCD(1− εmedium
loose,QCD) = N loose−medium

QCD −Nmedium−medium
QCD ; (6.2)

N loose−loose
QCD × (εmedium

loose,QCD)2 = Nmedium−medium
QCD . (6.3)

Re-write Nmedium−medium
QCD in terms of εmedium

loose,QCD and N loose−medium
QCD

Nmedium−medium
QCD = N loose−medium

QCD × εmedium
loose,QCD/(2− εmedium

loose,QCD). (6.4)

Comparing Equation 6.4 to Equation 6.1, the extrapolation scale factor SF can

be written in terms of εmedium
loose,QCD

SF = εmedium
loose,QCD/(2− εmedium

loose,QCD). (6.5)

6.2.1.2 The QCD Background Composition

The QCD background consists of three main components: light hadron fakes,

photon conversions and heavy quark (b or c) decays. The εmedium
loose,QCD of the three

components are different. Contributions from three sources may vary with electron

qualities. QCD compositions in the control region and signal region should be close

since the εmedium
loose,QCD estimated from the single electron sample will be used in the di-

electron sample. From a large MC sample with 100 M events, the loose and medium

electrons from the QCD process have similar compositions as shown in Figure 6.1.

So the extrapolation scale factor from loose-medium pairs to medium-medium pair is

reliable.
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Figure 6.1: MC fake electron compositions for electron pairs with different electron quality.
The composition of the fakes in the loose-loose sample (d) and the composition
of the fakes in the medium-medium sample (f) can be seen to be similar.
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6.2.1.3 Estimate N loose−medium
QCD

To extract N loose−medium
QCD , signal and background templates are fit to the di-electron

invariant mass distribution within 50 < mee < 130 GeV. To increase statistics of the

QCD background, the mass window of the fit is wider than that used in the event

selection (66 < mee < 116 GeV). The signal template is composed of a Breit-Wigner

form convolved with a Gaussian. The background template is modeled with a second

order polynomial function. The fit result is shown in Figure 6.2(a). In the mass

window 66 < mee < 116 GeV, a background of N loose−medium
QCD = 1662 ± 80(stat) is

determined.

The fits were performed with different bin sizes and different fit ranges. The

results are listed in Table 6.1. The largest difference is 52 (= |1714− 1662|) which is

considered as the bin size and fit range systematic uncertainties.

In addition to the QCD background, the fit could also contain the electroweak

backgrounds and Drell-Yan events, which are treated as systematic uncertainties. The

electroweak contamination is estimated from MC to be N loose-medium
EW = 135± 5(stat)

events with 5% systematic uncertainty from the cross-section uncertainties. Since

the medium electron charge mis-identification rate is around 3% [35], and Drell-Yan

contribution with 66 < mee < 116 GeV is about 2%, the number of same-charge

Drell-Yan events is negligible compared to those from Z and QCD processes.

In the QCD process, the asymmetry of same-charge and opposite-charge pairs, is

caused by heavy flavor bb̄/cc̄ decay. In the electron channel, the dominant fraction

of the QCD background is from light flavor hadrons and photon conversions. This

results in a negligible asymmetry between same-charge and opposite-charge events.

Therefore, the Drell-Yan contribution is determined from the difference between fits to

the invariant mass distribution of same-charge and opposite-charge pairs. The Drell-

Yan contribution is estimated to be N loose-medium
Drell−Yan = 148. So the fit contamination is

estimated to be 200 (=
√

1352 + 1482).
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N loose−medium
QCD 1 GeV bin 2 GeV bin
fit range opposite-sign same-sign opposite-sign same-sign

[50, 130] GeV 1662± 80 1514± 30 1656± 79 1527± 30
[66, 116] GeV 1714± 134 1548± 65 1701± 158 1551± 65
[60, 140] GeV 1678± 85 1521± 32 1643± 96 1508± 32

Table 6.1: Estimation ofN loose−medium
QCD using different bin sizes, fit ranges, and the invariant

mass distribution of same-sign and opposite-sign electron-positron pairs.

In summary, the QCD background normalization in the loose-medium control

region is

N loose-medium
QCD = 1662± 80(stat)± 207(syst), (6.6)

in which the systematic uncertainty is a quadratic sum of two terms as discussed

above, 207 =
√

522 + 2002.

6.2.1.4 Estimate εmedium
loose,QCD

The probability of a loose electron from jet misidentification passing the medium

selection, εmedium
loose,QCD is determined from the control sample made of single electron

plus small transverse missing energy (< 20 GeV). This control sample is dominated

by a QCD process in which one jet is misidentified as an electron. This efficiency

is shown in Figure 6.2(b) as a function of ET and η. The average value amounts to

ε̄medium
loose,QCD = 0.122 with a negligible statistical uncertainty. From the MC simulation,

the average value is ε̄medium
loose,QCD,MC = 0.126± 0.001(stat.). The difference between data

and MC is assigned as a systematic uncertainty.

There is a bias if the average value rather than the efficiency map is used to

extrapolate the QCD background normalization. Therefore, a QCD MC sample with

large statistics (100 M) is used to study this bias and the estimations of the QCD

background are summarized in Table 6.2. The results from using the map and using
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Charge Nmedium−medium
QCD,MC

use the map use the average
Opposite Sign 104.4 ± 4.8 95.8 ± 4.4

Same Sign 106.7 ± 4.8 100.9 ± 4.6

Table 6.2: Estimated Nmedium−medium
QCD,MC from the MC simulation. The results from using the

efficiency map and average efficiency are 10% different.

the average value differ by 10% which is assigned as another systematic uncertainty

to ε̄medium
loose,QCD. In summary:

ε̄medium
loose,QCD = 0.122± 0.012(syst) (6.7)

6.2.1.5 Summary of Nmedium−medium
QCD

After substituting Equation 6.6 and 6.7 into 6.4, it yieldsNmedium−medium
QCD = 108.0±

5.2(stat)± 17.1(syst).

For a further cross-check, the “loose” is modified to “loose+SiCut”, in which

“SiCut” requires the track of the electron to have at least 7 hits in silicon trackers.

The background fit for the “looseSiCut-medium” pairs is N looseSiCut-medium
QCD = 1037 ±

56(stat). The ε̄medium
loose,QCD is also changed to ε̄medium

looseSiCut,QCD = 0.255 ± 0.000(stat). So

the estimated medium-medium QCD background event number is Nmedium−medium
QCD =

151.5 ± 8.2(stat). The difference between QCD background estimations from using

the loose and loose+SiCut criteria is quoted as an additional systematic uncertainty,

which is around 50%.

In summary, the final total QCD background is

Nmedium−medium
QCD = 108.0± 5.2(stat)± 56.6(syst). (6.8)
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Figure 6.2: (a) Invariant mass fit of loose-medium electron-positron pairs. (b) The prob-
ability of an misidentified loose electron passing the medium selection in the
QCD process with negligible statistical uncertainty.

6.2.2 Fit Electron Isolation Variables

In the second method, the QCD normalization is determined from a template fit of

the electron isolation variable in the signal region. Due to the limited statistics, the fit

suffers from a large statistical uncertainty. It is therefore used as a cross-check of the

result from the first method. Two calorimeter based isolation variables are used. One

variable is “ETCone30”, which is the energy deposit in the EM calorimeter around

the electron within a cone of ∆R < 0.3, of the sub-leading electron divided by its

ET . The second discriminating variable is the difference between isolation variable

ETCone30 of two electrons divided by the sum of their ET .

The Z → ee template is taken from a sample of tight-tight electron-positron

pairs in a smaller invariant mass window 80 < mee < 100 GeV. Similarly, the QCD

background in this sample can be estimated by extrapolating medium-medium elec-

tron pairs to tight-tight ones. The scale factor ε̄tight
medium,QCD is estimated from the

same control sample which was previously used to estimate ε̄medium
loose,QCD. A value of

ε̄tight
medium,QCD = 0.13 ± 0.02(stat) is found. Therefore, the QCD background is esti-
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Figure 6.3: Invariant mass distribution of medium-non-medium pairs used to determine
the QCD background shape.

mated to be about 0.1% of the Z → ee process, which is negligible.

The QCD template is built from a sample where the Z → ee process is negligible.

Such a sample can be constructed by reversing the medium electron identification

selection for either electron or positron, i.e. selecting medium-non-medium pairs with

invariant masses mee < 66 GeV or mee > 116 GeV. The invariant mass distribution

of medium-non-medium pairs are shown in Figure 6.3, in which the Z resonance peak

is negligible compared to the QCD contribution.

After subtracting the electroweak backgrounds from data using MC samples, two

fits with different discriminating variables are shown in Figure 6.4(a) and 6.4(b),

respectively. The resulting normalization of the QCD background are 89.4±30.2(stat)

and 96.6± 22.0(stat). They are consistent with the result from the first method.
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Figure 6.4: (a) QCD background fit using the calorimeter based isolation variable
of the sub-leading electron ETCone30/ET (b) QCD background fit using
|ETCone30e1 − ETCone30e2 |/|ET,e1 − ET,e2 |

6.3 The QCD Background Shape

The QCD background shapes for the peeT distribution is also determined from

medium-non-medium pairs where Z → ee processes are negligible.

A comparison of the shapes between same-sign and opposite-sign pairs is displayed

in Figures 6.5. The difference between same-sign opposite-sign pairs is considered as

a systematic uncertainty of the shape estimation.

6.4 Summary of Backgrounds

Combining the QCD normalization and shape, the final QCD background peeT

spectrum is shown in Figure 6.6 along with electroweak backgrounds estimated from

MC samples. The background contributions summarized in Table 6.3 for 19 bins.

In the low peeT (< 100 GeV) region, the dominant background is from QCD pro-

cesses, while in the high peeT (> 100 GeV) region, the dominant background is tt̄.
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Figure 6.6: Summary of electroweak and QCD backgrounds.
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peeT QCD tt̄ W → eν Z → ττ Total Background
(GeV) dN/dpeeT (1/GeV)
0 − 3 1.3841 ± 0.7284 0.0056 ± 0.0028 0.0182 ± 0.0182 0.0965 ± 0.0246 1.5045 ± 0.7291
3 − 6 2.8098 ± 1.4787 0.0280 ± 0.0065 0.0182 ± 0.0182 0.2896 ± 0.0442 3.1456 ± 1.4795
6 − 9 3.4053 ± 1.7922 0.0378 ± 0.0076 0.0365 ± 0.0258 0.3620 ± 0.0501 3.8416 ± 1.7931
9 − 12 3.3929 ± 1.7856 0.0575 ± 0.0096 0.0911 ± 0.0409 0.2896 ± 0.0442 3.8311 ± 1.7867
12 − 15 3.3950 ± 1.7867 0.0743 ± 0.0111 0.1458 ± 0.0519 0.2413 ± 0.0400 3.8564 ± 1.7879
15 − 18 2.8119 ± 1.4798 0.0911 ± 0.0125 0.0911 ± 0.0409 0.1448 ± 0.0304 3.1389 ± 1.4808
18 − 21 2.4674 ± 1.2985 0.0771 ± 0.0113 0.1458 ± 0.0519 0.1388 ± 0.0298 2.8291 ± 1.3000
21 − 24 2.1270 ± 1.1194 0.1009 ± 0.0133 0.2552 ± 0.0690 0.1086 ± 0.0262 2.5918 ± 1.1219
24 − 27 2.0399 ± 1.0736 0.1388 ± 0.0161 0.2917 ± 0.0739 0.0845 ± 0.0230 2.5548 ± 1.0765
27 − 30 1.7494 ± 0.9207 0.1261 ± 0.0152 0.2917 ± 0.0739 0.0483 ± 0.0172 2.2154 ± 0.9239
30 − 36 1.4194 ± 0.7470 0.1212 ± 0.0116 0.2917 ± 0.0530 0.0573 ± 0.0135 1.8896 ± 0.7491
36 − 42 1.0376 ± 0.5461 0.1521 ± 0.0136 0.2370 ± 0.0475 0.0513 ± 0.0127 1.4779 ± 0.5484
42 − 48 0.8685 ± 0.4571 0.1367 ± 0.0126 0.2279 ± 0.0466 0.0090 ± 0.0052 1.2420 ± 0.4596
48 − 54 0.5634 ± 0.2965 0.1612 ± 0.0142 0.1003 ± 0.0305 0.0090 ± 0.0052 0.8339 ± 0.2985
54 − 60 0.4057 ± 0.2135 0.1493 ± 0.0134 0.0456 ± 0.0205 0.0090 ± 0.0052 0.6096 ± 0.2150
60 − 80 0.1949 ± 0.1026 0.1268 ± 0.0090 0.0383 ± 0.0104 0.0054 ± 0.0022 0.3653 ± 0.1035
80 −100 0.0570 ± 0.0300 0.0854 ± 0.0065 0.0191 ± 0.0073 0.0036 ± 0.0018 0.1651 ± 0.0316
100−180 0.0054 ± 0.0029 0.0204 ± 0.0016 0.0014 ± 0.0010 0.0016 ± 0.0006 0.0288 ± 0.0035
180−350 0.0001 ± 0.0000 0.0002 ± 0.0001 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0003 ± 0.0001

Table 6.3: Summary of QCD, W → eν, tt̄ and Z → ττ backgrounds for Z → ee process.
The QCD background is estimated using data-driven method and the error
includes both statistical and systematic errors. W → eν, tt̄ and Z → ττ
backgrounds are estimated from Monte Carlo simulation and the error reflects
the limited Monte Carlo statistics.
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CHAPTER VII

pZT Extraction

After the background subtraction, pZT is extracted from peeT through “unfolding”,

which is a process converting observed measurements at the reconstruction level into

the corresponding physics properties at the truth level. Section 7.1 introduces basic

unfolding strategies. Section 7.2 and Section 7.3 present two unfolding methods: bin-

by-bin unfolding and regularized matrix unfolding. To measure a binned distribution

of a steeply falling spectrum, the bin center also requires corrections, which is studied

in Section 7.4.

7.1 Unfolding Procedures

The transverse momentum of the Z boson is studied in two scenarios at the Born

level before the final state radiation:

• pZT in the fiducial (ET , η) volume: pZT with electron kinematic selections (peT > 20

GeV and |ηe| < 2.4) and 66 < mee < 116 GeV;

• pZT in the full (ET , η) phase-space: pZT with 66 < mee < 116 GeV.

To extract fiducial pZT from peeT , a bin-by-bin unfolding method is applied, which is

cross-checked by the matrix unfolding. The corresponding correction is usually called

“efficiency correction” (C), which accounts for the collision event selection, electron
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identification, electron final state radiation, and detector resolution. The full phase-

space pZT is calculated by the bin-by-bin unfolding from the fiducial volume. The

corresponding correction is usually called the “acceptance correction” (A), which

is an extrapolation from a small (Ee
T , η

e) phase-space (fiducial volume) to the full

(Ee
T , η

e) phase-space.

Since the binned pZT or peeT distribution is a vector with 19 elements, the gen-

eral form of C or A should be an 19 × 19 matrix. For both bin-by-bin unfolding

and regularized matrix unfolding, C and A are determined through Z → ee MC

simulations.

One of the advantages of studying pZT in the fiducial volume is that the acceptance

factor A is same for both electron and muon decay channels. So one can combine

electron and muon fiducial pZT using the same A to get the differential cross-section

of Z → `` (` = e, µ).

This thesis will focus on the extraction of the fiducial cross-section.

7.2 The Bin-by-bin Unfolding

The bin-by-bin unfolding method ignores the correlations between bins. Only

diagonal elements of C and A matrices are non-zero. Therefore, C and A are reduced

to vectors with 19 elements. The observed number of events N , the cross-section

σ, efficiency correction ε and luminosity L satisfy N = σεL. Thus, the differential

Z → ee cross-section can be expressed as

∆σiZ
∆pZ,iT

=
1

∆pZ,iT
·
N i

data −N i
bkg

Ai · Ci · L
(7.1)

where

• ∆σiZ is the integrated cross-section of Z boson times the branching ratio for

decays into electrons in the i-th bin;
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• ∆piT is the width of the corresponding bin;

• N i
data is the number of Z → ee candidates in each bin from data;

• N i
bkg is the estimated total background event number in each bin;

• Ai =
N i

geo

N i
gen

is the acceptance correction factor determined from Monte Carlo

simulation, defined as the fraction of generated events (Ngen) satisfying the

geometrical constrains (Ngeo) at the generator level;

• Ci = N i
reco

N i
geo

is the efficiency correction factor, defined as the ratio between num-

ber of signal events which pass the final selection (Nreco) and total number of

generated events within the detector geometrical acceptance (Ngeo);

• L the integrated data luminosity.

In the fiducial volume, the cross-section is

∆σibare

∆pZ,iT
=

1

∆pZ,iT
·
N i

data −N i
bkg

Ci · L
. (7.2)

7.2.1 The Efficiency Correction Factor C

Ci is determined from Ci
MC from the Z → ee MC and requires additional cor-

rections to account for discrepancies of electron trigger and identification efficiencies

between data and the MC, which lead to the following form:

Ci = Ci
MC ·

εID,i
data

εID,i
MC

· ε
trig,i
data

εtrig,i
MC

, (7.3)

εID,i =
1

N

N∑
n=1

εID
e1

(ET or pT, η) · εID
e2

(ET or pT, η) ·∆i
n, (7.4)
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εtrig,i =
1

N

N∑
n=1

(1− (1− εtrig
e1

(ET or pT, η)) · (1− εtrig
e2

(ET or pT, η))) ·∆i
n (7.5)

where

• εID,i: electron identification efficiency determined from data or the Z → ee

MC; by summing over all the candidates. ∆i
n = 1(∆i

n = 0) if the nth event falls

inside(outside) bin i;

• εtrig,i: trigger efficiency determined by data or the Z → ee MC.

As presented Section 4.2, trigger efficiencies of data and the Z → ee MC are

close,
εtrig,idata

εtrig,iMC

≈ 1. So only the medium electron identification scale factor is needed to

correct CMC. Re-writing Equation 7.3 with the medium electron scale factor (SF )

summarized in Table 4.1

Ci = Ci
MC ·

N∏
n=1

SF e1
n SF

e2
n ∆i

n. (7.6)

The CMC and SF from the default Pythia sample are shown in Figure 7.1 and 7.2.

7.2.2 The Acceptance Correction Factor A

The acceptance factor only depends on truth level information so that it can be

studied easily without full simulation chains. The nominal A from the default Pythia

sample is shown in Figure 7.3.

7.2.3 The FSR Correction Factor Ci
bare

Before electrons reach the detector, they might radiate photons. Therefore, it

is also important to extract the cross-section σibare corresponding to Z bosons con-

structed by two “bare” electrons. The bare electrons are Born level electrons after
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Figure 7.1: Nominal CMC from the Pythia sample.
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Figure 7.2: Nominal SF from the Pythia sample.
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Figure 7.3: Nominal A from the Pythia sample.

corrections of QED final state radiation. An additional efficiency correction factor is

needed to calculate the bare cross-section from the Born cross-section

σibare = σiZ · Ci
bare =

N i
data −N i

bkg

Ai · L
Ci

bare

Ci
. (7.7)

The nominal Cbare from the default Pythia sample is shown in Figure 7.4.

7.2.4 Unfolding Results

The final normalized differential cross-section is calculated as

1

σ

(
dσ

dpZT

)i
=

1∑n
i=1 σ

i

σi

∆pZ,iT
(7.8)

where σi is the Born cross-section σiZ , bare cross-section σibare or fiducial cross-

section σifid. The normalized fiducial 1
σ

dσ

dpZT
from bin-by-bin method are summarized

in Table 7.1.
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Figure 7.4: Nominal Cbare from the Pythia sample.

peeT
1
σ

dσ

dpZT
stat. stat.

mean

(GeV) (1/GeV) (1/GeV) (%)
0 − 3 0.0348 0.0012 3.4
3 − 6 0.0585 0.0015 2.6
6 − 9 0.0461 0.0013 2.8
9 − 12 0.0343 0.0011 3.2
12 − 15 0.0293 0.0010 3.5
15 − 18 0.0204 0.0008 4.1
18 − 21 0.0164 0.0008 4.6
21 − 24 0.0132 0.0007 5.2
24 − 27 0.0108 0.0006 5.8
27 − 30 0.0102 0.0006 5.9
30 − 36 0.0072 0.0004 5.0
36 − 42 0.0049 0.0003 6.0
42 − 48 0.0037 0.0003 7.0
48 − 54 0.0033 0.0002 7.5
54 − 60 0.0021 0.0002 9.1
60 − 80 1.2·10−3 8.1·10−5 6.7
80 −100 5.7·10−4 5.5·10−5 9.7
100−180 1.7·10−4 1.5·10−5 8.7
180−350 7.8·10−6 2.2·10−6 28.7

Table 7.1: Summary of the fiducial 1
σ

dσ

dpZT
from the bin-by-bin unfolding. The statistical

uncertainty is calculated by propagating binomial errors from observed data.
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7.3 The Regularized Matrix Unfolding

Regularized matrix unfolding takes into account the correlation between bins. So

C is an 19 × 19 matrix with generally non-zero off-diagonal elements. The matrix

which transforms a distribution at the truth level to the reconstruction level is usually

called the Response Matrix and denoted as R. Suppose ~x and ~y are vectors of the

fiducial and observed (after the background subtraction) differential cross-sections,

so the transformation from the truth to reconstruction level can be expressed as

R~x = ~y. (7.9)

7.3.1 The Inverse of R

To calculate ~x from ~y, the response matrix R has to be inverted. Since the response

matrix is not always reversible, a regularized least square method [36] is employed to

calculate regularized inverse R#.

The “least square” means instead of inverting a matrix, a R# is calculated from

the minimization

χ2(~x) = ||R~x− ~y|| = minimum (7.10)

where χ2(~x) is also called the residual of the least square minimization.

The “regularized” means a conditional term is added in the minimization process,

which will smooth the unfolded distribution

χ2
τ (~x) = ||R~x− ~y||+ τ ||L~x|| = minimum (7.11)

where τ is the regularization parameter and L is the conditional matrix. In this

analysis, the continuity condition at the second derivative is required

86



x′′i ∝ xi−1 − 2xi + xi+1 ⇒ L =



1 −2 1 0 ... 0 0 0

0 1 −2 1 ... 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 ... 1 −2 1


. (7.12)

In the minimization process, the matrix H, error matrix P (the error for each bin

is
√
Pii) and correlation matrix ρ are calculated as

Hij =
∂χ2

τ (~x)

∂xi∂xj
, (7.13)

P = (
1

2
H)−1, (7.14)

ρij =
Pij√
PiiPjj

. (7.15)

A reliable R# requires minimum χ2
τ (~x) and τ [37]. The spline of (χ2

τ (~x), ||L~x||)

is a “L-curve”, where the best τ is at the turning point. The TUnfold program [38]

is used to calculate R# with the optimized τ . Once R# is determined, the fiducial

cross-section can be expressed as

σifid =
m∑
j=1

(R#)ij
N j

data −N
j
bkg

L
(7.16)

where

• i = 1, 2, ..., n is the bin index of the generated distribution;

• j = 1, 2, ...,m is the bin index of the measured distribution.

In the regularized unfolding method, the number of bins at the truth level must

be greater than that at the reconstruction level n > m. This is because the degree

of freedom of regularization is equal to (m − n) [38]. In this thesis, the bin size at
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Figure 7.5: Response matrix (38×19) of the Pythia Z → ee MC. The x axis corresponds
to the reconstruction level with 38 bins, while y axis corresponds to the truth
level with 19 bins.

the truth level is one half of the bin size at the reconstruction level. So m = 19 and

n = 38. Figure 7.5 shows the response matrix in the binning set of 38× 19, which is

calculated from the Pythia Z → ee sample with full statistics.

7.3.2 Closure Tests

A closure test is made using a pseudo-data from a sub-set of the Pythia Z → ee

MC. The statistics of the pseudo-data are equal to 35 pb−1. The L-curve of the

closure test is shown in Figure 7.6.

The unfolding result is compared to the true pZT of the pseudo-data and the MC

with full statistics as shown in Figure 7.7(a) and 7.7(b).

Another test with pseudo-data is that folding pZT back to the reconstruction level

R(R#~x) ≈ ~y. (7.17)

The folding-back results are shown in Figure 7.8(a) and 7.8(b).

Both closure tests show that the matrix unfolding results have a good agreement

with the predictions.
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Figure 7.6: L-curve of the Pythia Z → ee MC.
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Figure 7.7: MC closure test of the regularized matrix unfolding. The cross-section is un-
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Figure 7.8: MC closure test of the folding-back pZT to the reconstruction level with 38 bins.
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peeT
1
σ

dσ

dpZT
stat. stat.

mean

(GeV) (1/GeV) (1/GeV) (%)
0 − 3 0.0347 0.0017 4.9
3 − 6 0.0597 0.0025 4.1
6 − 9 0.0463 0.0023 4.9
9 − 12 0.0330 0.0020 6.0
12 − 15 0.0317 0.0018 5.7
15 − 18 0.0196 0.0016 7.9
18 − 21 0.0172 0.0014 8.1
21 − 24 0.0119 0.0012 10.3
24 − 27 0.0110 0.0011 10.3
27 − 30 0.0102 0.0010 10.1
30 − 36 0.0070 0.0005 7.1
36 − 42 0.0049 0.0004 8.3
42 − 48 0.0036 0.0004 9.8
48 − 54 0.0032 0.0003 10.0
54 − 60 0.0021 0.0003 12.7
60 − 80 1.1 ·10−3 9.0 ·10−5 7.9
80 −100 5.8 ·10−4 6.4 ·10−5 11.1
100−180 1.8 ·10−4 1.6 ·10−5 9.3
180−350 9.8 ·10−6 2.9 ·10−6 29.7

Table 7.2: Summary of regularized matrix unfolding fiducial 1
σ

dσ

dpZT
. The statistical error

is from five sources: correlated data, uncorrelated data, correlated matrix ele-
ments, uncorrelated matrix elements.

7.3.3 Unfolding Results

Regularized matrix unfolding results for 2010 data are summarized in Table 7.2.

Four different statistical uncertainties are computed:

• Uncorrelated statistical uncertainty of data, which is the dominant uncertainty

• Uncorrelated statistical uncertainty of the response matrix R;

• Correlated statistical uncertainty of data;

• Correlated statistical uncertainty of the response matrix R.
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peeT Bin center p̄ZT Difference
(GeV) (GeV) (GeV) (%)
0 − 3 1.5 1.3 -10.3
3 − 6 4.5 4.8 6.0
6 − 9 7.5 7.5 -0.5
9 − 12 10.5 10.4 -0.6
12 − 15 13.5 13.5 -0.3
15 − 18 16.5 16.5 -0.1
18 − 21 19.5 19.5 -0.2
21 − 24 22.5 22.5 -0.1
24 − 27 25.5 25.5 -0.1
27 − 30 28.5 28.4 -0.2
30 − 36 33.0 32.9 -0.4
36 − 42 39.0 39.0 -0.1
42 − 48 45.0 44.9 -0.1
48 − 54 51.0 50.8 -0.3
54 − 60 57.0 56.9 -0.1
60 − 80 70.0 69.4 -0.9
80 −100 90.0 89.4 -0.7
100−180 140.0 132.3 -5.5
180−350 265.0 245.4 -7.4

Table 7.3: Corrected bin centers using the Resbos MC.

7.4 The Bin Center Correction

The ith bin center p̄Z,iT is corrected according to the pZT shape in each bin, so that

the overall pZT line-shape after the unfolding is consistent with the true distribution.

The correction formula is

p̄Z,iT = arg

dσ(p̄Z,iT )

dpZT
=

1

∆pZ,iT
·
pZ,i,high
T∫

pZ,i,low
T

dσ(pZT )

dpZT
dpZT

 . (7.18)

To extract the pZT shape, each bin is divided into 10 sub-bins. Equation 7.18 is

solved numerically for each bin as shown in Figure 7.9 and 7.10. The corrected bin

centers are summarized in Table 7.3.
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Figure 7.9: The numerical method to calculate the bin center with 10 sub-bins for bin 1
to 15.
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Figure 7.10: The numerical method to calculate the bin center with 10 sub-bins for bin 16
to 19.
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CHAPTER VIII

Uncertainties

Uncertainties of 1
σ

dσ

dpZT
measurements are studied in this chapter. Section 8.1

presents statistical uncertainties. Section 8.2 presents experimental systematic un-

certainties. Section 8.3 presents theoretical systematic uncertainties. Section 8.4

summarizes all uncertainties from both bin-by-bin unfolding and regularized matrix

unfolding.

8.1 Statistical Uncertainties

Statistical uncertainties of 1
σ

dσ

dpZT
are caused by a limited number of events in both

data and Z → ee MC samples. The total integrated luminosity of data is 35 pb−1,

while the corresponding luminosity of the Z → ee MC is about 1 fb−1. Therefore,

data statistical uncertainty dominates. Since there are strong correlations between

bins after the normalization, propagating uncertainties of of Ndata and C to 1
σ

dσ

dpZT
through analytical formulas is often impractical. Therefore, ensemble MC test and

bootstrap resampling are used to estimate statistical uncertainties caused by Ndata

and C, respectively.
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8.1.1 The Data Statistical Uncertainty

500 ensemble MC tests to study the data statistical uncertainty and their results

are shown in Figure 8.1 and 8.2. Ensemble tests procedures are

1. Randomly choose events from the Pythia Z → ee sample as pseudo-data until

integrated luminosity reaches 35 pb−1;

2. Unfold the pseudo-data with the nominal C with using bin-by-bin method;

3. Repeat step (1) and (2) by 500 times and calculate statistical uncertainties.

The statistical uncertainties from three approaches are compared

• Root mean square (RMS) of the unfolding result of 500 ensemble tests;

• Standard deviation of the Gaussian fit to the unfolding result of 500 ensemble

tests;

• Simple error propagation by ignoring correlations.

Data statistical uncertainties from three approaches are in good agreements as

shown in Figure 8.3. Baseline results are calculated by the RMS approach due to its

robustness.

8.1.2 The Monte Carlo Statistical Uncertainty

The statistical uncertainties of C can not be estimated by ensemble tests since

the calculation of C uses full statistics of the Z → ee sample. Therefore, a bootstrap

method [39], which is based on multiple resampling of Z → ee MC events, is used to

evaluate statistical uncertainties of C. The bootstrap method constructs a number of

resamples of the pseudo MC dataset each of which is obtained by random sampling

with replacement from the original dataset.

Bootstrap resampling is implemented in the analysis as follows:
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Figure 8.1: 500 ensemble tests to estimate data statistical uncertainty of the fiducial pZT
measurement for bin 1 to 15.
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Figure 8.2: 500 ensemble tests to estimate data statistical uncertainty of the fiducial pZT
measurement for bin 16 to 19.
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Figure 8.3: Comparisons of statistical uncertainties from three approaches: (1) Propagat-
ing Poisson uncertainties of observed data (black) (3) Standard deviation of
the Gaussian fit (red) (3) Ensemble test RMS (blue).
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Figure 8.4: Bootstraping method to estimate statistical uncertainties of C. It is compared
with results from propagating binomial uncertainties.

1. Assign a random weight Poisson(1) for each event;

2. Construct the new efficiency factor C and calculate the fiducial 1
σ

dσ

dpZT
;

3. Repeat step (1) and (2) 500 times and calculate the RMS of 1
σ

dσ

dpZT
for each bin.

The default Z → ee sample has 106 events, so statistics of each resample will be

approximately:

i=106∑
i=0

Poisson(1) ≈ 106. (8.1)

Statistical uncertainties from the bootstrap method and simple binomial error

propagation are compared in Figure 8.4. Since the simple error propagation ignores

correlations between bins, its statistical uncertainties are underestimated.

8.2 Experimental Systematics

Experimental systematic uncertainties of 1
σ

dσ

dpZT
arise from inefficiencies of dead

OTX regions, misdealing of pileup, electron energy resolution and scale, the electron
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identification efficiency and the background estimation.

To evaluate these systematic uncertainties, the correction C is determined either

from a corrected or a particular MC sample, and are used to unfold the data. The de-

viation of 1
σ

dσ

dpZT
from the central value is considered as the systematic uncertainty. To

reduce the bias from statistical fluctuations, systematic uncertainties are determined

from 100 bootstrap resamples.

For each resample n, the measured spectrum is unfolded and the relative deviation

∆( 1
σ

dσ

dpZT
) of bin i is calculated

∆i
n,rel

(
1

σ

dσ

dpZT

)
=

(
1
σ

dσ

dpZT

)i
n

−
(

1
σ

dσ

dpZT

)i
nominal(

1
σ

dσ

dpZT

)i
nominal

. (8.2)

Then, a Gaussian fit is applied on the distribution of ∆i
rel(

1
σ

dσ

dpZT
) to extract the

mean of relative deviations, ∆̄i
rel(

1
σ

dσ

dpZT
), which is quoted as the systematic uncertainty

of bin i.

8.2.1 Modeling of Pileup

The uncertainty due to the modeling of pileup is estimated using the reference

signal MC with and without applying the reweighting coefficients from Table 5.5

which correct the distribution of the number of primary vertices in MC to match that

in the data. An uncertainty of ≈ 0.3% is assigned due to pileup modeling as shown

in Figure 8.5.

8.2.2 Dead OTX Regions

Multiple OTX maps are used during the 2010 data-taking periods. An average

OTX map is made by weighting each OTX map to its integrated luminosity. Table 8.1

summarizes of the average efficiency correction factor C of these OTX maps. Based

99



Bin i

0 2 4 6 8 10 12 14 16 18

U
nc

er
ta

in
ty

 %

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 8.5: Systematic uncertainty due to the pileup-up.
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Figure 8.6: Systematic uncertainty due to the dead OTX regions

on the average OTX map, another ideal OTX map can be made by replicating the

selected zone without holes in the detector [11]. The systematic uncertainty of the

dead OTX is assumed to be the difference of unfolded results from ideal and real

maps. This yields an uncertainty of less then 0.1% as shown in Figure 8.6.

8.2.3 The Electron Energy Scale and Resolution

The electron energy scale uncertainty is estimated by applying the correction plus

or minus the error to data and comparing the unfolded results. The energy scale
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Map Number C ∆C Luminosity nb−1

152166 0.6241 0.0346 9
155228 0.6251 0.0356 7
155760 0.6197 0.0302 2
158115 0.6151 0.0256 66
158707 0.6058 0.0163 28
159040 0.5993 0.0098 1088
161730 0.5962 0.0067 1836
165589 0.5962 0.0067 3537
166142 0.5949 0.0054 4416
166497 0.5892 -0.0003 3927
166658 0.5867 -0.0028 1883
167521 0.5859 -0.0036 18463
Average 0.5895 0.0000 35262

Table 8.1: The efficiency correction CZ for 12 dead FEB maps in 2010. The map number is
the first run number, since which the corresponding dead FEB map is applied.
The average OTX maps is calculated based on luminosity weights and used in
the unfolding.

variation leads to a shift in the pT distribution. When enlarging the scale, a positive

shift is seen in the first bins which then slowly decreases and turns negative. In

total this yields an uncertainty between 2% to 4%. For the electron energy resolution

uncertainty, the additional smearing which is applied to the MC sample to correct the

energy resolution is varied by plus and minus the error. This results in a systematic

uncertainty of less than 0.5%. The systematic uncertainties due to the electron energy

scale and resolution are shown in Figure 8.7(a) and 8.7(b), respectively.

8.2.4 The Electron Identification Efficiency

To test the influence on the modeling of the electron identification efficiency, first

the single electron scale factor, which is determined in few η bins, is varied within

errors. The correction leads mostly to a global change of the number of selected events

with a small deviation (≈ 0.5%) after normalization. Since the correction factors are

determined as a function of peeT , it is also important to show that the data and MC
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Figure 8.7: (a) Systematic uncertainties due to (a) the electron energy scale; (b) the elec-
tron energy resolution.
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electron efficiencies agree as a function of peeT .

The data and MC electron identification efficiencies versus peeT from the tag-and-

probe method are shown in Figure 8.8(a). The difference can not be covered by the

systematic uncertainty of 0.5%. This is mainly because the Z boson recoil effect is

smeared out when studying the electron efficiency as a function of electron η. There-

fore, the remaining difference of the electron efficiency is considered as a systematic

uncertainty. The resulting uncertainty is ≈ 0.7% for the first bin and increases to

≈ 1.5% for high peeT bins as shown in Figure 8.8(b). Since this uncertainty only ac-

counts for the modeling of a single electron, it has to be multiplied by two. Thus,

an uncertainty between 1.4% and 3% is assigned based on fit to the data and MC

difference. This is one of the dominant sources of systematic uncertainties.

8.2.5 The Background Estimation

The background estimation (N i
Bkg,j) and its error (∆N i

Bkg,j) for each bin i is given

in Table 6.3. Instead of propagating the error to the normalized differential cross-

section, 100 ensemble tests are made to evaluate the uncertainty due to the back-

ground estimation. For each test j, a Gaussian random number Gaussian(0,1) is

generated and the new background N i
Bkg,j is calculated as

N i
Bkg,j = N i

Bkg + Gaussian(0, 1)×∆N i
Bkg. (8.3)

Then, the fiducial

(
1
σ

dσ

dpZT

)
j

is calculated using N i
Bkg,j and

(
1
σ

dσ

dpZT

)
j

are fit by a

Gaussian template whose standard deviation is assigned as the uncertainty due to the

background estimation. The resulting uncertainty is less than 0.5% as shown in the

Figure 8.9. In this way, the background errors over 19 bins are treated as completely

correlated, so that the 0.5% is a conservative estimation.
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Figure 8.8: (a) Single medium electron ID efficiency versus the reconstructed peeT .
(b) Single electron ID uncertainty versus the reconstructed peeT . A fit
f(x) = a/2 ∗ (1 + Erf((x− b)/c)) + d is used to smooth the uncertainty.
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Figure 8.9: Systematic uncertainty due to the background contamination

8.3 Theoretical Systematic Uncertainties

Theoretical systematic uncertainties arise from the bias of the correction factor

C, which depends on pZT distributions and MC features, the parton density func-

tion (PDF) set used, crack region extrapolation and final state radiation (FSR) ef-

fects. They are evaluated by comparing results from different MC simulations and

checked by the regularized unfolding method.

8.3.1 The pZT Shape

Since the bin-by-bin unfolding method depends on the correct description of pZT

shape (the denominator used to calculate C), the bias of MC pZT shapes has to be

taken into account. The default Pythia sample, from which central values of C are

calculated, is reweighted to another estimate of the true pZT distribution, which is

from Resbos.

Pythia is reweighted to Resbos by (log10(pZT ), Y Z) in which Z bosons are re-

constructed by two electrons before QED FSR. The binning set is 100 × 50 for

−1.0 < log10(pZT ) < 2.5 and −5.0 < Y Z < 5.0. Pythia and Resbos are generated

with different statistics. Therefore, the reweigting map is the ratio of two normalized
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Figure 8.10: The ratio of Born level Z boson distribution from Resbos to Pythia.
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Figure 8.11: Systematic uncertainty due to the pZT shape.

(log10(pZT ), Y Z) distributions as shown in Figure 8.10.

Then the C factor from the reweighted Pythia is used to unfold the data either

with the bin-by-bin or the matrix method. The two unfolding 1
σ

dσ

dpZT
are smoothed

by 100 bootstrap resamples to eliminate the statistical fluctuation. The unfolding

uncertainty due to the pZT shape is shown in Figure 8.11.
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Figure 8.12: Systematic uncertainty due to different MC generator features.

8.3.2 Monte Carlo Features

Apart from the shape dependence of the unfolding procedure, the correction fac-

tors may also depend on other generator features, such as the parton shower model.

To test the uncertainty associated with these features, correction factors are calcu-

lated with both Pythia and Mc@nlo, where the Mc@nlo spectrum is reweighted

to Pythia to avoid double counting of shape effects. The difference of two spectra

that are unfolded with these two sets of correction factors is taken as the systematic

uncertainty associated with the generator as shown in Figure 8.12. Shape and gen-

erator uncertainties are combined to yield the total unfolding uncertainty, which is

then smoothed with a linear function. The resulting uncertainties can be found in

Figure 8.12.

8.3.3 The Parton Distribution Function

The default Z → ee Pythia sample is generated using the PDF set of CTEQ6.6.

First, it is reweighted to the PDF set of MSTW2008. Then it is also reweighted to

40 eigenvectors PDF sets of MSTW2008 at the 90% confidence level. The maximum

deviation of 1
σ

dσ

dpZT
from different reweighting approaches is found to be around 0.1%
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over 19 bins. The deviation is small because the fiducial cross-section is in the central

region |η| < 2.5, where uncertainties of PDF sets are small.

A systematic uncertainty of 0.1% is assigned due to the potential bias of the PDF

set.

8.3.4 The Crack Region Correction

The phase-space pZT is changed from the reconstruction level (|ηe| < 2.4 and

|η| /∈ (1.37, 1.52) to the truth level (|ηe| < 2.4) due to the crack region in the EM

calorimeter. The extrapolation of the crack region may cause some bias which is not

included in uncertainties of C studied before. This uncertainty is studied by compar-

ing the difference of 1
σ

dσ

dpZT
deviations with and without the crack region extrapolation

from Pythia and Mc@nlo samples

Uncertaintyi =

∣∣∣∣∣∣∣∣∣
(

1
σ

dσ

dpZT

)Pythia

crack

−
(

1
σ

dσ

dpZT

)Pythia

(
1
σ

dσ

dpZT

)Pythia
−

(
1
σ

dσ

dpZT

)Mc@nlo

crack

−
(

1
σ

dσ

dpZT

)Mc@nlo

(
1
σ

dσ

dpZT

)Mc@nlo

∣∣∣∣∣∣∣∣∣
i

(8.4)

where for ith bin

•
(

1
σ

dσ

dpZT

)Pythia

crack

, Pythia result with |ηe| < 2.4 and |η| /∈ (1.37, 1.52) at the truth

level;

•
(

1
σ

dσ

dpZT

)Pythia

, Pythia result with |ηe| < 2.4 at the truth level;

•
(

1
σ

dσ

dpZT

)Mc@nlo

crack

, Mc@nlo result with |ηe| < 2.4 and |η| /∈ (1.37, 1.52) at the

truth level;

•
(

1
σ

dσ

dpZT

)Pythia

, Mc@nlo result with |ηe| < 2.4 at the truth level.
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A maximum deviation of 0.3% is found over 19 bins, which is used as the system-

atic uncertainty of the crack region correction.

8.3.5 The Final State Radiation

FSR uncertainties from single electron consist of

• different approximations used in Photos [40] to calculate the FSR matrix

element ≈ 0.1%;

• simulations of the interaction of the radiated photons with detector materials

≈ 0.2 [41] .

Therefore, a conservative uncertainty of 0.6% (= (0.2% + 0.1%) × 2) is assigned to

1
σ

dσ

dpZT
for the potential bias caused by the FSR mis-modeling of two electrons.

8.4 Summary of Uncertainties

Figure 8.13(a) and 8.13(b) show the normalized fiducial cross-section peeT spectrum

from the bin-by-bin unfolding method and all the uncertainties for each bin are sum-

marized in Table 8.3. The analysis is systematically limited up to about 9 GeV. The

systematic errors are of similar order of magnitude as the statistical ones over the

entire pZT range. The dominant contributions are due to the energy scale and electron

identification efficiency.
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Bin-by-bin Matrix Rel. diff.

pT
1
σZ

dσZ

dpZT
Stat. Syst. 1

σZ
dσZ

dpZT
Stat. Syst.

( GeV) (1/ GeV) (%) (%) (1/ GeV) (%) (%) (%)
0 − 3 0.0348 3.4 4.1 0.0347 4.9 4.2 -0.35
3 − 6 0.0586 2.6 2.5 0.0597 4.1 2.6 1.76
6 − 9 0.0462 2.8 2.5 0.0463 4.9 2.8 0.32
9 − 12 0.0343 3.2 2.1 0.0330 6.0 2.1 -4.00
12 − 15 0.0293 3.5 3.0 0.0317 5.7 3.1 7.66
15 − 18 0.0204 4.1 2.7 0.0196 7.9 2.8 -4.24
18 − 21 0.0164 4.6 3.8 0.0172 8.1 4.2 4.42
21 − 24 0.0132 5.2 3.9 0.0119 10.3 4.1 -10.13
24 − 27 0.0108 5.8 5.5 0.0110 10.3 6.2 2.36
27 − 30 0.0102 6.0 3.7 0.0102 10.1 4.0 0.39
30 − 36 0.0072 5.0 4.3 0.0070 7.1 4.6 -3.67
36 − 42 0.0049 6.1 3.8 0.0049 8.3 4.3 0.16
42 − 48 0.0036 7.0 5.2 0.0036 9.8 5.5 -2.33
48 − 54 0.0033 7.5 5.2 0.0032 10.0 6.0 -2.26
54 − 60 0.0021 9.2 6.3 0.0021 12.7 7.0 -3.79
60 − 80 1.2 · 10−3 6.7 5.3 1.1 · 10−3 7.9 5.3 -6.12
80 −100 5.7 · 10−4 9.7 6.1 5.8 · 10−4 11.1 6.9 1.52
100−180 1.7 · 10−4 8.7 6.9 1.8 · 10−4 9.3 7.3 1.02
180−350 7.8 · 10−6 28.7 7.5 9.8 · 10−6 29.7 7.5 20.42

Table 8.2: The normalized pZT distribution in the fiducial volume from the bin-by-
bin and the regularized matrix unfolding method. The larger statistical
uncertainties assigned to the matrix method result from the regularization.
Within systematic errors and the additional statistical error, the results
agree.
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Energy
peeT

1
σ

dσ

dpZT
stat. syst. scale reso. eID OTX Pileup unfold MC stat. FSR Crack PDF Bkg.

(GeV) (1/GeV) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
0 − 3 0.0348 3.28 4.72 2.68 0.50 0.99 0.10 0.33 3.60 0.53 0.60 0.30 0.10 0.26
3 − 6 0.0585 2.41 3.25 1.84 0.50 1.25 0.10 0.33 2.16 0.37 0.60 0.30 0.10 0.29
6 − 9 0.0461 2.66 2.31 0.99 0.50 1.54 0.10 0.33 0.96 0.48 0.60 0.30 0.10 0.42
9 − 12 0.0343 3.07 2.33 0.24 0.50 1.82 0.10 0.33 1.00 0.50 0.60 0.30 0.10 0.55
12 − 15 0.0293 3.34 2.61 -0.33 0.50 2.10 0.10 0.33 1.04 0.60 0.60 0.30 0.10 0.65
15 − 18 0.0204 3.92 2.93 -0.75 0.50 2.35 0.10 0.33 1.08 0.70 0.60 0.30 0.10 0.77
18 − 21 0.0164 4.39 3.23 -1.05 0.50 2.57 0.10 0.33 1.11 0.82 0.60 0.30 0.10 0.84
21 − 24 0.0132 4.79 3.45 -1.26 0.50 2.75 0.10 0.33 1.15 0.79 0.60 0.30 0.10 0.92
24 − 27 0.0108 5.52 3.66 -1.41 0.50 2.90 0.10 0.33 1.19 0.87 0.60 0.30 0.10 1.10
27 − 30 0.0102 6.48 3.89 -1.55 0.50 3.01 0.10 0.33 1.23 1.15 0.60 0.30 0.10 1.00
30 − 36 0.0072 4.85 4.01 -1.78 0.50 3.11 0.10 0.33 1.28 0.88 0.60 0.30 0.10 1.15
36 − 42 0.0049 5.76 4.28 -2.17 0.50 3.18 0.10 0.33 1.36 0.92 0.60 0.30 0.10 1.24
42 − 48 0.0037 7.01 4.59 -2.60 0.50 3.21 0.10 0.33 1.43 1.06 0.60 0.30 0.10 1.39
48 − 54 0.0033 7.76 4.92 -3.05 0.50 3.21 0.10 0.33 1.51 1.25 0.60 0.30 0.10 1.04
54 − 60 0.0021 9.16 5.27 -3.45 0.50 3.21 0.10 0.33 1.58 1.48 0.60 0.30 0.10 1.11
60 − 80 1.2 · 10−3 6.5 5.6 -4.04 0.50 3.22 0.10 0.33 1.74 0.90 0.60 0.30 0.10 0.95
80 −100 5.7 · 10−4 9.8 5.9 -4.30 0.50 3.22 0.10 0.33 1.99 1.16 0.60 0.30 0.10 0.61
100−180 1.7 · 10−4 9.6 6.1 -4.24 0.50 3.22 0.10 0.33 2.62 1.19 0.60 0.30 0.10 0.21
180−350 7.8 · 10−6 27.0 7.8 -4.42 0.50 3.22 0.10 0.33 4.18 3.60 0.60 0.30 0.10 0.12

Table 8.3: Summary of the normalized pZT distribution in the fiducial region.
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Figure 8.13: Normalized pZT distribution in the fiducial volume: (a) 0 < pZT < 60 GeV
(b) and 60 < pZT < 350 GeV.
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CHAPTER IX

Summary

The pZT spectrum, 1
σ

dσ

dpZT
is measured in the fiducial volume from the Z → ee

decays which shows an agreement with the prediction from the Pythia generator. In

addition to Pythia and Mc@nlo, various generators of pQCD calculations predict

the fiducial 1
σ

dσ

dpZT
as introduced in Section 2.7.

Fewz provides the fiducial 1
σ

dσ

dpZT
using fixed order pQCD calculations up to the

NNLO (O(α2
s)), as well as the NLO (O(αs)) with MSTW2008 PDF sets. The theo-

retical uncertainties of Fewz predictions are estimated by

• Varying the renormalization and factorization scales around the nominal value

(µR = µF = MZ) with the constraint 0.5 < µR/µF < 2;

• Varying the αs within the range of 90% confidence level [12];

• Using the PDF eigenvectors sets at 90% confidence level.

The total theoretical uncertainty is ≈ 10% and ≈ 8% for the O(αs) and O(α2
s)

predictions, respectively. The higher order correction is non-negligible for the pZT

distribution as indicated by substantial scale uncertainties. For pZT > 18 GeV, the

pQCD prediction receives a correction of 26−36% from the NLO to the NNLO. With

the higher order correction, the pZT distribution measured from data still overshoots

the NNLO prediction by ≈ 10% which is covered by the scale uncertainties. This
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deficit is observed at the Tevatron [42, 43] as well with a larger difference 15− 20%.

For pZT < 15 GeV where the fixed order pQCD calculation is not adequate to describe

the correct pZT distribution, the discrepancy between data and Fewz increases rapidly

towards vanishing pZT .

The measurement is also compared to NLO generators such as Resbos and

Powheg. The Resbos prediction combines resummed and fixed order pQCD cal-

culations, while Powheg has only fixed order pQCD calculation and is interfaced

with Herwig for the parton shower and fragmentation. Therefore, Resbos predic-

tion shows a better agreement with data than the Powheg. However, the Resbos

prediction is slightly higher than the data for 10 < pZT < 40 GeV, and slightly lower

for pZT > 40 GeV. Fewz and Resbos use different PDF sets and it is verified that

the difference caused by the PDF uncertainty is below 3% [44].

Alpgen and Sherpa are the LO generators which are able to simulate the weak

boson productions associated with up to five additional hard partons. The number

of additional partons can be specified in the simulation. Therefore, they are able to

provide a good description of 1
σ

dσ

dpZT
in the high pZT region with large statistics. The

enhancement of the O(α2
s) calculation is included in the process of multiple parton

radiations [17]. Herwig is used for the parton shower and fragmentation and Jimmy

is used for the underlying event simulations in Alpgen and Sherpa. Over the whole

pZT region, Alpgen and Sherpa predictions agree with the measurement from data

very well. The fiducial 1
σ

dσ

dpZT
of the data and various generators are summarized in

Table 9.1. All the results are divided by the Resbos prediction and the ratios are

shown in Figure 9.1.

The fiducial 1
σ

dσ

dpZT
is also measured in Z → µµ decays using the similar strategies

as the electron channel [44]. The corresponding integrated luminosity of Z → µµ

events is 40 pb−1. The ratio of the fiducial 1
σ

dσ

dpZT
between electron and muon channels

is shown in Figure 9.2.
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Data Resbos Fewz Pythia Mc@nlo Alpgen Sherpa Powheg
peeT

1
σ

dσ

dpZT
stat. syst. 1

σ
dσ

dpZT

1
σ

dσ

dpZT

1
σ

dσ

dpZT

1
σ

dσ

dpZT

1
σ

dσ

dpZT

1
σ

dσ

dpZT

1
σ

dσ

dpZT
(GeV) (1/GeV) (%) (%) (1/GeV) (1/GeV) (1/GeV) (1/GeV) (1/GeV) (1/GeV) (1/GeV)
1 − 3 0.0348 3.28 4.72 0.0367 - 0.0341 0.0393 0.0352 0.0370 0.0298
3 − 6 0.0585 2.41 3.25 0.0591 - 0.0578 0.0599 0.0586 0.0622 0.0617
6 − 9 0.0461 2.66 2.31 0.0464 - 0.0469 0.0485 0.0488 0.0493 0.0530
9 − 12 0.0343 3.07 2.33 0.0359 0.0392 0.0359 0.0367 0.0372 0.0357 0.0393
12 − 15 0.0293 3.34 2.61 0.0280 0.0271 0.0275 0.0280 0.0284 0.0269 0.0291
15 − 18 0.0204 3.92 2.93 0.0219 0.0204 0.0216 0.0213 0.0219 0.0209 0.0221
18 − 21 0.0164 4.39 3.23 0.0174 0.0154 0.0171 0.0168 0.0171 0.0163 0.0170
21 − 24 0.0132 4.79 3.45 0.0139 0.0123 0.0137 0.0132 0.0133 0.0129 0.0134
24 − 27 0.0108 5.52 3.66 0.0112 0.0098 0.0112 0.0107 0.0106 0.0104 0.0109
27 − 30 0.0102 6.48 3.89 0.0092 0.0080 0.0094 0.0087 0.0085 0.0085 0.0091
30 − 36 0.0072 4.85 4.01 0.0070 0.0062 0.0071 0.0065 0.0064 0.0066 0.0068
36 − 42 0.0049 5.76 4.28 0.0049 0.0044 0.0052 0.0046 0.0045 0.0048 0.0047
42 − 48 0.0037 7.01 4.59 0.0035 0.0033 0.0037 0.0033 0.0034 0.0035 0.0034
48 − 54 0.0033 7.76 4.92 0.0026 0.0025 0.0029 0.0025 0.0026 0.0026 0.0025
54 − 60 0.0021 9.16 5.27 0.0019 0.0019 0.0021 0.0018 0.0020 0.0020 0.0019
60 − 80 1.2 · 10−3 6.5 5.6 1.1 · 10−3 1.1 · 10−3 1.2 · 10−3 1.1 · 10−3 1.2 · 10−3 1.2 · 10−3 1.1 · 10−3

80 −100 5.7 · 10−4 9.8 5.9 4.7 · 10−4 5.1 · 10−4 5.6 · 10−4 4.2 · 10−4 5.4 · 10−4 5.2 · 10−4 4.6 · 10−4

100−180 1.7 · 10−4 9.6 6.1 1.1 · 10−4 1.3 · 10−4 1.4 · 10−4 0.9 · 10−4 1.4 · 10−4 1.2 · 10−4 1.0 · 10−4

180−350 7.8 · 10−6 27.0 7.8 7.3 · 10−6 10.8 · 10−6 9.5 · 10−6 6.4 · 10−6 11.6 · 10−6 6.2 · 10−6 5.7 · 10−6

Table 9.1: Summary of the fiducial 1
σ

dσ

dpZT
measured from the data and predicted by various

MC generators. The Fewz prediction is from the NNLO calculation and the
first three bins are omitted due to the divergence of the pQCD calculation.
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Figure 9.1: Ratios of the measured fiducial 1
σ

dσ

dpZT
and various predictions from Z → ee

decays. (a) Fewz predictions are shown with combined scale, αs and PDF
uncertainties; (b) the fiducial 1

σ
dσ

dpZT
ratios of the data and various generators

to the Resbos. The data uncertainties are calculated by summing statistical
and systematic uncertainties in quadrature. In the low pZT region, the fixed
order pQCD calculations from Fewz diverge and are omitted.
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include both statistical and systematic uncertainties. The systematic uncer-
tainties due to the unfolding procedure and QED FSR are omitted.

The measured results from two channels are combined using a χ2 minimization

method which takes into account correlated systematic uncertainties [45]. The mini-

mization yields a χ2/d.o.f. = 17.0/19 which indicates a good compatibility of electron

and muon fiducial 1
σ

dσ

dpZT
. The combined fiducial 1

σ
dσ

dpZT
of Z → `` (` = e, µ) are shown

in Figure 9.3.

In summary, this thesis measures the normalized transverse momentum spectrum

1
σ

dσ

dpZT
in the fiducial volume of the ATLAS detector from Z → ee decays up to

pZT = 350 GeV produced in proton-proton collisions at
√
s = 7 TeV. The measured

results are compared to predictions of various generators. Resbos describes the

1
σ

dσ

dpZT
well in the whole pZT range. For pZT > 18 GeV, Fewz O(α2

s) prediction under-

estimates the 1
σ

dσ

dpZT
by about 10%. Predictions from Pythia, Alpgen and Sherpa

are in good agreement with measurements from data. The 1
σ

dσ

dpZT
from the electron

decay channel is cross-checked with that from the muon decay channel and a very good

compatibility is found. For pZT > 9 GeV, the measurement is limited by statistical

uncertainties rather than systematic uncertainties, which is expected to be improved

with increasing luminosity.
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Figure 9.3: Ratios of the measured fiducial 1
σ

dσ

dpZT
and various predictions from Z → `` (` =

e, µ) decays. (a) Fewz predictions are shown with combined scale, αs and PDF
uncertainties; (b) the fiducial 1

σ
dσ

dpZT
ratios of the data and various generators

to the Resbos. The data are shown with combined statistical and systematic
uncertainties. In the low pZT region, the fixed order pQCD calculations from
Fewz diverge and are omitted.
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